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Background: While artificial intelligence (AI) has revolutionized medical

diagnostics, conventional centralized AI models for medical image analysis

raise critical concerns regarding data privacy and security. Swarm learning (SL),

a decentralized machine learning framework, addresses these limitations by

enabling collaborative model training through secure parameter aggregation

while preserving data locality. However, no prior studies have specifically

developed distributed learning models for fracture recognition due to

challenges in multi-institutional data harmonization. We aimed to develop

and validate a blockchain-based SL framework for privacy-preserving, multi-

institutional fracture image analysis and compare its performance against

centralized AI models and clinicians in real-world applications.

Methods: We selected knee joint diseases in traumatic orthopedics as

representatives to explore the AI imaging evaluation of fractures. The knee joint

images were retrospectively obtained from patients diagnosed with knee injuries

between December 2013 and July 2023 at 4 independent institutes hospitals

in China. A total of 4,581 patients was included for retrospective study and

establishment of the explainable and distributed SL model. An explainable object

detection algorithm was proposed for the identification of fractures. Based on

the architecture, a privacy-preserving SL system was established, and we further

validated the performance of the model in external verification sets and clinical

use. Finally, the SL system was appraised through a prospective cohort to aid 6

clinicians in the preoperative assessment of 112 patients with knee joint injuries.

Results: The YOLOv8n-cls algorithm demonstrated superior performance in

centralized experiments and was adapted for SL implementation. Our SL model

achieved robust performance in both balanced (AUROC 0.991 ± 0.003, accuracy

0.960 ± 0.013) and unbalanced (AUROC 0.990 ± 0.005, accuracy 0.944 ± 0.021)

datasets. External validation yielded an AUROC of 0.953 ± 0.016, matching

centralized model performance while maintaining data privacy. Clinically, the
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SL system achieved 86.8% diagnostic accuracy and assisted treatment decisions

in 91.5% of cases, outperforming junior clinicians and rivaling senior specialists

in diagnostic efficiency.

Conclusion: This study establishes blockchain-based SL as a secure, privacy-

preserving paradigm for distributed AI training in medical imaging, with particular

relevance for emergency orthopedic diagnostics. Our framework enables

effective multi-center collaboration without compromising data security,

addressing a critical need in modern healthcare AI.

Clinical trial registration: https://www.chictr.org.cn/showproj.html?proj=

193847, identifier ChiCTR2300070658.

KEYWORDS

blockchain, swarm learning, artificial intelligence, fracture, tomography, x-ray
computed, deep learning, federated learning

1 Introduction

Bone fractures represent a growing public health concern, with
increasing incidence rates paralleling the rapid development of
modern society, particularly due to traffic accidents and industrial
injuries. In emergency trauma settings, expeditious and precise
diagnosis coupled with appropriate therapeutic intervention is
paramount for optimal patient outcomes. Recent advancements in
image processing and artificial intelligence (AI) have significantly
contributed to bone fracture detection, offering robust methods
for improving diagnostic accuracy and efficiency. Contemporary
medical practice has witnessed the emergence of deep learning
(DL) as a transformative paradigm in medical image analysis
(1–4). Through sophisticated feature extraction and pattern
recognition capabilities, DL methodologies have demonstrated
remarkable efficacy in fracture identification, classification, lesion
segmentation, and risk stratification (5–7). Extant literature has
predominantly explored centralized computational architectures
for fracture image analysis, including investigations of proximal
femoral fractures, vertebral fractures, and clinical fracture
prediction models (8–10). While these centralized approaches
exhibit promising results, they are accompanied by substantial
limitations and potential vulnerabilities that warrant critical
examination (11–22). Such frameworks necessitate extensive,
consolidated training datasets, which fundamentally impedes
multi-institutional collaborative research due to restricted
access to heterogeneous data repositories (13, 14). Additionally,
conventional medical data acquisition methodologies are
encumbered by ambiguities regarding data sovereignty, inter-
organizational conflicts of interest, and departmental regulatory
constraints. Patient privacy protection remains a paramount
consideration in the development and implementation of DL-
augmented diagnostic systems. Furthermore, the expansion
of clinical feature models to encompass a broader spectrum
of pathologies necessitates innovative technological solutions
capable of seamlessly integrating multi-institutional datasets while
maintaining data security and integrity.

Abbreviations: AI, Artificial intelligence; AP, Average precision; ARIF,
Arthroscopy-assisted reduction and internal fixation; AUC, Area under cure;

2 Relevant literature

Over the past 5 years, decentralized machine learning
paradigms have emerged as elegant solutions to the critical dual
imperatives of leveraging advanced computational intelligence
while maintaining stringent privacy safeguards (15). Within
distributed architectural frameworks, individual nodes conduct
autonomous deep learning (DL) model training using exclusively
local datasets, eliminating the necessity for raw data transmission.
This represents a fundamental departure from conventional
centralized approaches, as decentralized learning protocols enable
seamless multi-institutional collaboration (16). The DL training
methodology involves periodic parameter exchange between
participating nodes, facilitating collective model refinement while
ensuring that each node’s data access remains strictly confined to
its local repository.

In medical applications, blockchain technology provides a
robust incentivization mechanism for institutional and individual
participation in model development—an increasingly essential
component of decentralized deep learning ecosystems (17).
Blockchain’s inherent traceability functionality ensures equitable
attribution and compensation for all contributing entities based on
their specific inputs, including medical image annotation, dataset
provision, and algorithmic innovation (18–22). There are some
capabilities of blockchain technology in safeguarding sensitive
healthcare data:

• Data encryption: blockchain leverages advanced cryptographic
techniques such as public-key cryptography and hash
functions to secure data. Each transaction on the blockchain
is encrypted using a unique cryptographic key. The patient’s
private data is encrypted before being added to the blockchain,
ensuring that only authorized parties.

• Immutability: one of the defining features of blockchain is its
immutability, meaning once data is written to the blockchain,

CNN, Convolutional neural network; DL, Deep learning; FL, Federated
learning; HIPAA, Health Insurance Portability and Accountability Act; GANs,
Generative adversarial networks; GDPR, General data protection regulation;
ROC, Receiver operator characteristic cure; SL, Swarm learning; TPF, Tibial
plateau fracture.
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it cannot be altered or deleted without the consensus of
the network. This ensures the integrity of medical records,
preventing unauthorized modifications, tampering, or data
loss, which is critical in clinical settings where accurate,
immutable records are paramount.

• Distributed ledger: the decentralized nature of blockchain
means that data is stored across multiple nodes, rather than on
a single centralized server. This distribution reduces the risk
of single points of failure and enhances the security of medical
records by ensuring redundancy. Furthermore, even if one
node is compromised, the other nodes will continue to hold
secure copies of the data, ensuring resilience against attacks.

• Access control: blockchain allows for granular access control
mechanisms, utilizing smart contracts to define who can
access specific data and under what conditions. For instance,
healthcare providers can be granted access to patient data
based on pre-defined, permissioned rules set within the
blockchain. These smart contracts automate the verification
process, ensuring that only authorized personnel can view or
update clinical information, thereby maintaining both privacy
and accountability.

• Auditability: blockchain’s transparent nature allows all
transactions to be logged in an immutable ledger. This
creates a comprehensive audit trail that can be accessed by
authorized parties, ensuring full traceability of actions taken
with respect to patient data. In clinical settings, this feature
enhances compliance with regulations and allows for real-time
monitoring of data access.

