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Background: Liver metastasis is the most common site of metastasis in

pancreatic neuroendocrine tumors (PaNETs), significantly affecting patient

prognosis. This study aims to develop machine learning algorithms to predict

liver metastasis in PaNETs patients, assisting clinicians in the personalized clinical

decision-making for treatment.

Methods: We collected data on eligible PaNETs patients from the Surveillance,

Epidemiology, and End Results (SEER) database for the period from 2010 to

2021. The Boruta algorithm and the Least Absolute Shrinkage and Selection

Operator (LASSO) were used for feature selection. We applied 10 different

machine learning algorithms to develop models for predicting the risk of liver

metastasis in PaNETs patients. The model’s performance was assessed using a

variety of metrics, including the area under the receiver operating characteristic

curve (AUC), the area under the precision-recall curve (AUPRC), decision curve

analysis (DCA), calibration curves, accuracy, sensitivity, specificity, F1 score,

and Kappa score. The SHapley Additive exPlanations (SHAP) were employed

to interpret models, and the best-performing model was used to develop a

web-based calculator.

Results: The study included a cohort of 7,463 PaNETs patients, of whom 1,356

(18.2%) were diagnosed with liver metastasis at the time of initial diagnosis.

Through the combined use of the Boruta and LASSO methods, T-stage,

N-stage, tumor size, grade, surgery, lymphadenectomy, chemotherapy, and

bone metastasis were identified as independent risk factors for liver metastasis in

PaNETs. Compared to other machine learning algorithms, the gradient boosting

machine (GBM) model exhibited superior performance, achieving an AUC of

0.937 (95% CI: 0.931–0.943), an AUPRC of 0.94, and an accuracy of 0.87. DCA

and calibration curve analyses demonstrate that the GBM model provides better

clinical decision-making capabilities and predictive performance. Furthermore,

the SHAP framework revealed that surgery, N-stage, and T-stage are the primary

decision factors influencing the machine learning model’s predictions. Finally,

based on the GBM algorithm, we developed an accessible web-based calculator

to predict the risk of liver metastasis in PaNETs.
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Conclusion: The GBM model excels in predicting the risk of liver metastasis

in PaNETs patients, outperforming other machine learning models and

providing critical support for developing personalized medical strategies in

clinical practice.

KEYWORDS

pancreatic neuroendocrine tumors, liver metastasis, machine learning, prediction,
surveillance epidemiology and end results (SEER) database

Introduction

Neuroendocrine neoplasms (NENs) are a class of highly
heterogeneous tumors, originating from neuroendocrine cells, with
the pancreas being a common site of disease (1, 2). Pancreatic
neuroendocrine tumors (PaNETs) have a higher incidence and
lower diagnostic rate compared to other NENs, and their clinical
manifestations are more complex (3). Although PaNETs are rare
tumors, accounting for only 1–5% of pancreatic tumors, their
incidence rate and clinical detection rate have been on the rise
with advances in diagnostic technologies and the widespread
popularization of health screenings (4, 5). Although some PaNETs
may exhibit a relatively indolent clinical course, it is important
to note that these tumors are inherently malignant and also
display a wide spectrum of invasiveness (6). A 20-50% of PaNETs
patients have distant metastasis at the time of diagnosis, with liver
metastasis being the most common, and prognosis significantly
worsens once liver metastasis occurs (7, 8). Meanwhile, as PaNETs
patients lack typical clinical manifestations and liver metastases
are often indistinguishable from other hepatic conditions on
radiographic imaging, this further increases the complexity of
clinical diagnosis, with most patients already in advanced stages
at the time of diagnosis (9, 10). In recent years, increased use of
molecular imaging techniques such as PET/CT and SPECT/CT has
improved the detection rate of PaNETs and their liver metastases
(11). Meanwhile, molecular diagnostic methods, including serum
biomarkers and genetic testing, have offered new perspectives for
the early detection of liver metastases (12). Moreover, inflammatory
biomarkers may emerge as a promising new key tool with potential
applications in the diagnosis, treatment response prediction, and
prognostic evaluation of neuroendocrine neoplasms (13). Surgical
resection remains the treatment option for resectable PaNETs
liver metastases, significantly improving survival rates (14). The
introduction of targeted therapies and somatostatin analogs (SSA)
has markedly enhanced the efficacy of drug treatments (15, 16).
In addition, Peptide Receptor Radionuclide Therapy (PRRT), as
an emerging treatment for liver metastases, has demonstrated
promising prospects (17). Currently, research on predictive
models for liver metastases in PaNETs patients remains relatively
underexplored. Moreover, most studies have employed only a single
type of feature selection method or logistic regression modeling
approach (18, 19). Traditional modeling methods (such as logistic
regression) impose strict requirements on data distribution and
are susceptible to multicollinearity, as well as exhibiting inherent
limitations in handling complex, multidimensional data, thereby
limiting their broader applicability (20). Therefore, new models

for predicting the risk of liver metastasis in PaNETs still need
to be developed.

The integration of machine learning with medicine is rapidly
transforming healthcare, with advancements in data science
driving widespread applications in clinical diagnosis, personalized
treatment, and health monitoring (21). Compared to traditional
statistical methods, machine learning optimizes algorithms by
learning from data, enabling models to make predictions or
decisions with a more multidimensional approach to data
associations, making it particularly valuable for analyzing complex
medical data (22). However, machine learning models are often
treated as “black boxes,” making it difficult to comprehend how they
predict outcomes or why specific features are crucial to the results
(23, 24). Therefore, providing intuitive explanations for machine
learning models is essential to facilitate their application in clinical
practice. To address this limitation, Lundberg et al. (25) developed
the SHapley Additive exPlanations (SHAP) framework in 2017 to
assist clinicians in interpreting advanced machine learning models,
with the code available as open-source on GitHub.1

In this study, we developed 10 machine learning models
based on the Surveillance, Epidemiology, and End Results (SEER)
database to predict the probability of liver metastasis in PaNETs
patients. Subsequently, we used the best-performing machine
learning model to develop a web-based calculator to assist clinicians
in assessing the risk of liver metastasis in PaNETs patients.
This predictive tool provides important references for making
personalized clinical decision−making and optimizing healthcare
resource allocation.

