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Background: Currently, the baseline estimated glomerular filtration rate (eGFR), 
the urine albumin level and renal fibrosis are the common risk and prognostic 
factors for chronic kidney disease (CKD). Intravoxel incoherent motion (IVIM) 
diffusion-weighted imaging (DWI) is a proven noninvasive tool for assessing 
renal fibrosis. The aim of this study was to evaluate whether IVIM-DWI could 
be used to identify high-risk patients with CKD during long-term follow-up.

Methods: In this exploratory study, 62 CKD patients who were followed for 
5 years and who underwent renal biopsy and IVIM-DWI magnetic resonance 
imaging (MRI) at the National Clinical Research Center of Kidney Disease in China 
were enrolled. We recorded baseline data, including clinical, pathology and MRI 
parameters, and evaluated the associations between baseline parameters and 
renal outcomes. The value of DWI parameters in predicting end-stage kidney 
disease (ESKD) was compared with that of clinical and pathological data.

Results: The mean baseline eGFR was 78.1 ± 28.05 ml/min/1.73 m2, and the 
median eGFR slope was −0.07 (−0.43–0.06) ml/min/1.73 m2/yr. Sixteen patients 
eventually developed ESKD. The values of perfusion fraction (f) were positively 
correlated with the eGFR slope (rs = 0.54, p = 0.028). The results of the receiver 
operating characteristic (ROC) analysis demonstrated that the areas under 
the curve (AUCs) of total apparent diffusion coefficient (ADCT), true diffusion 
coefficient (D) and f in distinguishing ESKD were 0.778 (95% confidence interval 
[95% CI] 0.65–0.906; p  = 0.001), 0.893 (95% CI 0.816–0.97; p <0.001), and 
0.823 (95% CI 0.706–0.939; p < 0.001), respectively. For the combination of 
baseline eGFR with both D and f, the AUC was significantly greater than that for 
the combination of baseline eGFR and interstitial extracellular matrix volume 
[AUC 0.955 (95% CI, 0.909 to 1.000) vs. AUC 0.886 (95% CI, 0.803 to 0.969), 
p = 0.049]. Cox proportional hazard regression revealed that f was a risk and 
prognostic factor for ESKD after adjustment for baseline variables (p = 0.006).

Conclusion: The combination of baseline eGFR and IVIM-DWI outperforms 
pathological factors alone in the diagnosis of long-term kidney dysfunction. 
This study indicated that IVIM-DWI could be  a promising tool for identifying 
patients at high risk of CKD progression.
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Introduction

Chronic kidney disease (CKD) is a progressive condition that 
causes not only kidney failure resulting in dialysis or transplantation 
but also cardiovascular disease, infections and death (1). The 
assessment of interstitial fibrosis with renal biopsy plays an important 
role in the identification of kidney function decline in CKD patients. 
However, owing to the invasiveness and complications of kidney 
biopsy, some patients may refuse surgery, and their kidney prognosis 
remains unclear. Therefore, there is a need to identify noninvasive 
biomarkers that could serve as risk factors for the progression of CKD 
to allow clinicians to manage patients properly. The estimated 
glomerular filtration rate (eGFR) and urine albumin level are readily 
available clinical parameters that are currently used to identify the risk 
of chronic kidney disease progression (2–4).

Diffusion-weighted magnetic resonance imaging (DWI-MRI) is 
a highly sensitive method for detecting the movement of water 
molecules in tissue and can indirectly indicate renal damage (5). 
Evidence from other studies has shown that DWI can be used to 
reflect renal function and pathology in CKD patients (6). Intravoxel 
incoherent motion DWI (IVIM-DWI) is a technique developed in 
recent years that can quantify microperfusion and diffusion separately 
with a biexponential model (7). Our study was designed on the basis 
that that IVIM-DWI can be used to effectively evaluate fibrosis in the 
kidney, as shown by the graphs of the mapping model from imaging 
and the eGFR into fibrosis (8, 9). Additionally, previous studies have 
shown that IVIM-DWI parameters can be used to assess fibrosis and 
evaluate kidney function decline in native and transplanted kidneys 
(9–11). However, whether functional MRI biomarkers can predict the 
risk of kidney function decline in long-term follow-up for CKD 
patients remains unclear, and cross-sectional comparisons with 
pathological findings are lacking. Therefore, this study aimed to 
investigate the value of IVIM-DWI in the prognosis of CKD patients.