• Interoperability: blockchain facilitates secure data exchange
between disparate healthcare systems by providing a unified
and standardized platform for sharing patient records. Using
interoperable blockchain networks, healthcare institutions can
seamlessly and securely exchange data without compromising
patient privacy.

The sophisticated approach empowers participants with
comprehensive control over data authenticity and security while
simultaneously benefiting from the enhanced diagnostic accuracy
and performance metrics of the collaboratively developed model.
Presently, swarm learning (SL) is considered to be an effective
privacy-preserving method to train DL models through trusted and
secure parameter sharing (23–27). The SL can be defined as an
integrated training model that combines the advantages of AI, FL,
and blockchain, so it is considered an advanced version of federated
learning (FL). There are some advantages of SL over conventional
AI and FL approaches (Supplementary Table S1). Different from
traditional FL, the SL may provide a promising approach for
optimizing clinical decisions through robust collaborative model
training across different data sources (23, 27–30).

Rapid fracture diagnosis and patient transfer are critical
for emergency care, particularly in resource-limited settings
where primary healthcare facilities often lack capacity for
radiographic fracture identification for occult fracture. This
study presents the first implementation of SL for orthopedic
fracture diagnosis, addressing critical limitations in resource-
limited settings where conventional diagnostic capabilities are
often unavailable. Our decentralized SL framework enables secure,
multi-center collaboration while maintaining diagnostic accuracy
comparable to centralized models, as demonstrated through

systematic evaluation of TPF identification across distributed
nodes with blockchain-secured aggregation. The clinically validated
system combines automated fracture image analysis with privacy-
preserving distributed learning and traceable data governance,
achieving 86.8% diagnostic accuracy in prospective testing while
overcoming key challenges in patient data privacy and cross-
institutional collaboration. This work establishes a new paradigm
for global orthopedic care by enabling secure knowledge sharing
across healthcare tiers, maintaining diagnostic performance
in variable resource settings, and providing an open-access
implementation 1 that bridges the gap between AI innovation and
clinical deployment in trauma care (26).

3 Materials and methods

3.1 Medical image data collection

To train and validate local centralized algorithms, patient
data were divided into training dataset (n = 3,027), internal
validation dataset (n = 377), and testing dataset (n = 377),
with a distribution ratio of approximately 8:1:1. Additionally,
an external validation dataset, consisting of 800 knee X-ray
images (400 with TPFs and 400 without), was used to compare
the performance of the SL network, the centralized model,
and radiologists. A detailed schematic of the study design and
process is shown in Figure 1. The management of X-ray image
data from four independent hospitals in China, the detailed
data statistics can be found in Table 1. The inclusion and
exclusion criteria of the patients are provided in Supplementary
Table S2.

Using medical processing software, we converted the X-ray
images from DICOM format to high-definition JPG files.
Fracture diagnoses were primarily based on knee joint medical
images, supplemented by the patients’ medical history. Two chief
physicians collaborated to establish the final diagnosis. To enhance
object detection accuracy at the fracture site and refine the
algorithm, image preprocessing and further optimization of image
settings were performed. Supplementary Figure S1 provides a
detailed illustration of the image labeling and identification process.
The Labelme software package was used for manual labeling in this
study. For the primary task, each input image was resized to 608
pixels along the longer dimension, while preserving the original
aspect ratio by scaling the shorter side accordingly. This approach
ensures effective processing during training while retaining key
information. After automatically cropping the tibial plateau area
based on the label box, all images were resized to 480 × 480 pixels to
ensure model adaptability to different image sizes. Then, letterbox
resizing was applied to the input images during detection to
ensure maximal image preservation. The backbone consists of three
modules: CBS, C2f, and SPPF. The CBS module is composed of 2D
convolution, 2D BatchNorm, and the SiLU activation function. The
number of blocks in the backbone was modified from 3-6-9-3 to
3-6-6-3. In the field of medical image augmentation, Generative
Adversarial Networks (GANs) and conditional diffusion models
have been demonstrated in the processing of image data and

1 https://github.com/jaysontree/fedv_learning
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FIGURE 1

The schematic depiction of our study design process.

TABLE 1 Clinical classification and pathological features of patients
from different hospital node of our blockchain-based network.

Statistical
characteristics

WU WF HTCM FP

Use in this study Training Internal
validation

Testing External
validation

Cohort type Population Population Population Population

N Patients in cohort 3,027 377 377 800

Age (median) 45.94 43.68 38.89 N/A

Age (IQR) 12.08 10.12 13.66 N/A

Gender: male 2,367 (78.2%) 234 (62.1%) 189 (50.1%) 482 (60.3%)

Gender: female 660 (21.8%) 143 (37.9%) 188 (49.9%) 318 (39.7%)

Type I 195 25 24 92

Type II 320 42 40 64

Type III 169 18 20 50

Type IV 181 23 23 76

Type V 225 33 40 42

Type VI 200 20 13 20

Type K 95 11 12 48

Without TPF 1,642 205 205 400

WU, Wuhan Union Hospital; WF, Wuhan Fourth Hospital; HTCM, Hainan Traditional
Chinese Medicine Hospital; FP, Fujian Provincial Hospital; N/A, not applicable; IQR, IQR,
interquartile range; TPF, tibial plateau fracture.

improving the radiographic image analysis. However, from an
academic perspective, existing studies have not yet utilized

diffusion models for medical data augmentation in identification
of traumatic fracture. As a generative model, diffusion model
has shown remarkable advantages in medical image generation
and augmentation in recent years. By generating more fracture
samples and enhancing the training data of the segmentation
model, its performance can be effectively improved. To enhance
dataset diversity and improve the model’s generalization ability,
we used the advanced GAN-based and diffusion model for
data augmentation.

3.2 Model training

3.2.1 Establishment of centralized model
In the fracture detection task, we chose YOLOv8 to develop our

model for recognizing the fracture areas, given its effective balance
of detection accuracy and processing speed (31). Before being fed
into the network, the original fracture images were standardized
to a uniform size to ensure consistency. The specific architecture
of YOLOv8 is shown in Figure 2. Additionally, letterboxing was
applied during detection to ensure optimal image restoration by
scaling the input image without distorting its aspect ratio. During
training of the fracture recognition model, the first step involves
extracting key features from the images in the training dataset.
To enhance the richness of the dataset, advanced augmentation
techniques such as image flipping, rotation, and cropping were
used to increase diversity and expand the dataset’s scope. We
employ a data augmentation strategy to expand the dataset (32).
The features capture the essential patterns and characteristics
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FIGURE 2

Structure of the YOLOv8 algorithm in TPF identification.

needed for subsequent detection tasks. Once feature extraction is
complete, the extracted features are passed to the neck module
for further processing. The neck module utilizes the PAN-FPN
structure to facilitate feature fusion, a key step that helps eliminate
redundant detections and improves the accuracy of final fracture
identification. After training, the performance of the YOLOv8
model was thoroughly evaluated using an independent test dataset.
Evaluation metrics, including accuracy, sensitivity, and the false
positive rate, were calculated to assess the model’s effectiveness in
detecting fracture.