Materials and methods

Patient selection

The SEER database is one of the most comprehensive
population-based cancer registries in the United States, covering
nearly 28% of the U.S. population and providing essential
data for investigating complex diseases (26). In this study,
we obtained data on patients with PaNETs from the SEER
database between 2010 and 2021 (with records sourced from
17 cancer registries), as detailed information on patients’ liver,
brain, lung, and bone metastases was not collected in the

1 https://github.com/slundberg/shap
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FIGURE 1

Flowchart of study design and patient screening.

database until after 2010 (27). Data for this research were
acquired by downloading from SEER∗Stat software version 8.4.4
in October 2024. The inclusion criteria were as follows: (1) The
primary location of pancreatic tumors was classified based on
site and morphology codes as C25.0 to C25.9. (2) The following
histological/behavioral codes according to the International
Classification of Diseases for Oncology, 3rd Edition (ICD-O-
3), were used: pancreatic malignant pancreatic endocrine tumor
(8,150), insulinoma (8,151), glucagonoma (8,152), gastrinoma
(8,153), vipoma (8,155), somatostatinoma (8,156), carcinoid tumor
(8,240), malignant enterochromaffin-like cell tumor (8,242), goblet
cell carcinoid (8,243), neuroendocrine carcinoma (8,246), and
atypical carcinoid tumor (8,249). We excluded the following
patients: Patients with non-pathological diagnosis, unknown is
the information regarding liver, brain, lung, and bone metastases,
unknown grade, and diagnosed with PaNETs only by autopsy or
death certificate. A flowchart depicting the study protocol is shown
in Figure 1. Since SEER data is publicly available and does not
include any identifiable information or personal details, ethical
review and informed consent are not necessary.

Research variables

After filtering the data and excluding missing values, the
demographic and clinicopathological variables were obtained,
including: year of diagnosis, age at diagnosis (<60, ≥ 60 years

old), sex, race (white, black, Asian, other), marital status, annual
household income, and location of residence, T-stage, N-stage,
tumor size (<2, 2–4, ≥ 4 cm), tumor functional status, primary
site (head, body or tails, other), grade (I, II, III), surgery,
lymphadenectomy, radiotherapy, chemotherapy, liver metastasis,
bone metastasis, lung metastasis and brain metastasis. Marital
status was categorized as married, unmarried, separated, divorced,
or widowed (SDW). Based on the 2023 Rural-Urban Continuum
Codes, the place of residence is classified as either metropolitan
county, non-metropolitan, or unknown (28). The tumors were
categorized into G1 (≤2%), G2 (2–20%), and G3 (>20%) based on
the Ki-67 index (29). In this study, we defined “G1,” “G2,” and “G3”
as “I,” “II,” and “III,” respectively, and combined Grades IV and III
into a single category (1, 30). The surgeries were categorized into
the following four types: None, pancreatectomy and duodenectomy
(PD), partial pancreatectomy (PP), and total pancreatectomy (TP).

Feature selection

The least absolute shrinkage and selection operator (LASSO)
is a regularization technique in regression that applies a
penalty term to shrink certain regression coefficients, facilitating
variable selection and model simplification, while preserving
high predictive accuracy (31). The Boruta algorithm is a feature
selection method based on Random Forest, which assesses feature
importance by creating “shadow variables” for each original
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variable in the dataset (32). We used the glmnet package in
R to perform LASSO regression, setting the key parameter
Alpha to 1, and through cross-validation with the cv.glmnet
function, we selected lambda.1se to achieve a streamlined model
and reduce the risk of overfitting. For the Boruta algorithm,
we employed a Random Forest with 500 trees (the default
setting in the R “Boruta” package) to obtain robust feature
importance measures. We employed the combination of LASSO
and Boruta, leveraging Boruta’s global feature assessment capability
during feature selection alongside LASSO’s regularization, thereby
improving both the accuracy and interpretability of the model.

Model construction and evaluation

We randomly split the data from the SEER database into
training and validation sets in a 7:3 ratio. In this study, we selected
10 well-established supervised machine learning algorithms to
build models. These algorithms span linear, tree-based, ensemble,
and neural network models, including logistic regression (LR),
support vector machine (SVM), gradient boosting machine (GBM),
multi-layer perceptron (MLP), random forest (RF), extreme
gradient boosting (XGB), k-nearest neighbors (KNN), adaptive
boosting (AdaBoost), naive bayes classifiers (NBC), and categorical
boosting (CatBoost). Our goal is to address the limitations of
model simplicity in current research by comprehensively exploring
data features and capturing complex relationships. LR is a linear
model widely adopted for binary classification, valued for its
interpretability and computational efficiency (33). SVM employs
kernel-based boundaries and handles high-dimensional data
effectively (34). GBM iteratively trains weak learners to minimize
a loss function, thus capturing complex interactions (35). MLP
is a feedforward neural network capable of modeling non-linear
relationships (36). RF is an ensemble of decision trees that uses
bootstrap aggregation to enhance prediction accuracy (37). XGB is
a tree-based framework offering efficient and regularized gradient
boosting, widely used in medical modeling (38). KNN labels points
by their nearest neighbors in feature space, making it widely used
in pattern recognition and data mining (39). NBC applies Bayes’
theorem under an independence assumption, which allows it to
handle continuous feature values when they occur (40). AdaBoost
iteratively reweights training samples to highlight misclassified
instances, refining model performance (41). CatBoost is a decision
tree gradient boosting algorithm that efficiently handles categorical
and ordered features via permutation-driven methods (42). In
the training set, given the significant impact of class imbalance
on model performance in binary classification, we applied the
Synthetic Minority Over-sampling Technique (SMOTE) to resolve
the data imbalance issue (43). We optimized hyperparameters by
combining grid search with 10-fold CV, partitioning the dataset
into 10 subsets so that in each iteration onefold served as the
validation set while the remaining nine trained the model, thereby
minimizing overfitting risks to the greatest extent possible and
enhancing generalizability (44).