Materials and methods

Study population

We collected data from a group of adult CKD patients who 
underwent IVIM-DWI and kidney biopsy from January 2016 to 
December 2017 and visited the National Clinical Research Center of 
Kidney Disease, Jinling Hospital, for 5 years. Among the 97 
participants with available baseline data, 62 were included in the study 

after 35 were excluded because of data integrity and availability 
concerns (Supplementary Figure 1). MRI was scheduled either 1 day 
before or within 1 week after the biopsy. The main exclusion criteria 
included refusal to participate in the study, claustrophobia or other 
standard MRI contraindications, and acute kidney injury confirmed 
by biopsy. This research was approved by the local ethics committee, 
and all included individuals provided informed consent to participate 
in our study (2024DZKY-053-01).

Clinical and laboratory assessments, 
follow-up, and outcomes

Clinical and laboratory data were collected at the time of MRI 
scanning. The data we  recorded were as follows: age, sex, serum 
creatinine (Scr) level and 24-h urine protein. The eGFR was calculated 
via the CKD Epidemiology Collaboration equation (CKD-EPI), 
namely, eGFR (ml/min/1.73 m2) =141 × min (Scr/κ)α  × max 
(Scr/κ)-1.209 × 0.993Age [×1.018 if female], where age is in years, Scr is in 
mg/dl. (κ = 0.7 for females and 0.9 for males; α = −0.329 for females 
and − 0.411 for males; min indicates the minimum of Scr/κ or 1, and 
max indicates the maximum of Scr/κ or 1). Scr was measured at 
baseline and at follow-up visits every 6 months for the first year and 
every 12 months until the end of the study. The eGFR slope was 
calculated by using regression analysis using all available data during 
each visit, which can account for the variability in the eGFR. The renal 
outcome included the rate of eGFR change over 5 years and end-stage 
kidney disease (ESKD), which was defined as an eGFR decline >30% or 
the need for regular renal replacement therapy. For those who 
progressed to ESKD, the last available data were recorded. If no eGFR 
value was available, we used a value of 10 mL/min/1.73 m2 to assess the 
primary outcome. During the study, at least three eGFR values, 
including baseline values, were obtained for each participant.

Histological fibrosis quantification

Pathologic diagnoses and preliminary lesion identifications were 
provided by an experienced nephropathologist who was blinded to the 
functional MRI results. Kidney fibrosis was quantified via Masson’s 
trichrome-stained kidney sections as previously reported (12). The 
sections were scanned on a digital pathology platform (Aperio 
Scanscope XT Turbo Scanner; Leica, Wetzlar, Germany) and analyzed 
with ImageScope (Aperio). Kidney fibrosis was then assessed 
quantitatively by the percentage area that appeared brilliant green 
(9, 12).

MRI acquisition and analysis

All the scans were performed with a 3.0 Tesla MRI system 
(Discovery MR 750; GE Medical Systems, Milwaukee, WI, USA) 
equipped with a 32-channel body coil after the participants fasted for 
4–6 h. Prior to the scans, the participants underwent training on how 

Abbreviations: CKD, Chronic kidney disease; IVIM, Intravoxel incoherent motion; 

DWI, Diffusion-weighted imaging; ESKD, End-stage kidney disease; eGFR, Estimated 

glomerular filtration rate; Scr, Serum creatinine; CKD-EPI, Chronic kidney disease 

epidemiology collaboration equation; ROIs, Regions of interest; ADCT, Total 

apparent diffusion coefficient; D, True diffusion coefficient; D*, Pseudo-diffusion 