3.2.2 Training of decentralized SL model
The SL framework offers an alternative to centralized data

aggregation from large patient cohorts, improving predictive
accuracy and scalability while eliminating the need for central
control over the final model (28, 29–33). We propose that
blockchain-based decentralized SL solutions can address the
limitations of current centralized learning approaches, meeting
the growing demands of healthcare organizations and research
units for decentralized data structures, as well as ensuring data
privacy and compliance with security regulations (23, 34–36). To
enable secure collaboration in training, we have developed an SL-
capable AI cooperative network specifically for TPF detection.
In the proposed decentralized training model, SL accommodates
distributed data structures and computing devices, similar to FL.
This approach ensures that data remains secure with its owner
while enabling efficient model training. Additionally, SL ensures
equal participation by allowing all network members to share
rights and responsibilities. This is achieved through the dynamic
assignment of an aggregation leader among all members, facilitated
by a blockchain smart contract (37). As a result, all members

alternately contribute to the calculation of shared parameters to
aggregate the final model. Furthermore, the SL framework is
compatible with a ring-all-reduce architecture, where the leader
role can be topologically omitted, and each member performs
part of the aggregation process concurrently (38–41). However,
this architecture requires stable network connections and offers
limited fault tolerance. To address these challenges, we have
adopted a dynamic aggregation leader design within the distributed
framework. As shown in Figure 3A, during each training round,
parameters are updated based on local data and then synchronized
with other deep learning nodes to update the shared global model
(42, 43). Through smart contract governance, the model achieves
high security and fault tolerance, effectively mitigating risks such as
poisoning attacks by implementing threshold-based safeguards (39,
44–45).

At each node, a deep learning model is trained, and the
parameters for TPF feature recognition are aggregated across the
SL network to update the overall model. As shown in Sites 1, 2,
and 3 of Figure 3B, the deep learning nodes receive instructions
from service nodes and collaboratively execute the training process
(18, 22, 34, 41, 44, 45). Each node in the network holds its
own original healthcare data at the local site. We adapted the
distributed SL model based on the previously trained YOLOv8 deep
learning model to assess its effectiveness in terms of data security
and performance. A comparative analysis was conducted between
centralized, local, and SL models to evaluate the performance of
the SL algorithms. The YOLOv8 code was specifically modified to
ensure compatibility with our SL framework. Hyperparameters and
configurations used in training were tailored for the experiment,
while other settings followed the official best practices for YOLOv8.
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FIGURE 3

Distributed SL network architecture and training process of the fracture recognition model. (A) The proposed architecture of cooperative SL network
in fracture image analysis. (B) Dynamic aggregation leader design of SL network. (C) Training process of TPF detection model based on swarm
learning. SL, swarm learning; TPF, tibial plateau fracture.

In the application of SLmodels for traumatic orthopedics,
blockchain technology can be utilized to deploy algorithms
effectively. This approach integrates external expert knowledge

and decision-making tools, significantly improving the accuracy
and efficiency of diagnosing and treating traumatic orthopedic
conditions. By leveraging a specialized disease database and a
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FIGURE 4

Data setup for comparative experiment and data division of different equilibrium degrees of each node in SL. Data setup in centralized AI, local
training, and swarm learning.

blockchain-based traceability system, an intelligent, closed-loop
treatment system can be established. Regarding the security
and privacy of patient information, the blockchain-based SL
model training utilizes distributed data storage, point-to-point
transmission, consensus mechanisms, and encryption algorithms.
This approach ensures a decentralized structure for medical data
sharing, safeguarding the storage, transmission, and traceability of
patient data. The SL model is collaboratively trained by trauma
orthopedics departments across multiple hospitals via a blockchain
system and deployed on cloud servers. When AI-assisted diagnosis
is required, hospital physicians submit consultation requests,
with access controlled through smart contracts. Upon receiving
authorization, the system directs the request to the SL model for
decision-making support and returns the clinical report results
to the physicians.

To practically apply the model in clinical settings, we designed
an experiment with a specific focus on clinical applications
in emergency care units. In this study, blockchain simulation
nodes from three different hospitals in China were established.
Independent servers were used to configure deep learning tasks
through the platform, with key elements such as participants,
datasets, deep learning algorithms, and initial parameters being
defined. As shown in Figure 3c, privacy computing networks were
employed to distribute participating member nodes and upload
the basic information of the training task to the SL, thereby
creating the training task. Once the participants obtained the
task information, they could invoke the interface services of the
DL module on the computing engines of each node. The local
training processes were launched based on the selected model,
aggregation algorithm, and encryption scheme. The blockchain
node was responsible for synchronizing the model’s calculation
status. Meanwhile, a smart contract deployed on the consortium
blockchain randomly selected one participant as the model
aggregator for the current training round and disseminated this
information to all member nodes. The model aggregator then
initiated the aggregation process and made the aggregated model
available to all participating nodes for further communication and
scheduling. Member nodes shared their locally updated parameters
with the model aggregator through the privacy computing network,
utilizing a single encoding aggregation algorithm. Throughout the
deep learning model training process, task status and training
metrics were synchronously and in real time updated to the

blockchain. When training was completed, participating nodes
shared the trained model parameters. Throughout the entire
training process, the members’ data resources remained within
their respective domains, minimizing the risk of data leakage. The
jointly trained model demonstrated higher accuracy compared to
models trained with a single data source.

The blockchain-based SL model parameter updating and
aggregation process is facilitated through the use of smart contracts.
These contracts receive model parameters from the distributed
ledger, aggregate them, and transmit the updated parameters
back to the corresponding client-side ledgers. In this study, the
distributed modeling process involves three trauma orthopedic
departments across different hospitals. Each hospital trains the
model using its local fracture data and, at the conclusion of
each round, sends the updated model parameters—comprising
weights and biases—back to the server for aggregation. Once
aggregated, these parameters are sent back to the respective hospital
nodes, where the models are updated with the newly aggregated
parameters. This iterative process continues until a predefined
number of rounds is completed.

3.3 Evaluation of model

To reduce statistical bias in data partitioning, the dataset was
divided into three subsets for training, validation, and testing,
with a ratio of 8:1:1. In the SL node sets, to better reflect real-
world trauma center databases, the training set is further split into
three non-overlapping subsets with a ratio of 5:3:2, accounting for
the scale differences among medical organizations. The test sets
from each subset are combined to form the global test set. The
data training process across various modes of the SL model is
visualized in Figure 4. In centralized training scenarios, the training
set combines data from all participants. The models are trained for
100 epochs, and the best checkpoint is selected using the global
validation set. In local training scenarios, models are trained on
local training sets for 100 epochs, with the best model selected
using the global evaluation set. In SL cases, the collaborative model
is trained for 100 rounds, with each node running one epoch on
its local training set per round. The best checkpoint is selected
during training using the global validation set. After training, the
final models from all scenarios are evaluated on the global test
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set to compare their performance. Additionally, external validation
(n = 800) from Fujian Provincial Hospital was used to assess the
stability of the SL model in clinical settings.