We determined the optimal model by evaluating multiple
performance metrics, including accuracy, sensitivity, specificity,
positive predictive value (PPV), negative predictive value (NPV),
F1 score, Kappa score, area under the curve (AUC), and area

under the precision-recall (PR) curve (AUPRC). AUC is typically
calculated based on the receiver operating characteristic (ROC)
curve. However, for imbalanced datasets, AUC may be less
effective than the area under the AUPRC in evaluating model
performance, so we generated the PR curve and calculated the
AUPRC as a complementary metric (45). In addition, we employed
decision curve analysis (DCA) to assess the clinical utility of
the models. Calibration curves were plotted to compare the
predictive performance of the models. Integrated discrimination
improvement (IDI) and net reclassification improvement (NRI) to
evaluate the improvement in predictive performance of the new
model relative to the baseline model (46).

In order to better understand the “black-box” nature of
machine learning models, this study employed SHAP to interpret
the. The core concept is to calculate each feature’s contribution to
the model’s output, providing visual explanations at both global and
local levels (47). This approach enhances the transparency of the
model’s decision-making process and makes it easier to understand.
Furthermore, to promote the clinical adoption and dissemination
of the model, we developed an accessible web-based calculator.

Statistical analysis

In this study, all statistical analyses were performed using
R software (version 4.4.1) and Python software (version 3.12).
Continuous variables are presented as medians and interquartile
ranges (IQR) and compared using the Mann-Whitney U test.
Categorical variables are presented as frequencies and percentages
(%), and analysis was performed using Fisher’s exact test or
Pearson’s chi-square test. The correlation between two variables
was analyzed using Spearman’s correlation analysis. The dataset
was randomly divided into 70% for training and 30% for testing to
develop predictive models. We used the imbalanced-learn library
(version 0.12.3) in Python to implement the SMOTE algorithm for
oversampling minority class samples. For each minority sample,
SMOTE generates synthetic instances by interpolating between
its k-nearest neighbors (k = 5), thereby effectively addressing
the class imbalance problem. Subsequently, 10 machine learning
algorithms were used to train the models on the training set.
To mitigate overfitting, 10-fold CV was conducted to optimize
model parameters during the training process. For interpretability
analysis, the SHAP library in Python (version 0.46.0) was applied.
P < 0.05 (bilateral) was considered statistically significant.

Results

Baseline clinical characteristics of
patients

In this study, we include a total of 7,463 patients with PaNETs
for detailed retrospective analysis. Of these, 1,356 cases (18.2%)
presented with liver metastases, while 6,107 cases (81.8%) did
not. Compared to patients without liver metastases, those with
liver metastases had a higher proportion of tumors grade (II-
III), T-stage (II-IV) and N-stage (N1/2), with 876 cases (64.6%)
presenting tumors larger than 4 cm (P < 0.001). The incidence
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of bone, lung, and brain metastases was also significantly higher
(P < 0.001). In terms of treatment, the liver metastases group
had a higher proportion of patients who did not undergo
surgery or Lymphadenectomy (P < 0.001). The demographic and
clinicopathological characteristics of PaNETs patients with and
without liver metastases are shown in Table 1 and Figure 2. The
subjects were then divided into a training set (n = 5,225) and a
validation set (n = 2,238) at a 7:3 ratio. A total of 4,019 patients
(54.3%) were aged 60 years or older, and 4,139 (55.5%) were
male. Additionally, most tumors were located in the pancreatic tail
(39.2%), with PP as the most common surgical approach (40.4%),
while the majority of patients did not receive radiotherapy (97.1%)
or chemotherapy (87.4%). No statistically significant differences in
demographic or clinicopathological characteristics were observed
between the training and validation sets (all P > 0.05). Detailed
information is provided in Table 2.

Correlation analysis and predictor
screening

In order to assess the strength and direction of relationships
between variables, correlation analysis is commonly used. In the
present research, Spearman’s correlation analysis was performed
to assess the independence between data features, and the results
were visualized in a correlation heatmap (Figure 3). The results
indicate that no severe collinearity was present, as all correlation
coefficients were below 0.80, thereby ensuring the reliability of
the predictor screening process. Boruta, an extension of the
RF algorithm, identifies the most relevant features by iteratively
comparing the importance of real features with that of randomized
shadow feature. We employed the Boruta algorithm to identify 14
key factors, including year of diagnosis, residence, T-stage, N-stage,
tumor size, primary site, grade, surgery, lymphadenectomy,
radiotherapy, chemotherapy, bone metastasis, lung metastasis, and
brain metastasis (Figure 4A). In comparison, LASSO regression,
a shrinkage method, selects variables and adjusts complexity
through an optimization function with a penalty term. In this
study, lambda.1se was identified as the optimal value, and the
eight key variables selected through LASSO regression included
T-stage, N-stage, tumor size, grade, surgery, lymphadenectomy,
chemotherapy, and bone metastasis (Figures 4B,C). Subsequently,
a common subset of variables was identified through a comparative
analysis of the feature selection results from the Boruta algorithm
and LASSO regression. The selected features were ultimately
used for model construction, including T-stage, N-stage, tumor
size, grade, surgery, lymphadenectomy, chemotherapy, and bone
metastasis (Figure 4D).