coefficient; f, Perfusion fraction; ROC, Receiver operating characteristic; AUC, 

Area under the curve; HR, Hazard ratio; 95% CI, 95% Confidence interval; UACR, 

Urine albumin–creatinine ratio; BOLD, Blood–oxygen level dependent.
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to hold their breath as instructed by the doctor during the 
examination. The relevant MRI parameters are summarized in 
Supplementary Table 1. The original MRI data were transmitted to a 
workstation (Functool 9.4.05, Advantage Workstation Volume Share 
5, GE Healthcare), where the images were analyzed by two of the 
authors, who were blinded to the other results. Diffusion values were 
calculated on a pixel-by-pixel basis in 2 ways, as previously reported 
by our center (13). Regions of interest (ROIs) were placed to cover the 
corresponding renal cortex to the greatest extent possible at three 
levels while avoiding cystic areas and artifacts produced by breathing 
(Figure 1A). The total apparent diffusion coefficient (ADCT), true 
diffusion coefficient (D), pseudo-diffusion coefficient (D*) and 
perfusion fraction (f) were measured in the ROIs. The final values 
reflecting whole-kidney diffusion were obtained from the average 
values from the three layers of the cortex of the left kidney, as it was 
from that organ that the biopsy samples were obtained.

Statistical analysis

The statistical analyses were performed using SPSS software 
(version 26.0; IBM) and MedCalc software (version 23.0.6). The 
Shapiro–Wilk normality test was performed to determine the 

normality of the data distribution. Continuous variables are presented 
as the means ± standard deviations for normally distributed data or 
medians and interquartile ranges for nonnormally distributed data. 
Spearman correlation analysis was used to assess the pairwise 
relationships among DWI parameters, clinical parameters and the 
interstitial extracellular matrix volume. Post hoc multiple pairwise 
comparisons were performed using the Bonferroni correction. The 
performance of the different variables in predicting ESKD was 
evaluated via receiver operating characteristic (ROC) curve analysis. 
Comparisons of areas under the ROC curve (AUCs) were performed 
via the Delong test. Cox regression was performed to analyze the risk 
factors for ESKD. The results were considered significant when the 
two-sided p value was <0.05.

Results

Study population

The baseline demographic and clinicopathological data of the study 
population obtained with functional MRI are summarized in Table 1. 
Sixty-two participants, including 35 males and 27 females with a 
median age of 39.5 (26.75–49) years, were included because they met 

FIGURE 1

ROI placement for kidney IVIM-DWI (A), time courses of the eGFR for all patients over the 5 years (B), time curves of patients with an eGFR decline 
>30% (C), correlation heatmap of multiparametric MRI and clinicopathological variables (D). (A) The single ROI should be as large as possible in the 
cortex. Three elliptical ROIs were placed on each layer, and the average was taken. (B) The box plot shows that the change in the eGFR for patients 
over the 5 years was relatively flat. The number of patients at each time point was 62, 62, 62, 59, 58, 57, and 55, respectively. The different colors 
represent the eGFR values of all patients at different time points. (C) Shown are eGFR trajectories over the follow-up period, normalized to baseline 
eGFR, for patients with an eGFR decline >30% (n = 17). The different colors of data points and best fit lines represent the eGFR change in different 
patients. (D) The values within the rectangular boxes are the rs values for the Spearman correlation coefficient. eGFR, estimated glomerular filtration 
rate; ADCT, total apparent diffusion coefficient; D, true diffusion coefficient; D*, pseudo-diffusion coefficient; f, perfusion fraction.
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our criterion and had complete data. The mean baseline eGFR was 
78.1 ± 28.05 ml/min/1.73 m2, and the median eGFR slope was −0.07 
(−0.43–0.06) ml/min/1.73 m2/yr. The time courses of the eGFRs for all 
patients over the 5 years are presented in Figures 1B,C. The causes of 
CKD included primary glomerular disease, secondary kidney disease, 
metabolically related kidney damage and renal tubulointerstitial disease 
(Supplementary Figure 2). Unfortunately, 16 patients progressed to 
ESKD and required regular dialysis during the follow-up period.