We thoroughly evaluated the impact of imbalanced data
on model performance and accuracy in more realistically and
reasonably clinical data. Typically, SL requires independent
and identically distributed (IID) data across sites to achieve
performance comparable to centralized models (30, 45). However,
real-world datasets often exhibit non-IID characteristics due to
variations in disease presentations, imaging protocols, or patient
demographics. These differences can degrade model performance.
Previous studies have shown that uneven data distributions
can lead to a decline in the accuracy of distributed learning
models. When local data distributions among nodes differ, it may
compromise the fairness and robustness of the trained models.
To ensure the effectiveness and robustness of our SL models, we
performed tests in both equilibrium and non-equilibrium states.
In the balanced data distribution, training sets for each node
were randomly sampled, with controls almost evenly distributed
across all three nodes (22, 28–30, 34, 45–47). In the unbalanced
data distribution, training sets for different nodes were non-IID,
representing extreme cases that reflect challenges may faced by real-
world distributed learning systems. The detailed data distributions
for both scenarios are shown in Table 2.

To investigate whether the use of a SL model can enhance
diagnostic performance while preserving privacy, a benchmark
study was designed to compare the proposed system with a
baseline model based on centralized learning. The baseline model,

TABLE 2 The balanced and unbalanced data distribution in the
SL model training.

Trauma
types

Node 1
(n = 1,513)

Node 2
(n = 908)

Node 3
(n = 605)

The balanced data distribution

TPF Schatzker I (class A) 94 57 44

Schatzker II and III
(class B)

249 133 107

Schatzker IV (class
C)

83 61 37

Schatzker V and VI
(class D)

217 135 73

Intercondylar ridge
fracture (class K)

49 29 16

Without TPF 821 493 328

The unbalanced data distribution

TPF Schatzker I (class A) – – 195

Schatzker II and III
(class B)

– 489 –

Schatzker IV (class
C)

181 – –

Schatzker V and VI
(class D)

425 – –

Intercondylar ridge
fracture (class K)

– 94 –

Without TPF 907 325 410

previously developed by our team, employs deep learning with
the original RetinaNet architecture (48–51). For this study, we
retrained the RetinaNet base model and used YOLOv8-cls for
identification and classification tasks. Training and validation
followed the same procedures as those for the SL model, with
Regions of Interest (ROI) used as the input for both models.
All image preprocessing techniques and hyperparameter settings
for the SL network remained consistent with those outlined in
our previous study. To validate our SL-based methodology for
predicting fractures from X-ray images, we conducted a clinically
relevant prediction task comparing our system’s performance
with that of orthopedists. Six orthopedists participated in the
study, including two senior orthopedists with 12 years of clinical
experience, two attending orthopedists with 6 years of experience,
and two orthopedic residents with 2 years of experience. A subset
of 200 cases from an external validation set was randomly selected
to compare the diagnostic performance between the centralized AI
model, the SL system, and the human doctors. Each expert was
asked to make a comprehensive judgment on the observed X-rays,
including determining whether the knee was fractured, identifying
the fracture site, and classifying the type of fracture. None of
the test cases had been previously seen by any of the experts.
The cases were anonymized, shuffled, and stored on a password-
protected computer, along with a spreadsheet documenting each
expert’s diagnosis.

The validated model is integrated into the interface with
special access rights in the hospital imaging system, which can
automatically evaluate the TPF in an end-to-end manner, from
the original X-ray image input to the generation of interpretable
diagnosis. In order to evaluate the feasibility of assisting orthopedic
doctors in a clinical environment, the system was used in a
prospective cohort of knee trauma patients who visited the hospital
in a single arm observational study. The model provide the
predicted results of fracture location and classification, together
with routine evaluation, to two senior orthopedic doctors, who have
the right to decide the treatment and operation in various ways.
We also conducted a survey of surgeons on the use of models
to generate information in the decision-making process of these
cases. Model prediction is used to analyze the choice of surgical
approach, and measure the performance of the model according
to the radiographic results. The recovery of TPF was evaluated by
comparing the range of motion and anatomical reduction of knee
joint after conservative treatment or 6 months after operation (52).

3.4 Statistical analysis

To evaluate the effectiveness of our deep learning model,
we established various probability thresholds and assessed
performance across different fracture classifications. Key metrics,
including accuracy, sensitivity, F1 score, and AUC, were used to
evaluate the model’s performance in fracture typing. Precision-
recall (PR) curves and average precision (AP) scores were employed
to assess the efficacy of the multi-class classification algorithm.
Each of these metrics plays a crucial role in fine-tuning the model
to ensure its effectiveness in diverse applications. After 5 iterations
of cross-validation or external validation, we averaged the training
results and reported them as mean (SD). For assessing internal
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FIGURE 5

The ROC curve results of five YOLOv8 sub-models in fracture detection and the ROC curves for different classifications using YOLOv8n-cls. (A) In
the task of detection of TPF, the AUC value for YOLOv8n is 0.9884, for YOLOv8s is 0.9834, for YOLOv8m is 0.9858, for YOLOv8l is 0.9743, and for
YOLOv8x is 0.9894. (B) In our centralized model, the AUC values of each type in the ROC curve: class A is 0.95, class B is 0.91, class C is 0.97, class D
is 0.92, class K is 0.95.

consistency, we used the Cohen kappa coefficient. Performance
differences between models were evaluated using a two-tailed
paired t-test, while one-way analysis of variance (ANOVA) was
used to compare the proposed model against human experts
in clinical application. The alpha level is set when conducting
statistical analysis using Python 3.10.9. (48).

4 Experimental results

This section details the experimental outcomes of our study,
which evaluated the performance of the two customized models—
centralized YOLOv8 algorithm and SL network designed for
automatic bone fracture detection from X-ray images. The training
parameters of centralized model was shown in Table 3. The
aggregation algorithm settings of SL were shown in Table 4.

4.1 Environment setup

The experiments and SL simulations in this paper were carried
out using three AMAX GPU servers, each equipped with two
Intel(R) Xeon(R) Gold 6226R CPUs (2.90GHz), 24TB HDD, 256GB
RAM, and four NVIDIA Tesla V100S GPUs. High-speed kMbps
interconnections link the servers.

4.2 YOLOv8n’s performance in
identification of TPF

This initial experiment centralized fracture imaging data on
a server and trained the AI model on a multi-level combined
dataset to assess its efficiency. Among the models tested, YOLOv8n
demonstrated the highest Youden index, with a threshold score

of 0.5493. The intersection over union (IoU) for YOLOv8n was
calculated at 0.8845, highlighting a close alignment between the
model’s generated detection boxes and the doctor-labeled boxes,
fully encompassing the tibial plateau regions. Detailed results for
all models are provided in Supplementary Table S3 and Figure 5. In
testing, YOLOv8n excelled in detecting TPF, achieving an accuracy
of 0.9632, sensitivity of 0.9884, and specificity of 0.9366. The
confusion matrix for TPF detection is presented in Figure 6.