Model performance

To obtain the optimal predictive model, we compared the
performance of 10 machine learning algorithms and validated
them on the validation set. As shown in Figures 5A,E), the
GBM algorithm achieved higher AUC values compared to the
other nine models, with training set (AUC = 0.937, 95% CI:
0.931–0.943) and validation set (AUC = 0.912, 95% CI: 0.897–
0.926). The PR curve indicates that the GBM model achieves a

higher AUPRC compared to the other 9 models, with training set
(AUPRC = 0.94) and validation set (AUPRC = 0.65) (Figures 5B,F).
The DCA curves demonstrate that the GBM model exhibits
superior clinical decision-making ability and practical predictive
performance in both the training and test sets compared to
other models (Figures 5C,G). The calibration curves of different
machine learning algorithms indicate that the GBM algorithm
shows the highest consistency with the ideal prediction curve in
both the training and test sets (Figures 5D,H). Heatmap analysis
offers a comprehensive, clear, intuitive, and easily interpretable
approach, making it ideal for multidimensional evaluations of
model performance. In this study, we employed a heatmap to
compare each model’s accuracy, sensitivity, specificity, positive
predictive value, negative predictive value, F1 score, and Kappa
value across the training and validation sets (Figures 6A,B). In
the validation set, NRI and IDI analyses showed that the GBM
model outperformed most models in terms of reclassification and
overall discrimination capabilities (Supplementary Table 1). After a
comprehensive evaluation of the performance of 10 models in the
training and validation sets, we identified the GBM model as the
best performer in predicting liver metastases in PaNETs patients,
designating GBM as the optimal model.

Interpretability analysis

We applied SHAP framework to interpretation of the GBM
model. In SHAP analysis, higher feature SHAP values generally
indicate an increased likelihood of the target event. Figure 7A
shows all risk factors evaluated using mean absolute SHAP
values, with surgery ranked as the most important variable,
followed by N-stage, T-stage, tumor size, chemotherapy, grade,
lymphadenectomy, and bone metastasis, and illustrating how
these factors influence liver metastasis. The SHAP heatmap
performs hierarchical clustering of patients based on SHAP values,
visually highlighting the distribution of PaNETs patients with and
without liver metastasis, where red represents high-probability
cases of liver metastasis and colorless or blue indicates cases
with no liver metastasis or low probability (Figure 7B). The
combination of different variables influences patient prognosis. To
improve the understanding of the model’s decision-making on an
individual level, we provide two representative samples: one from a
PaNETs patient with liver metastasis and another from a patient
without liver metastasis (Figures 7C,D). Additionally, the SHAP
dependence plot (Figure 7E) illustrates how individual features
affect the model’s predicted output and visualizes the changes in
their attribution importance as the feature values vary. For example,
in PaNETs patients who did not undergo surgical treatment, have
higher tumor stages, and larger tumor diameters, the SHAP values
are greater than zero, driving the model’s predictions toward the
liver metastasis category. Through the visualization of the SHAP
values for these samples, we can assess how each feature influences
the model’s predictions for these specific cases.

Web calculator

In this study, we developed a web-based calculator based on
the GBM model to predict liver metastasis in PaNETs patients,
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TABLE 1 Baseline characterization of patients diagnosed as PaNETs patients.

Variables Without liver
metastasis

Without liver
metastasis

Total P-value

(n = 6,107), n (%) (n = 1,356), n (%) (n = 7,463), n (%)

Years 0.04

2010–2014 1,774 (29.0) 448 (33.0) 2,222 (29.8)

2015–2018 2,270 (37.2) 497 (36.7) 2,767 (37.1)

2019–2021 2,063 (33.8) 411 (30.3) 2,474 (33.2)

Age 0.728

< 60 2,805 (45.9) 639 (47.1) 3,444 (46.1)

≥ 60 3,302 (54.1) 717 (52.9) 4,019 (53.9)

Sex 0.025

Female 2,765 (45.3) 559 (41.2) 3,324 (44.5)

Male 3,342 (54.7) 797 (58.8) 4,139 (55.5)

Race 0.023

White 4,761 (78.0) 1,103 (81.3) 5,864 (78.6)

Black 658 (10.8) 141 (10.4) 799 (10.7)

Asian 597 (9.8) 105 (7.7) 702 (9.4)

Other 91 (1.5) 7 (0.5) 98 (1.3)

Marital status 0.546

Married 3,891 (63.7) 847 (62.5) 4,738 (63.5)

SDW 943 (15.4) 227 (16.7) 1,170 (15.7)

Unmarried 1,002 (16.4) 236 (17.4) 1,238 (16.6)

Other/Unknown 271 (4.4) 46 (3.4) 317 (4.2)

Grade <0.001

I 4,589 (75.1) 602 (44.4) 5,191 (69.6)

II 1,247 (20.4) 429 (31.6) 1,676 (22.5)

III 271 (4.4) 325 (24.0) 596 (8.0)

Functional status 0.733

Function 69 (1.1) 12 (0.9) 81 (1.1)

Non-function 6,038 (98.9) 1,344 (99.1) 7,382 (98.9)

Primary site <0.001

Head 1,063 (27.1) 384 (28.3) 2,037 (27.3)