Correlation analysis

The relationships between the DWI metrics and 
clinicopathological parameters are presented in Figure  1D and 
Supplementary Table 2. The baseline eGFR was positively correlated 
with the ADCT (rs = 0.42, p = 0.028), D (rs = 0.58, p = 0.028) and D* 
(rs  = 0.44, p  = 0.028). As the eGFR slope decreased, f (rs  = 0.54, 
p = 0.028) also decreased. In addition, the interstitial extracellular 
matrix volume was negatively correlated with the ADCT (rs = −0.43, 
p = 0.028) and D (rs = −0.46, p = 0.028). The level of urine protein was 
not significantly correlated with DWI metrics.

IVIM-DWI diagnostic parameters in early 
fibrosis

The Oxford classification of IgA nephropathy calculates interstitial 
fibrosis as interstitial fibrosis (0%), mild (1–25%), moderate (26–50%), 
or severe (≥51%) in the kidney (14). The criteria also apply to other 
chronic kidney diseases. For the purpose that early detection of 
fibrosis can help early intervention and delay the occurrence of ESKD, 
we analyzed the ability of DWI parameters to diagnose early fibrosis. 
As shown in Supplementary Table  3, the ADCT and D had good 
performance in predicting ≤25% versus >25% interstitial extracellular 
matrix volume, with AUCs of 0.715 (p = 0.005) and 0.72 (p = 0.004), 
respectively. The ADCT had a higher sensitivity, 87.5%, but a lower 

specificity, 54.5%, although there was no significant difference 
between the ADCT and D in terms of the AUC (p > 0.05). 
Nevertheless, D* and f could not significantly predict early fibrosis in 
CKD patients.

Diagnostic models of ESKD

A visual comparison of the IVIM-DWI and pathological images 
of 2 typical patients with different prognoses is shown in Figure 2. 
Clinical, pathological and imaging parameters were assessed to 
compare their diagnostic performance in predicting ESKD. The results 
of the ROC analysis are presented in Table 2 and Figure 3. Among 
clinicopathological parameters, the baseline eGFR and interstitial 
extracellular matrix volume had excellent discrimination ability for 
diagnosing ESKD, with AUCs of 0.885 (95% confidence interval [95% 
CI] 802–0.967, p < 0.001) and 0.833 (95% CI 0.727–0.939, p <0.001), 
respectively. For the DWI metrics, the AUCs for ADCT, D and f in 
distinguishing ESKD were 0.778 (95% CI 0.65–0.906; p = 0.001), 0.893 
(95% CI 0.816–0.97; p <0.001), and 0.823 (95% CI 0.706–0.939; 
p <0.001), respectively. Compared with the interstitial extracellular 
matrix volume, D had a larger AUC and a higher sensitivity of 93.8% 
but a lower specificity of 78.3%. Although D had the largest AUC 
among these measures, the differences in the AUCs of the other 
measures were not significant (all p > 0.05). In the subsequent analysis, 
parameters with an AUC greater than 0.8 were selected to assess their 
joint diagnostic capability. Following clinical experience, the baseline 
eGFR and interstitial extracellular matrix volume were combined and 
demonstrated a large AUC of 0.886 (95% CI, 0.803 to 0.969; p < 0.001). 
For the combination of the baseline eGFR with both D and f, the AUC 
was significantly greater than that for the combination of the baseline 
eGFR and the interstitial extracellular matrix volume [AUC 0.955 
(95% CI, 0.909 to 1.000) vs. AUC 0.886 (95% CI, 0.803 to 0.969), 
p = 0.049].

Prognostic value of IVIM-DWI

Cox regression analysis was performed to determine which 
functional MRI factors were associated with ESKD. The results are 
summarized in Table 3. According to the univariate analyses, ADCT, 
D and f were found to be  associated with CKD prognosis. After 
adjustment for age, sex and baseline eGFR, ADCT [hazard ratio (HR) 
0.961 (95% CI, 0.926 to 0.998), p = 0.039], D [HR 0.95 (95% CI, 0.903 
to 1.000), p = 0.049] and f [HR 0.835 (95% CI, 0.743 to 0.938), 
p = 0.002] were still significantly associated with ESKD. However, after 
further adjustment for the degree of albuminuria, the value of ADCT 
and D in predicting ESKD disappeared (p = 0.072 and p = 0.085, 
respectively), whereas f [HR 0.825, (95% CI, 0.720 to 0.947), p = 0.006] 
remained a predictor of the disease.