4.3 Comprehensive analysis of fractures
using decentralized models

As is seen in Table 5, in the distributed balanced data set,
the accuracy of the three nodes was 0.939 (SD 0.032), 0.944 (SD
0.016), and 0.929 (SD 0.021), while the global model achieved
an accuracy of 0.960 (SD 0.013). In the unbalanced data set,
the accuracy of the SL model at the three nodes was 0.934 (SD
0.042), 0.931 (SD 0.053), and 0.926 (SD 0.042), with the global
model achieving an accuracy of 0.944 (SD 0.021). It is evident
that the overall performance of the SL model in balanced data
sets surpasses that in unbalanced data sets. Further analysis of
additional metrics such as recall, specificity, precision, F1-score,
and AUC revealed that each node’s performance in the unbalanced
group was inferior to that in the balanced group, confirming
that model performance declines with imbalanced medical data.
Compared to the centralized model, individual nodes (node 1,
node 2, node 3) performed significantly worse in both balanced
and unbalanced data distributions (P < 0.001). However, after
integrating blockchain and SL fusion, the performance difference
between the global model and the centralized training model
became negligible. In the balanced data set, the global model
demonstrated accuracy of 0.960 (SD 0.013), recall of 0.935 (SD
0.022), specificity of 0.937 (SD 0.017), precision of 0.961 (SD 0.018),
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FIGURE 6

The predict results of fracture images analysis. (A) The confusion matrix and the normalized confusion matrix of YOLOv8n in TPF detection. (B) The
confusion matrix and the normalized confusion matrix of YOLOv8n-cls for TPF single classification task. (C) The confusion matrix and the
normalized confusion matrix of YOLOv8n-cls for TPF identification and classification task.
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TABLE 3 Centralized learning and training parameters.

Parameter
category

Parameter Configuration

Model architecture Architecture YOLOv8n

Feature extractor CSP-Darknet backbone

Detection head Multiple anchors with objectness
prediction

Input resolution 608 × 608 pixels (letterboxing applied)

Optimization Base optimizer SGD with momentum

Momentum
coefficient

0.937

Weight decay 0.0005

Initial learning rate 0.01

Learning rate
schedule

Cosine decay with warm-up (5 epochs)

Minimum learning
rate

1 × 10−5

Batch size 16 per node

Training epochs 100

Loss function Object detection CIoU loss (α = 0.5)

Classification Binary cross-entropy

Box regression Complete IoU loss

Objectness Focal loss (γ = 1.5)

TABLE 4 SL model training and parameters setting.

SL Aggregation
algorithm

Weighted averaging
(Fed-Avg)

Aggregation frequency Every 10 local batches

Local update steps 5 per round

Minimum node participation 3 nodes

Parameter encryption Diffie-Hellman key exchange
protocol

Blockchain consensus Practical Byzantine Fault
Tolerance

Data processing Augmentation techniques Random affine (± 15◦),
horizontal flip,
HSV shifts (± 10%)

Mosaic augmentation Applied with 4-image
composition

Mixup probability 0.15

Normalization Mean subtraction and scaling
(µ = 0.485, 0.456, 0.406;
σ = 0.229, 0.224, 0.225)

Evaluation Confidence threshold 0.25

NMS IoU threshold 0.45

Validation frequency Every epoch

F1-score of 0.925 (SD 0.021), and AUC of 0.991 (SD 0.003), showing
no significant difference from the centralized model (P = 0.33).
Similarly, in the unbalanced data set, the global model maintained
comparable performance metrics: accuracy of 0.960 (SD 0.013),
recall of 0.935 (SD 0.022), specificity of 0.937 (SD 0.017), precision

of 0.961 (SD 0.018), F1-score of 0.925 (SD 0.021), and AUC of 0.991
(SD 0.003), with no significant difference observed compared to the
centralized model (P = 0.26). These results indicate that our model
can achieve diagnostic performance on par with centralized models
under both balanced and imbalanced conditions, while preserving
data privacy and security.

Statistical analysis revealed no significant difference in
performance between the SL model trained on all data and
the centralized model for both datasets, indicating the stable
computational efficiency of the SL approach. As shown in Figure 7,
In the balanced data set, the AUC values of SL was 0.991 (SD
0.003), while in the non-balanced data set, the AUC values of
SL was 0.990 (SD 0.003), and there was no statistical difference
between them (P = 0.2668). In the PR curve, the mAp50 value of
the SL model was 0.9590 for the unbalanced data set and 0.9665
for the balanced data set. These values are close to the mAp50
value of the centralized AI model (0.9678), and the efficiencies of
both are comparable. This demonstrates the SL model’s excellent
balance between predictability and efficiency. Overall, these results
highlight the SL model’s remarkable capability for TPF recognition.

4.4 Interpretability of the swarm-trained
model in external validation sets

To further assess the experimental performance of the SL
model on external datasets, we selected 800 patients from real-
world clinical scenarios, beyond the retrospective cohort used in
this study, for external validation. Table 6 presents the evaluation
metrics and TPF detection performance of both the SL and
centralized models. As shown in Figure 8, on the internal validation
dataset, the SL model achieved an AUC of 0.991, surpassing the
centralized AI model, which had an AUC of 0.985. On the external
validation set, the ROC curve of SL showed an AUC of 0.953 (SD
0.016), while the AUC of the centralized model was 0.961 (SD
0.016), the difference was not statistically significant (P> 0.05). The
use of SL enhances data privacy and facilitates collaboration across
different agencies while maintaining secure AI model training.
for the external dataset, the centralized model achieved a mean
average precision (mAP) of 0.896, slightly higher than the SL
model’s mAP of 0.846. However, when specifically evaluating the
detection of TPF fractures (depicted in the orange PR curve), the
centralized AI model achieved an AUC of 0.946, while the SL model
achieved a slightly higher AUC of 0.953. These results indicate
that both models exhibit comparable high accuracy in detecting
TPF fractures, with AUC values approaching 0.950. This suggests
that both the centralized and SL models offer clinically relevant
performance in fracture detection, demonstrating their practical
significance in real-world applications.

4.5 Clinical implementation assessment

Timestamps were recorded during training execution and
analyzed to compare time consumption between centralized
training and SL. During the study, the SL training process
took 5073.86 s, with an additional 2.10 s spent on encryption
calculations, which was longer compared to the 2318.3224 s
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TABLE 5 Performance of the baseline centralized AI and the proposed SL model in TPF identification.

Data
distribution

Accuracy
mean (SD)

Recall
mean (SD)

Specificity
mean (SD)

Precision
mean (SD)

F1-score
mean (SD)

AUROC,
mean (SD)

P-value

Centralized model 0.963
(0.016)

0.987
(0.032)

0.937
(0.047)

0.946
(0.039)

0.925
(0.012)

0.990
(0.001)

N/A

Balanced data Node 1 0.939
(0.032)

0.949
(0.051)

0.912
(0.054)

0.947
(0.044)

0.883
(0.028)

0.977
(0.012)

< 0.001

Node 2 0.944
(0.016)

0.951
(0.043)

0.942
(0.049)

0.952
(0.042)

0.889
(0.015)

0.974
(0.008)

< 0.001

Node 3 0.929
(0.021)

0.923
(0.036)

0.912
(0.046)

0.927
(0.038)

0.860
(0.018)

0.979
(0.005)

< 0.001

Trained on all (SL) 0.960
(0.013)

0.935
(0.022)

0.937
(0.017)

0.961
(0.018)

0.925
(0.021)

0.991
(0.003)

0.33

Unbalanced data Node 1 0.934
(0.042)

0.892
(0.058)

0.917
(0.049)

0.901
(0.047)

0.871
(0.024)

0.979
(0.011)

< 0.001

Node 2 0.931
(0.053)

0.918
(0.052)

0.893
(0.041)

0.934
(0.035)

0.870
(0.037)

0.948
(0.013)

< 0.001

Node 3 0.926
(0.042)

0.906
(0.038)

0.907
(0.045)

0.911
(0.042)

0.855
(0.029)

0.962
(0.009)

< 0.001

Trained on all (SL) 0.944
(0.021)

0.933
(0.036)

0.922
(0.043)

0.948
(0.039)

0.893
(0.037)

0.990
(0.005)

0.26

AUROC, areas under the receiver operating characteristic curve; N/A, not applicable.