Body 1,080 (17.7) 146 (10.8) 1,226 (16.4)

Tail 2,423 (38.7) 504 (37.2) 2,927 (39.2)

Other 951 (15.6) 322 (23.7) 1,273 (17.1)

Surgery <0.001

PD 1,715 (28.1) 175 (12.9) 1,890 (25.3)

PP 2,804 (45.9) 214 (15.8) 3,018 (40.4)

TP 587 (9.6) 78 (5.8) 665 (8.9)

None 1,001 (16.4) 889 (65.6) 1,890 (25.3)

Lymphadenectomy <0.001

No 5,773 (94.5) 753 (55.5) 6,526 (87.4)

Yes 334 (5.5) 603 (44.5) 937 (12.6)

Radiotherpy <0.001

No 5,995 (98.2) 1,248 (92.0) 7,243 (97.1)

Yes 112 (1.8) 108 (8.0) 220.(2.9)

(Continued)
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TABLE 1 (Continued)

Variables Without liver
metastasis

Without liver
metastasis

Total P-value

(n = 6,107), n (%) (n = 1,356), n (%) (n = 7,463), n (%)

Chemotherpy <0.001

No 5,773 (94.5) 753 (55.5) 6,526 (87.4)

Yes 334 (5.5) 603 (44.5) 937 (12.6)

T stage <0.001

T0/Tis 7 (0.1) 9 (0.7) 16 (0.2)

T1 2,525 (1.3) 65 (4.8) 2,590 (34.7)

T2 1,999 (32.7) 368 (27.1) 2,367 (31.7)

T3 1,221 (20.0) 474 (35.0) 695 (22.7)

T4 220 (3.6) 223 (16.4) 443 (5.9)

TX 135 (2.2) 217 (16.0) 352 (4.7)

N stage <0.001

N0 4,796 (78.5) 636 (46.9) 5,432 (72.8)

N1/N2 1,183 (19.4) 549 (40.5) 1,732 (23.2)

NX 128 (2.1) 171 (12.6) 299 (4.0)

Tumor size <0.001

<2 cm 2,495 (40.9) 87 (6.4) 2,582 (34.6)

2–4 cm 2,073 (33.9) 393 (29.0) 2,466 (33.0)

≥ 4 cm 1,539 (25.2) 876 (64.6) 2,415 (32.4)

Bone metastasis

No 6,075 (99.5) 1,235 (91.1) 7,310 (97.9) <0.001

Yes 32 (0.5) 121 (8.9) 153 (2.1)

Lung metastasis <0.001

No 6,075 (99.5) 1,282 (94.5) 7,349 (98.5)

Yes 32 (0.5) 74 (5.5) 114 (1.5)

Brain metastasis <0.001

No 6,101 (99.9) 1,345 (99.2) 7,446 (99.8)

Yes 6 (0.1) 11 (0.8) 17 (0.2)

Annual household income 0.036

< $45,000 83 (1.4) 24 (1.8) 107 (1.4)

$45,000 – $74,999 2,170 (35.5) 538 (39.7) 2,708 (36.3)

> $75,000 3,854 (63.1) 794 (58.6) 4,648 (62.3)

Residence 0.885

Metropolitan 3,748 (61.4) 842 (62.1) 4,590 (61.5)

Non-metro/unknown 2,359 (38.6) 514 (37.9) 2,873 (38.5)

SDW, Separated + Divorced + Widowed; PP, Partial pancreatectomy; PD, Pancreatectomy and duodenectomy; TP, Total pancreatectomy. PaNETs, Pancreatic neuroendocrine tumor.

aiming to facilitate clinical adoption and dissemination. The image
of the web calculator is presented in Figure 8. Clinicians can
calculate the probability of liver metastasis in PaNETs patients by
entering relevant clinical and pathological information into the web
calculator. The web calculator can be conveniently accessed online
through the following link2.

2 https://bijinzhe.shinyapps.io/pnet_lm_shiny/

Discussion

Distant metastasis is a critical factor affecting the prognosis
of PaNETs patients, with previous studies showing a median
survival time of 24 months for those with distant metastases
(1, 48). When PaNETs patients experience distant metastases,
research has confirmed that the liver is the most common target
organ (7). Therefore, it is crucial to promptly identify and predict
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FIGURE 2

Inset pie charts visualizing the probability of liver metastasis under different clinical and tumor characteristics in PaNETs. (A) Years; (B) age; (C) sex;
(D) race; (E) marital status; (F) tumor grade; (G) functional status; (H) primary site; (I) surgery; (J) lymphadenectomy; (K) radiotherapy; (L)
chemotherapy; (M) T stage; (N) N stage; (O) tumor size; (P) bone metastasis; (Q) lung metastasis; (R) brain metastasis; (S) annual household income;
and (T) residence. LM (+), with liver metastasis; LM (–), without liver metastasis; SDW, Separated + Divorced + Widowed; PP, Partial pancreatectomy;
PD, Pancreatectomy and duodenectomy; TP, Total pancreatectomy. PaNETs, Pancreatic neuroendocrine tumor.
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TABLE 2 Characteristics of PaNETs patients in the training set and the validation set.