Discussion

There is growing interest in determining whether noninvasive 
imaging techniques can identify kidney injury, predict kidney 
function and accelerate the translation of multiparametric MRI of the 
kidneys into clinical practice (15). In our cohort of 62 patients 

TABLE 1 Baseline demographic and clinicopathological data of all 
participants.

All participants (n = 62)

Male/female 35/27

Age, year 39.5(26.75–49)

Serum creatinine, mg/dl 1.16(0.85–1.43)

Baseline eGFR, ml/min/1.73 m2 78.1 ± 28.05

Proteinuria, g/24 h 1.73(0.99–4.6)

ADCT, ×10−3 mm2/s 1.98 ± 0.24

D, ×10−3 mm2/s 1.43(1.34–1.51)

D*, ×10−3 mm2/s 12.47(9.3–25.21)

f 0.36(0.32–0.41)

Interstitial extracellular matrix 

volume, %

16.98(8.75–31.54)

eGFR, estimated glomerular filtration rate; ADCT, total apparent diffusion coefficient; D, true 
diffusion coefficient; D*, pseudo-diffusion coefficient; f, perfusion fraction. The distributions 
of baseline eGFR and ADCT revealed no remarkable skewness, so the data are presented as 
the means ± standard deviations, whereas the data for age, serum creatinine, proteinuria, D, 
D*, f and interstitial extracellular matrix volume were expressed as medians and interquartile 
ranges for nonnormally distributed data.
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FIGURE 2

IVIM-DWI and pathological images of 2 typical patients with different prognoses. Panels (A–F) are from a 34-year-old man with stable kidney function, 
whereas panels (G–L) are from a 41-year-old man with ESKD as a renal outcome. (A,G) T2W maps; (B,H) ADCT maps; (C,I) D maps; (D,J) D* maps; 
(E,K) f maps; (F,L) Masson trichrome stain (original magnification, ×100). Higher IVIM-DWI parameter values are shown with lower interstitial 
extracellular matrix volumes and stable kidney function, and high signal areas (red areas) are observed on the maps (the color bar on the right shows 
corresponding values of ADCT, D, D* and f).
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followed up for 5 years, our study demonstrated that IVIM-DWI is 
capable of detecting early fibrosis and monitoring kidney prognosis in 
CKD patients. ADCT and D were found to be noninvasive parameters 
that can be  used to identify mild fibrosis in CKD patients. More 
surprisingly, the combination of baseline eGFR and MRI biomarkers 
seemed to predict pathological factors in the diagnosis of kidney 
dysfunction. Furthermore, f may be  a stable parameter for 
independently predicting the progression of CKD after adjustment for 
baseline variables.

Although renal fibrosis is a key driver of the progression of CKD, 
the implementation of renal biopsy for assessing this condition is 
limited by its invasiveness, sampling bias and unsuitability for 

performing longitudinal follow-up. Our group demonstrated that 
both the ADCT and f were positively correlated with the peritubular 
capillary density. On this basis, we present a 3D parametric picture of 
the peritubular capillary density with ADCT/f and the eGFR (9). 
Therefore, we  further investigated the value of IVIM-DWI in 
identifying patients at high risk of chronic kidney disease progression. 
The eGFR and degree of albuminuria have been shown to be capable 
of predicting CKD prognosis; nevertheless, the ability of clinicians to 
predict events in those with established CKD within any given set of 
eGFR and urine albumin–creatinine ratio (UACR) categories has not 
been formally studied (16). To our knowledge, no similar studies have 
compared MRI biomarkers and pathology in the progression of 
CKD. Our study aimed to explore the value of imaging versus clinical 
and pathological factors in predicting ESKD in CKD patients to 
address the gap between clinical, pathological and imaging findings.