FIGURE 7

The experimental result of centralized AI and SL in balanced and unbalanced data distribution scenario. (A) ROC curve of SL in balanced data
distribution. (B) ROC curve of SL in unbalanced data distribution. (C) PR-curve of SL in balanced data distribution. (D) PR-curve of SL in unbalanced
data distribution (FPR: False positive rate).
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TABLE 6 TPF detection performance in the external data set.

Accuracy
mean (SD)

Recall
mean (SD)

Specificity
mean (SD)

Precision
mean (SD)

F1-score
mean (SD)

mAp50
mean (SD)

AUROC
mean (SD)

P-value

SL network 0.9000
(0.012)

0.740
(0.014)

0.923
(0.025)

0.821
(0.027)

0.778
(0.033)

0.846
(0.028)

0.953
(0.016)

< 0.003

Centralized model 0.9038
(0.009)

0.8425
(0.016)

0.9225
(0.023)

0.8600
(0.021)

0.8512
(0.026)

0.8960
(0.024)

0.961
(0.016)

<0.001

FIGURE 8

The performance of the centralized model and SL in the internal and external validation sets. (A) ROC curve comparison of centralized AI model and
SL model in internal validation set. (B) ROC curve comparison of centralized AI model and SL model in external validation set. (C) PR-curve of
centralized SL model in external validation set. (D) PR-curve of SL model in external validation set.

required for local centralized training. Our investigation revealed
that the SL model matched the level of centralization in the aspect
of accuracy, precision, sensitivity, specificity, and F1-score. The
relevant metrics are depicted in Table 7. The decentralized SL
model achieved a commendable balance between performance
and privacy-preserving, and demonstrated superior diagnostic
capabilities over attending orthopedists. The accuracy of SL
network was 0.9636 [95% (0.9388, 0.9762)], the mean accuracy
of orthopedists was 0.9291 (0.9002, 0.9482). And the SL model
demonstrated a precision of 0.9526 [95% CI (0.9122, 0.9648)],
while the precision of orthopedic attending physicians were 0.9057
[95% CI (0.8661, 0.9413)], the differences between these values

were statistically significant (P < 0.05). Additionally, the sensitivity
of the SL model was higher than that of orthopedic attending
physicians (0.9837 vs. 0.9523). Regarding the misdiagnosis rate, the
SL model exhibited a lower rate compared to orthopedic attending
physicians (0.0163 vs. 0.0477). This study further analyzed the
average diagnostic efficiency of five orthopedic physicians in
traumatic TPF cases when assisted by distributed SL network.
The findings indicated that, compared to orthopedic physicians
without SL assistance, those with distributed SL support achieved
an increased diagnostic accuracy of 0.9728 [95% CI (0.9602,
0.9882)], with precision rising to 0.9548 [95% CI (0.9433, 0.9575)]
and sensitivity improving to 0.9848 [95% CI (0.9723, 0.9975)].
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TABLE 7 Comparison of diagnostic performance between orthopedic
physicians and SL model.

Evaluation
index

SL model Orthopedists Orthopedists
+ SL

P-
value

Accuracy
(95% CI)

0.9636 (0.9388,
0.9762)

0.9291 (0.9002,
0.9482)

0.9728 (0.9602,
0.9882)

0.004

Precision
(95% CI)

0.9526 (0.9122,
0.9648)

0.9057 (0.8661,
0.9413)

0.9548 (0.9433,
0.9575)

0.004

Sensitivity
(95% CI)

0.9837 (0.9510,
0.9918)

0.9523 (0.9159,
0.9755)

0.9848 (0.9723,
0.9975)

0.004

Time
consumption
(x ± s min)

5.06 ± 0.02 25.45 ± 1.92 15.58 ± 2.62 0.004

Both the YOLOv8n model and the distributed SLmodel exhibit
considerable potential for identifying traumatic new TPF. In
emergency scenarios, initial experimental results revealed that
their diagnostic efficacy surpassed that of attending orthopedic
physicians (P < 0.05). In addition, the time taken by the SL
model (5.06 ± 0.02 min) was significantly less than that of the
orthopedic attending physicians (25.45 ± 1.92 min) (P < 0.05).
With the assistance of the SL model, the diagnostic efficiency
of orthopedic physicians was significantly enhanced, and the
average diagnostic time was reduced to 15.58 ± 2.62 min. This
indicates that collaborative SL models could not only be securely
cooperative but also substantially enhance diagnostic efficiency for
orthopedic surgeons without compromising accuracy. Although
the computational time of the algorithm will fluctuate within
a certain range and be determined by factors such as network
status, machine computing capacity, and current load, SL-capable
AI can be more efficient and tolerant than centralized AI and
human doctors.

With the assistance of SL, orthopedic surgeons exhibited a
significant improvement in the accuracy of TPF identification
compared to the gold standard of actual fracture conditions. As
shown in Table 8, in the internal validation set, the Kappa value
increased from 0.838 (without SL assistance) to 0.910 (with SL
assistance). Similarly, in the external validation set, the Kappa value
increased from 0.769 (without SL assistance) to 0.840 (with SL
assistance).

In the context of selecting treatment methods for knee joints,
SL also offers support for intelligent decision-making processes.
The automatic evaluation system, incorporating the validated SL
network, was evaluated for its viability in aiding preoperative
assessment in real-world settings involving 112 patients with knee
joint injuries from Wuhan Union Hospital and Fujian Provincial
Hospital (mean age 40.5, SD 13.2 years, 57.1% male). This
system achieved an overall accuracy of 0.868 in distinguishing
between TPF and without TPF cases. Seventy-six knees were
identified as TPF by the model, all of which received arthroscopic
assisted treatment of TPF. The patient’s data is distributed
across a blockchain platform within the servers of the respective
hospital, and the final training model parameters are utilized
for fracture diagnosis through model scheduling. In the cases
reported by clinicians, 91.5% (102/112) of the model predictions
were consistent with their initial judgments or helped them
make decisions. Compared with before treatment, 87.5% (98/112)

patients achieved maximum recovery of knee function. Fracture-
to-surgery interval shortened from 6.2 ± 1.8 days to 3.1 ± 0.9 days.
Compartment syndrome incidence decreased by 42% (P = 0.03)
due to earlier fasciotomy decisions, and the ICU admission rate
reduced from 28% to 11% (P = 0.047). For the type of knee injury
identified by the model, knee function was evaluated using Lysholm
score after treatment in terms of lameness, swelling, behavioral
support, and stability (52, 53). As is shown in Figure 9, Both groups
of patients showed normal recovery, with a mean knee function
score of 72.5 (SD 10.2) and 83.6 (SD 8.5).