Variables Training set Validation set Total P-value

(n = 6,107), n (%) (n = 1,356), n (%) (n = 7,463), n (%)

Years 0.955

2010–2014 1,557 (29.8) 665 (29.7) 2,222 (29.8)

2015–2018 1,950 (37.3) 817 (36.5) 2,767 (37.1)

2019–2021 1,718 (32.9) 756 (33.8) 2,474 (33.2)

Age 0.561

< 60 2,390 (45.7) 1,054 (47.1) 3,444 (46.1)

≥ 60 2,825 (54.3) 1,184 (52.9) 4,019 (53.9)

Sex 0.905

Female 2,336 (44.7) 988 (44.1) 3,324 (44.5)

Male 2,889 (55.3) 797 (58.8) 4,139 (55.5)

Race 0.667

White 4,082 (78.1) 1,782 (79.6) 5,864 (78.6)

Black 581 (11.1) 218 (9.7) 799 (10.7)

Asian 497 (9.5) 205 (9.2) 702 (9.4)

Other 65 (1.2) 33 (1.5) 98 (1.3)

Marital status 0.843

Married 3,302 (63.2) 1,436 (64.5) 4,738 (63.5)

SDW 816 (15.6) 354 (15.8) 1,170 (15.7)

Unmarried 890 (17.0) 348 (15.5) 1,238 (16.6)

Other/unknown 271 (4.2) 100 (4.5) 317 (4.2)

Grade 0.138

I 3,602 (68.9) 1,589 (71.0) 5,191 (69.6)

II 1,216 (23.3) 460 (20.6) 1,676 (22.5)

III 407 (7.8) 189 (8.4) 596 (8.0)

Functional status 0.171

Function 49 (0.9) 32 (1.4) 81 (1.1)

Non-function 5,176 (99.1) 2,206 (98.6) 7,382 (98.9)

Primary site 0.966

Head 1,424 (27.3) 613 (27.4) 2,037 (27.3)

Body 869 (16.6) 357 (16.0) 1,226 (16.4)

Tail 2,056 (39.3) 871 (38.9) 2,927 (39.2)

Other 876 (16.68) 397 (17.7) 1,273 (17.1)

Surgery 0.975

PD 1,339 (25.6) 551 (24.6) 1,890 (25.3)

PP 2,105 (40.3) 913 (40.8) 3,018 (40.4)

TP 470 (9.6) 195 (8.7) 665 (8.9)

None 1,311 (25.1) 579 (25.9) 1,890 (25.3)

Lymphadenectomy 0.153

No 1,972 (37.7) 898 (40.1) 2,870 (38.5)

Yes 3,253 (62.3) 1,340 (59.9) 4,593 (61.5)

Radiotherpy 0.326

No 5,081 (97.2) 2,162 (96.6) 7,243 (97.1)

Yes 144 (2.8) 76 (3.4) 220.(2.9)

(Continued)

Frontiers in Medicine 09 frontiersin.org

https://doi.org/10.3389/fmed.2025.1533132
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1533132 April 28, 2025 Time: 16:2 # 10

Bi and Yu 10.3389/fmed.2025.1533132

TABLE 2 (Continued)

Variables Training set Validation set Total P-value

(n = 6,107), n (%) (n = 1,356), n (%) (n = 7,463), n (%)

Chemotherpy 0.9

No 4,575 (87.6) 1,951 (87.2) 6,526 (87.4)

Yes 650 (12.4) 287 (12.8) 937 (12.6)

T stage 0.786

T0/Tis 10 (0.2) 6 (0.3) 16 (0.2)

T1 1,777 (34.0) 813 (36.3) 2,590 (34.7)

T2 1,693 (32.4) 674 (30.1) 2,367 (31.7)

T3 1,187 (22.7) 508 (22.7) 695 (22.7)

T4 317 (6.1) 126 (5.6) 443 (5.9)

TX 241 (4.6) 111 (5.0) 352 (4.7)

N stage 0.933

N0 3,787 (72.5) 1,645 (73.5) 5,432 (72.8)

N1/N2 1,227 (23.5) 505 (22.6) 1,732 (23.2)

NX 211 (4.0) 88 (3.9) 299 (4.0)

Tumor size 0.289

<2 cm 1,769 (33.9) 813 (36.3) 2,582 (34.6)

2–4 cm 1,760 (33.7) 706 (31.5) 2,466 (33.0)

≥ 4 cm 1,696 (32.5) 719 (32.1) 2,415 (32.4)

Liver metastasis 0.999

No 4,275 (81.8) 1,832 (81.9) 6,107 (81.8)

Yes 950 (18.2) 406 (18.1) 1,356 (18.2)

Bone metastasis 0.042

No 5,132 (98.2) 2,178 (97.3) 7,310 (97.9)

Yes 93 (1.8) 60 (2.7) 153 (2.1)

Lung metastasis 0.971

No 5,144 (98.4) 2,205 (98.5) 7,349 (98.5)

Yes 81 (1.6) 33 (1.5) 114 (1.5)

Brain metastasis 0.539

No 5,211 (99.7) 2,235 (99.9) 7,446 (99.8)

Yes 14 (0.3) 3 (0.1) 17 (0.2)

Annual household income 0.993

< $45,000 73 (1.4) 34 (1.5) 107 (1.4)

$45,000 – $74,999 1,902 (36.4) 806 (36.0) 2,708 (36.3)

> $75,000 3,250 (62.2) 1,398 (62.5) 4,648 (62.3)

Residence 0.477

Metropolitan 3,237 (62.0) 1,353 (60.5) 4,590 (61.5)

Non-metro/unknown 1,988 (38.0) 885 (39.5) 2,873 (38.5)

SDW, Separated + Divorced + Widowed; PP, Partial pancreatectomy; PD, Pancreatectomy and duodenectomy; TP, Total pancreatectomy. PaNETs, Pancreatic neuroendocrine tumor.

the risk of liver metastases in PaNETs patients. However, no
studies have applied interpretable machine learning to predict
liver metastasis in PaNETs patients to date. To fill this gap, this
study leveraged the SEER database to construct a personalized,
accurate, and reliable predictive model for PaNETs liver metastases
using multiple machine learning algorithms. In addition, the

SHAP framework was utilized to thoroughly investigate variable
importance and underlying impact mechanisms, and a web-based
online calculator was created to facilitate the clinical adoption and
dissemination of the model.