Diffusion MRI is widely used to assess kidney microstructure and 
microcirculation by measuring water movement. In IVIM-DWI, 
multiple b values are fit into a biexponential decay equation to separate 
perfusion from diffusion, yielding four characteristic variables: ADCT, 
D, D* and f. Although both ADCT and D reflect the diffusion of water 
molecules, the ADCT is thought to be affected by perfusion (17), D* is 
proportional to the mean capillary segment length and blood velocity, 
and f reflects the capillary density within the tissue since it is correlated 
with the general blood flow of the kidney (18, 19). In agreement with 
existing studies, including animal and human studies, our research 
revealed that IVIM-DWI parameters were negatively correlated with 
the area of renal fibrosis (19–21). Furthermore, we demonstrated that 
the performance of the ADCT and D in discriminating ≤25 and >25% 
interstitial extracellular matrix volume was good, whereas the 
discriminatory effects of D* and f were not statistically significant. Zhu 
et al. (22) reported that there were no significant correlations between 
f values and histology, which is similar to our results; however, the 
results from existing studies are controversial (5, 23). This may 
be explained by the fact that changes in water molecules are more 
sensitive to pathophysiological changes in the kidneys in early fibrosis 
than changes in the microcirculation of the blood. Mao et al. (24) and 
Liang et al. (25) reported that IVIM-DWI is sensitive for detecting 
underlying pathologic injury in early CKD patients. Feng et al. (26) 

TABLE 2 ROC analysis of different measures to predict ESKD.

Measures Cutoff AUC (95% CI) Sensitivity Specificity p

Separate diagnosis

Baseline eGFR 69.5 0.885 (0.802 to 0.967) 87.5% 80.4% <0.001

Urine protein / / / / 0.359

Interstitial extracellular matrix volume 31.58 0.833 (0.727 to 0.939) 62.5% 89.1% <0.001

ADCT 1.84 0.778 (0.65 to 0.906) 62.5% 87% 0.001

D 1.39 0.893 (0.816 to 0.97) 93.8% 78.3% <0.001

D* / / / / 0.094

f 0.33 0.823 (0.706 to 0.939) 68.8% 87% <0.001

Combined diagnosis

Baseline eGFR and interstitial extracellular matrix volume / 0.886 (0.803 to 0.969) 81.3% 84.8% <0.001

Baseline eGFR and D and f / 0.955 (0.909 to 1.0) 93.8% 91.3% <0.001

AUC, area under the curve; 95% CI, 95% confidence interval. The cutoff values of ADCT, D, and D* are presented as ×10−3 mm2/s; the baseline eGFRs are presented in ml/min/1.73 m2, and f is 
presented as a percentage.

FIGURE 3

Receiver operating characteristic curves of the combined diagnosis 
of different measures. The area under the receiver operating 
characteristic curve (AUC) values of the combination of the baseline 
eGFR with both D and f and the combination of the baseline eGFR 
and interstitial extracellular matrix volume to distinguish ESKD were 
0.955 and 0.886, respectively. * denotes p < 0.05.
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and Deng et al. (27) reported that IVIM-DWI parameters may serve 
as indicators for detecting early-stage kidney changes in diabetic 
patients. Given the limited population with >50% areas of fibrosis, 
we did not assess severe fibrosis further in our study.

The results of existing longitudinal follow-up studies on whether 
IVIM-DWI can predict renal function outcomes are controversial. 
Berchtold et al. (28) reported that the cortico-medullary difference 
in ADCT is a predictor of renal function decline in a mixed 
population of 197 CKD and kidney allograft patients followed up for 
5 years. In contrast, Sugiyama et  al. (29) reported that reduced 
oxygenation but not fibrosis, as defined by functional MRI, that is, 
the blood-oxygen-level-dependent (BOLD) signal but not the ADCT, 
could predict long-term progression in a cohort of 91 CKD patients. 
In our study, compared with other parameters, the ADCT showed 
similar performance in predicting ESKD, which may be explained 
by the fact that the ADCT is affected by diffusion and perfusion 
simultaneously. The measurement of the D* value mostly depends 
on the use of lower b values (≤200 s/mm2), which may be easily 
influenced by noise and therefore result in lower stability and 
repeatability for this value (30). However, a previous study reported 
that the multiplication of f and D* can produce high-resolution 
brain perfusion maps in various brain diseases, which could 
eliminate some correlated uncertainties potentially present in both 
f and D* (31, 32). Joo et al. (33) also confirmed that fD* had good 
stability, allowing early prediction of the tumor response to vascular 
disrupting agent treatment. This is a new way to verify the value of 
D* in the prognosis of CKD patients.