5 Discussion and comparative
analysis

This study substantiates the rationality of the application of
blockchain based SL network in the collaborative analysis of
orthopedic medical images and the practical worth of evading
privacy disclosure during the model training. Compared to the
centralized model, the SL network we proposed prevent illegal
participants or potentially dangerous individuals, and provides
a democratic approach to address the leader problem in model
training. In this decentralized model, partners of each node
communicate and work on an equal level (23–25). The different
nodes jointly train medical models and share research results
without compromising patient privacy or maintaining normal
information governance, which is a new collaborative model
required for the development of current medical models.

Nowadays, AI has demonstrated significant potential in the
field of medical image recognition, but it has encountered a
critical bottleneck and entered a stage of stagnation due to data
acquisition posing as the primary obstacle to the development
of large-scale models (6, 8, 10, 13, 15, 23, 34). As the medical
community’s need to enhance data privacy and security continues
to increase, distributed models will become the preferred option
for management and analyzing a variety of large clinical and
biological databases. To train medical AI models with high accuracy
and strong generalization ability, relevant research institutions
need to collaborate without compromising patient privacy. In fact,
AI applications in the field of orthopedics had already begun
to emerge (2, 6, 7). However, there is several frameworks have
been developed to fortify the privacy and security in medical AI
training, especially in department of orthopedics. In our study,
we constructed orthopedic datasets from multiple centers across
hospitals in China and proposed a blockchain-based SL model
for distributed deep learning collaboration in real-world clinical
settings. The model’s superior performance was validated in the
recognition of medical images of traumatic fractures.

This study demonstrated the distributed model training
approach and the collaborative use of intermediate reasoning
results to enable comprehensive fracture analysis. The framework
incorporates key data security measures: (1) Data isolation:
Intermediate reasoning findings are isolated from the original data,
ensuring that remote hospitals receive only analysis results without
access to the underlying data sources or diagnostic processes.
(2) High-level evidence: Clinical findings used for cross-hospital
collaboration are derived from high-level evidence generated by AI-
assisted expert systems. (3) Data encryption: Medical images are
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FIGURE 9

Functional recovery of the knee joint after treatment was evaluated in a total of 98 patients with available data. Scores were classified based on
model predictions. Predictions consistent with pathological results were represented by closed symbols, while open symbols indicated
inconsistencies. The circle denoted the conservative treatment group, the triangle represented the minimally invasive treatment group, and the
square represented tibial plateau plasty. The error bar indicated ± 1 SD from the mean. TPF, tibial plateau fracture. ARIF, arthroscopic assisted
reduction and internal fixation.

TABLE 8 Comparison of diagnostic consistency between orthopedic
physicians and the gold standard in different datasets before and after
using the SL model.

Dataset Diagnosis result Compare with the
gold standard

k1* k2*

Internal validation
dataset

TPF 0.838 0.910

Without TPF 0.859 0.930

External validation
dataset

TPF 0.769 0.840

Without TPF 0.851 0.880

*k1 represents the Kappa value for the comparison between the orthopedic physician’s
diagnosis of X-ray images and the gold standard without SL assistance, while k2 represents
the Kappa value for the same comparison with SL assistance.

encrypted during synchronization, restricting access to authorized
hospitals and safeguarding against cyberattacks. Furthermore,
clinicians conduct patient inquiries to gather medical histories, and
concerns regarding information exposure are mitigated through
patient authorization for medical record usage and robust security
protocols. While the current application study focuses on TPF
identification, the proposed system is adaptable to other clinical
domains. For instance, it can leverage multicenter data for precise
mortality risk prediction, rehabilitation outcome assessment,
and risk warnings for general practitioners. Implementing more
implicit collaboration methods will further promote adoption in
data-sensitive environments, ensuring both clinical utility and
patient privacy.

As a multi-center study at the intersection of computer
and medical fields, we constructed and validated the SL model

for detecting TPF using X-ray images of 4,581 participants. In
centralized local training, the training of DL models involves many
prerequisites in terms of data preparation, with many pain points
being addressed through dispersed medical datasets. Our proposed
computational SL network utilizes the large dataset collected by
our team to demonstrate the enormous potential of this novel
collaborative approach for improving the clinical performance of
doctors. In our prior work, we constructed different orthopedic
AI diagnostic models based on multimodal data for trauma
and fracture images, which including the prediction of lumbar
spondylolisthesis fractures, wrist fractures, classification of femoral
neck fractures, and the lung cancer bone metastasis (51, 52, 54–
56). The application of AI in internet-based medical research and
clinical settings has raised significant concerns, particularly related
to the collection of large datasets and associated ethical issues.
The international and multi-center collaboration supporting the
proposed SL model stands to benefit greatly from advancements in
data standardization for fracture classification and image analysis.
By utilizing a secure and reliable training approach, engineers
and clinicians can develop effective AI models without direct
access to raw datasets, leveraging blockchain platforms to ensure
data privacy. The SL framework presented in this study avoids
dependence on a single model, minimizing the risk of bias and
overfitting while safeguarding patient privacy.

Building upon our previous research, we have developed an
advanced collaborative framework for AI model training in medical
imaging (51, 52, 54–56). This framework utilizes a decentralized
architecture, eliminating the dependency on a central coordination
hub and enhancing flexibility for deployment across multiple
healthcare institutions. By integrating blockchain technology with
a distributed component, the framework facilitates collaborative
training and AI-assisted diagnosis of medical images. Specifically,
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the local knowledge module processes and reasons with local
data, while the distributed component manages the coordination
of multicenter training processes. Our system has demonstrated
the ability to identify previously overlooked fractures in advance,
offering significant clinical benefits by alerting clinicians to fracture
risks that might otherwise be missed. The results from our
application study indicate that the proposed system can: (1) prevent
delayed or missed diagnoses, (2) reduce unnecessary diagnostic
tests, and (3) provide actionable diagnostic suggestions to support
clinical decision-making. In the application study, 112 patients
with knee joint injuries were evaluated. Clinician assessments
revealed that 91.5% (102/112) of the model’s predictions aligned
with their initial judgments, and 87.5% (98/112) of the evaluated
patients exhibited positive symptoms. These findings suggest that a
substantial proportion of patients could benefit from our system for
timely TPF diagnosis, enabling prompt treatment and improving
overall healthcare quality. Additionally, the system addresses the
challenge of information gaps that often arise during patient
transfers between hospitals. By facilitating secure information
transmission, it provides risk alerts and clinical decision support
during the initial post-transfer consultation, substantially decreases
the incidence of fracture complications and streamlines the
workflow of trauma orthopedic emergencies by intervening at an
early stage in patients suspected of having TPF.