In this study, we applied a combined approach of the Boruta
algorithm and LASSO regression to identify key predictive factors,
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FIGURE 3

Results of Spearman’s correlation analysis for each variable. ∗P < 0.05; ∗∗P < 0.01.

ensuring accurate feature selection and model stability. As a result,
the identified features included T-stage, N-stage, tumor size, grade,
surgery, lymphadenectomy, chemotherapy, and bone metastasis.
We then constructed and comprehensively evaluated the predictive
performance of 10 robust machine learning algorithms based on
the selected features, identifying GBM as the optimum model for
predicting liver metastases in PaNETs patients. The GBM model
demonstrated the highest AUC values, achieving 0.937 on the
training set and 0.912 on the validation set, as well as the highest
AUPRC, with 0.94 on the training set and 0.65 on the validation
set. We employed SMOTE to address the issue of data imbalance,
as only 18.2% of patients experienced liver metastases. Despite this,
the calibration curve still showed slight deviations. However, the
GBM model demonstrated a more precise calibration curve and
delivered better net benefits compared to the other nine machine
learning models.

This research employed the SHAP framework to generate
global and local explanations for the machine learning models,
enhancing its interpretability and visual transparency. By
leveraging SHAP values, we assessed the impact of each factor
and observed, through variable importance visualizations, that
all factors contributed to the model’s performance (Figure 7A).

In this study, surgery was identified as the most critical variable
for predicting liver metastases in PaNETs patients. Surgical
resection is the only curative treatment for PaNETs patients and
is therefore the preferred option for most patients with localized
PaNETs (49). Studies have shown that patients undergoing surgical
resection of primary tumors and liver metastases have significantly
higher survival rates compared to those who do not undergo
surgery (50, 51). This may be attributed to surgical resection
reducing circulating tumor cells and micrometastatic burden
(52). Therefore, surgery plays a vital role in the treatment of
PaNETs patients, effectively reducing the risk of liver metastases
and improving patient prognosis. The N stage is the second most
important variable after surgery. Lymph node metastasis is not
only an indicator of local dissemination but is also commonly
associated with an increased risk of cancer spreading to distant
organs, thereby profoundly influencing treatment strategies and
patient prognosis, and this correlation has been well demonstrated
in studies on other tumor types (53, 54). Therefore, greater
attention should be paid to metastases in the liver and other
regions in patients with positive lymph nodes. This study identified
T stage and tumor size as the third and fourth most important
variables for liver metastasis in PaNETs, and revealed a close
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FIGURE 4

Predictor screening results. (A) Boruta; (B) LASSO cross-validation curve; (C) variable coefficient diagram of LASSO regression model; (D) common
predictors between Boruta and LASSO.

relationship between larger tumor size and higher T stage. The
larger the tumor and the higher the T-stage, indicating greater
invasiveness into surrounding organs and blood vessels, which
significantly increases the likelihood of liver metastases (55).
Previous research has demonstrated that chemotherapy may
enhance the metastasis of malignant tumors by promoting the
expression of metastasis-associated genes, inducing the formation
of a pro-metastatic tumor microenvironment, and increasing
the secretion of exosomes that drive metastasis (56–58). This
indicates that while chemotherapy may lead to tumor shrinkage,
it could also increase the risk of metastasis. In PaNETs, bone
metastases are uncommon compared to liver metastases and
lung metastases. Research indicates that the presence of bone
metastases is associated with the progression of liver metastases,

impacting overall survival and treatment outcomes (59). The
precise mechanisms underlying this relationship in PaNETs
require further investigation. Although our study did not identify
gender as a significant predictor of liver metastasis in PaNETs,
a recent systematic review indicates that gender disparities are
gaining increasing attention in the clinical management and
prognostic evaluation of PaNETs (60). This may be attributed to
the specific focus on liver metastasis or population heterogeneity
in our study, underscoring the need for future large-scale research
to further explore gender-related biological or clinical disparities
in PaNETs. In addition, SHAP demonstrated superior performance
compared to the Local Interpretable Model-Agnostic Explanations
(LIME) method in both global and individual explanation tasks,
with LIME exhibiting lower consistency in individual analyses
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FIGURE 5

The performance and comparison of 10 different predictive models. (A) The training set ROC curve; (B) the training set PR curves; (C) the training set
DCA curves; (D) the training set calibration curves. (E) The validation set ROC curve; (F) the validation set PR curves; (G) the validation set DCA
curves; (H) the validation set calibration curves.

FIGURE 6

Prediction performance of different models. (A) training set; (B) validation set. PPV, Positive predictive value; NPV, Negative predictive value.

(61). Accordingly, we utilized SHAP force plots to present two

representative personalized samples (Figures 7C,D), further

enhance the interpretability of the machine learning model.

From a clinical perspective, this study is of great significance

for improving early detection and intervention strategies for liver

metastases in patients with PaNETs. We recommend that this
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FIGURE 7

Interpretability analysis of GBM models. (A) The SHAP summary plots displaying the importance ranking of features; (B) the SHAP heatmap clusters
hierarchically based on SHAP values; (C) the SHAP force plot for PaNETs patients with liver metastasis; (D) the SHAP force plot for PaNETs patients
without liver metastasis; (E) SHAP dependence plot. Each dependence plot illustrates how a single feature affects the model’s output, with each
point representing a patient. Features with SHAP values greater than zero push the decision towards the liver metastasis category.

tool be integrated into hospital electronic health record systems
and routine clinical workflows in the future so that clinicians
can utilize it in real time during initial consultation, throughout
treatment, and during follow-up. By inputting patient-related
variables into a web-based calculator, personalized probabilities of
liver metastasis can be generated, thus enabling early identification
and targeted management of high-risk patients. It is noteworthy
that although SHAP values provide a high degree of interpretability
for the model, clinicians must be cautious of over-relying
on its outputs. Therefore, we recommend combining model

predictions with clinical judgment and patients’ longitudinal
follow-up data to ensure the accuracy and clinical applicability of
risk assessments.