As fibrosis worsens, there is progressive extracellular matrix 
deposition and capillary loss; unsurprisingly, the corresponding 
representative factors D and f play important roles in kidney 
disease prognosis. The novel finding in our study was that the 
combination of baseline eGFR and MRI biomarkers predicted 
kidney outcomes in CKD patients in a manner similar to or even 
better than the use of pathology parameters alone. On this basis, 
the next step was to determine whether follow-up MRI data could 
be used to assess kidney disease prognosis over at least the next 
5 years. Zhang et  al. (34) reported that IVIM-derived D and 
DTI-derived FA values were better than other parameters for 
evaluating early kidney impairment in patients with diabetes, 
which showed that D has good stability in detecting early renal 
injury. Berchtold et al. (35) demonstrated that a change in the 
ADCT was more sensitive in detecting greater areas of kidney 
fibrosis in transplant patients than a change in the eGFR was in a 
longitudinal study of 19 kidney transplant recipients who had 
undergone serial kidney biopsies and MRI scans an average of 
1.7 years apart. The value of IVIM-DWI needs to be explored in 

depth not only for determining the prognosis of kidney disease 
but also in combination with clinical trials on interventional drugs.

A greater degree of albuminuria is a risk factor for a reduced GFR 
and progression to ESKD (36). Additionally, significant correlations 
between the mean renal ADCT value and excreted urine albumin have 
been demonstrated (6). However, importantly, our study indicated 
that albuminuria was not a good, independent predictor of the 
progression of CKD and even acted as a confounding factor for the 
association between MRI biomarkers and kidney dysfunction. This 
finding is consistent with that of an exploratory study by Srivastava 
et  al. (37). We  attribute this result to the heterogeneity of CKD, 
by which the degree of albuminuria in the participants could 
vary widely.

There are several limitations of our study. First, the accuracy of the 
predictors identified in this study was not externally validated because 
of the small sample size of a single center. Further multicenter studies 
with large sample sizes should be conducted to verify our results. 
Second, we ignored the effect of drugs on the eGFR during follow-up. 
The study population could not be characterized by a single disease, 
which may have resulted in different kidney outcomes due to the 
different medication regimens used. Third, the ROIs were delineated 
manually, resulting in a relatively subjective assessment that is 
infeasible for large-scale applicability in clinical practice.

In conclusion, our study provides histological evidence that 
IVIM-DWI can be used to noninvasively monitor kidney prognosis 
during long-term follow-up in CKD patients. These findings have 
important clinical value for the dynamic follow-up assessment of 
kidney disease prognosis.
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TABLE 3 Cox regression analysis of the associations between DWI parameters and ESKD.

Model 1 Model 2 Model 3

HR (95% CI) p HR (95% CI) p HR (95% CI) p

ADCT 0.947(0.918 to 0.977) 0.001 0.961(0.926 to 0.998) 0.039 0.965(0.927 to 1.003) 0.072

D 0.92(0.884 to 0.958) <0.001 0.95 (0.903 to 1.000) 0.049 0.955(0.906 to 1.006) 0.085

D* 0.951(0.895 to 1.012) 0.112 1.006(0.932 to 1.086) 0.875 1.015(0.939 to 1.097) 0.706

f 0.844(0.769 to 0.927) <0.001 0.835(0.743 to 0.938) 0.002 0.825(0.720 to 0.947) 0.006

Model 1 was unadjusted; Model 2 was adjusted for age, sex, and baseline eGFR; Model 3 was adjusted for age, sex, baseline eGFR and albuminuria; eGFR, estimated glomerular filtration rate; 
ADCT, total apparent diffusion coefficient; D, true diffusion coefficient; D*, pseudo-diffusion coefficient; f, perfusion fraction.
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