Nevertheless, this study has some limitations. Firstly, the data
for this study were derived from a retrospective analysis of the
SEER database, which may introduce concerns such as data quality
issues, information bias, and selection bias (62). Although recent
geopolitical developments have changed the access conditions
for the SEER database, it must be emphasized that our study
utilized a complete dataset obtained prior to April 2025, thereby
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FIGURE 8

Web calculator for predicting liver metastasis in PaNETs patients (accessible at: https://bijinzhe.shinyapps.io/pnet_lm_shiny/).

ensuring its integrity and validity. Secondly, the limitations of the
SEER database pose challenges in obtaining additional relevant
information, such as detailed data on Ki-67 index, SSA, targeted
therapy, radiotherapy and chemotherapy. Notably, Ki-67 index
and SSA are critical factors in the management and prognosis
of PaNETs (63, 64). Thirdly, our data were sourced from the
SEER database without external validation using data from other
hospitals. The performance of machine learning models may
vary among patients from different regions and hospitals. In
future studies, we plan to incorporate prospective designs and
integrate multi-center data, including but not limited to imaging
data, genomic information, and other detailed clinical data, for
model validation and testing. The aim of these improvements is
to enhance the model’s robustness and generalizability, thereby
offering more personalized and precise treatment strategies for
PaNETs patients.

Conclusion

In summary, we have successfully developed an
interpretable machine learning model to predict the risk of
liver metastasis in PaNETs patients based on clinical data.
The final GBM model demonstrated superior and reliable
predictive performance. By utilizing our web-based calculator,
clinicians can formulate and dynamically adjust personalized
clinical decision-making strategies, thereby improving
patient prognosis.
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Comparison of survival with somatostatin analog and chemotherapy and prognostic
factors for treatment in 165 advanced neuroendocrine tumor patients with Ki-
67 20% or less. Anticancer Drugs. (2017) 28:222–9. doi: 10.1097/CAD.00000000000
00445

Frontiers in Medicine 17 frontiersin.org

https://doi.org/10.3389/fmed.2025.1533132
https://doi.org/10.1159/000182196
https://doi.org/10.1093/oncolo/oyac049
https://doi.org/10.1080/10705511.2016.1154793
https://doi.org/10.1038/s41598-023-40036-5
https://doi.org/10.1109/TPAMI.2021.3071138
https://doi.org/10.1109/TPAMI.2021.3071138
https://doi.org/10.1109/TPAMI.2023.3310908
https://doi.org/10.1002/jbmr.1577
https://doi.org/10.1016/j.scitotenv.2020.140549
https://doi.org/10.3389/fnagi.2017.00329
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/tpami.1984.4767533
https://doi.org/10.1186/s12911-022-02062-7
https://doi.org/10.1109/TMI.2009.2022630
https://doi.org/10.1109/TMI.2009.2022630
https://doi.org/10.1016/j.compbiomed.2023.106707
https://doi.org/10.1016/j.compbiomed.2023.106707
https://doi.org/10.1093/jamia/ocaa127
https://doi.org/10.3399/bjgp18X695213
https://doi.org/10.3399/bjgp18X695213
https://doi.org/10.1002/bimj.201800148
https://doi.org/10.1097/EDE.0000000000000018
https://doi.org/10.1016/j.compbiomed.2022.105361
https://doi.org/10.1200/JCO.2007.15.4377
https://doi.org/10.1200/JCO.2007.15.4377
https://doi.org/10.1146/annurev-med-042320-011248
https://doi.org/10.1146/annurev-med-042320-011248
https://doi.org/10.1002/jso.25219
https://doi.org/10.1245/s10434-015-4654-5
https://doi.org/10.1016/j.pharmthera.2019.03.007
https://doi.org/10.1016/j.pharmthera.2019.03.007
https://doi.org/10.1016/j.cell.2022.04.019.
https://doi.org/10.3389/fonc.2018.00302
https://doi.org/10.3389/fonc.2018.00302
https://doi.org/10.1186/s12957-017-1175-7
https://doi.org/10.1126/scitranslmed
https://doi.org/10.1038/s41556-018-0256-3
https://doi.org/10.1158/0008-5472.CAN-19-1147
https://doi.org/10.1016/j.eururo.2013.08.012
https://doi.org/10.1007/s12020-024-04129-z
https://doi.org/10.1038/s41598-024-54375-4
https://doi.org/10.1038/s41598-024-54375-4
https://doi.org/10.1016/j.currproblcancer.2012.03.011
https://doi.org/10.1007/s12022-015-9379-2
https://doi.org/10.1097/CAD.0000000000000445
https://doi.org/10.1097/CAD.0000000000000445
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

	Predicting liver metastasis in pancreatic neuroendocrine tumors with an interpretable machine learning algorithm: a SEER-based study
	Introduction
	Materials and methods
	Patient selection
	Research variables
	Feature selection
	Model construction and evaluation
	Statistical analysis

	Results
	Baseline clinical characteristics of patients
	Correlation analysis and predictor screening
	Model performance
	Interpretability analysis
	Web calculator

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References