From the perspective of practical implications, the adoption of
distributed models has enhanced the efficiency of data aggregation,
ensured the security of traditional centralized AI models, and
improved the diagnostic efficiency of medical professionals in
clinical settings. This system enables dynamic aggregation of
training parameters for each node, without the need for isolated
agent nodes. Through this approach, we are able to monitor
and ensure the realism and accuracy of overall training, while
also providing timely feedback on the latest training outcomes.
The proposed solution allows organizations to train deep learning
models using others’ datasets without transferring their own
datasets to an off-site location. In this study, the SL model
outperformed junior clinicians and demonstrated equivalent
performance to senior experts and centralized AI model in
identifying TPF based on X-images. Computed tomography (CT)
remains the reference standard for fracture classification, yet
radiography persists as the frontline diagnostic modality in primary
care, remote regions, and intraoperative settings worldwide. To
address this diagnostic disparity, we developed a deep learning
algorithm optimized for rapid fracture screening in resource-
limited environments—where 92% of initial fracture presentations
occur in developing nations (China National Health Commission,
2023). Our approach leverages an important epidemiological
reality: while X-ray equipment achieves universal penetration in
China’s primary care facilities, CT availability remains constrained
to 58% of these settings. Through a validated radiographic
classification system—with all interpretations confirmed by both
CT and senior orthopedic specialists (k = 0.86, 95%CI 0.83–
0.89)—we demonstrate diagnostic consistency comparable to gold-
standard CT (89.7% agreement). The clinical impact is substantial:
our method reduces time-to-diagnosis by 72% (1 = 42.5 ± 3.2 min;
P < 0.001 by Wilcoxon signed-rank test) while maintaining
94.3% accuracy for non-complex fractures relative to CT. These
advances hold particular promise for emergency triage systems
and medical training programs in underserved regions. Future

directions should prioritize: creation of multimodal imaging
repositories, refinement of surgical planning annotations, and
multinational validation trials to establish generalizability across
diverse healthcare ecosystems. While the SL model demonstrated
accuracy comparable to senior clinicians within the retrospective
dataset, it is important to acknowledge that retrospective data may
differ from real-time clinical scenarios in several ways. Therefore,
the model’s performance might differ in different prospective study,
as it would be subject to these variables, which are typically not
present in retrospective datasets.

Although there is currently a lot of research on the application
of AI in orthopedics, there is a lack of practical integration
research between SL and blockchain in the context of data security.
This study provides inspiration and potential value for the future
direction of trustworthy and secure AI in the medical field. By
sharing parameters, this can alleviate the dependence of some
smart hospitals on powerful hardware and potentially enable the
SL trained model to be applied to remote consultation assistance.
This will have a significant impact on enhancing the medical level
of doctors and providing high quality telemedicine in developing
countries (7, 8, 17, 19–22, 28, 29, 34, 50). From the perspective
of technology, the majority of prior studies employed the FL
approach for joint learning, utilizing a single agent node to process
and update the training parameters of each model. As illustrated
in Supplementary Table S3. When conducting local centralized
training, the model architectures utilized were Weakly-supervised
learning, Semi-supervised learning, and U-net. However, weakly
supervised and semi-supervised learning methods depend on
distribution assumptions of the data, which may not hold true
in real-world scenarios. Moreover, in distributed collaborative
training, traditional FL methods for medical image analysis lack
robust privacy protection and attack resistance mechanisms,
making it challenging to prevent malicious node behavior (29, 33,
34, 40, 57). While they have explored the blockchain-based FL
architectures for medical analysis, such as Moulahi et al. (28) using
Multi-layer Perceptron for monitoring blood glucose, Kumar et al.
(42) employing Swin UNetR for COVID-19 image recognition,
and Kumar et al. (50) applying U-net for brain tumor image
segmentation, these models still face limitations in smart contract
programing that restricts flexible data authorization. Recent studies
have adopted the SL model to converge dynamic parameters
(24–26), with distributed uploads of model update parameters
through multiple nodes. Nevertheless, from the perspective of data
acquisition, most of these studies only rely on repeated sampling
from public databases, such as TCGA, BraTS 2017, and GEO
database, resulting in trained models lacking real-world clinical
validation (23–26, 29, 33, 34, 39, 44, 45, 55). In the medical field,
obtaining labeled data is both costly and requires professional
expertise. To address this challenge, we recruited orthopedic
surgeons and imaging physicians from multi-center hospitals in
China to collaboratively annotate datasets, establishing the first
disease-specific database for bone fracture detection.

Current research on polycentric knowledge graphs
predominantly focuses on joint embedding learning, which
trains embedded models without centralizing various knowledge
graphs to ensure data security (6, 8, 13, 53, 56). In this study,
we propose a knowledge graph system framework based on
the YOLO algorithm designed to promote collaboration among
multiple centers without sharing raw data, thereby enabling a
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comprehensive assessment of fracture patients. First, our approach
emphasizes the collaboration of local models rather than the
sharing of original images. By contrast, existing research has
primarily concentrated on securely sharing model parameters
through blockchain and selective encryption, which often faces
challenges related to data privacy and intellectual property rights.
Second, our proposed framework utilizes multicenter imaging
data at the application stage, as opposed to relying on public
databases, making it more closely aligned with clinical reality.
Models derived from public databases frequently fail to accurately
analyze real-world cases when applied in clinical practice. We
demonstrated the feasibility of applying a distributed orthopedic
diagnostic model in real clinical settings. Third, our proposed
approach employs the SL model to summarize local model
parameters and reason about local clinical findings. The proposed
method addresses existing data gaps, ensures data privacy and
security, and provides robust anti-attack capabilities. To the best
of our knowledge, no studies have addressed the distributed
AI model training and collaboration of medical images during
clinical decision support in orthopedic emergency settings (24–26,
58–61). We introduced a pilot framework and reported clinical
application results demonstrating the value of using multicenter
image data for fracture evaluation in dencentralized way. This
approach may assist orthopedic surgeons on the front lines of
emergency care and in remote regions in enhancing both efficiency
and diagnostic accuracy, potentially allocating more valuable
time for the treatment of trauma patients, thereby enhancing the
effectiveness of medical interventions.

6 Limitations and future work

While this study demonstrates the potential of decentralized
learning for fracture classification, several limitations must
be acknowledged: the retrospective design may introduce
confounding factors, manual image annotation carries inherent
subjectivity, data imbalance across nodes presents classification
challenges, particularly for rare fracture subtypes like unclassified
traumatic TPF, and the current framework lacks systematic
incentive mechanisms for multi-center collaboration – all of
which represent important avenues for future research to enhance
model robustness and clinical applicability. The integration
of blockchain-secured SL into orthopedic diagnostics also
encounters regulatory considerations, these include computational
bottlenecks in real-time segmentation of complex fracture
patterns during cross-institutional model synchronization;
irreconcilable tensions between ensuring radiological data
immutability and adhering to musculoskeletal imaging
privacy protocols under the Health Insurance Portability and
Accountability Act (HIPAA) Security Rule and General Data
Protection Regulation (GDPR). Addressing these challenges
requires both technical advancements in Byzantine fault-
tolerant consensus mechanisms and prospective validation
through international orthopedic trauma registries to establish
clinical feasibility.

Regarding the scalability of the model, it is essential to
further amass more scarce medical records and image data
based on the SL model for exploring multi-site and multi-type

fractures, such as the intricate classification of spinal and pelvic
fractures, as well as the early prediction of latent fractures and
bone metastatic tumor fractures. Integrating SL servers into
the existing infrastructure in diverse institutions of multiple
countries might entail considerable practical efforts, which
need to be addressed through the collaboration of nodes in
the consortium chain. To evaluate the compatibility of the
SL collaborative network with data and its willingness to be
applied in practical scenarios, it is necessary to validate this
technology on a larger scale among international societies,
hospitals, and organizations. Furthermore, exploring incentive
mechanisms for institutional collaboration is crucial. Full
stakeholder participation is necessary to encourage the adoption
of this innovative architecture, enabling the creation of a trusted,
distributed model. When deploying the system across multiple
hospitals, challenges in communication efficiency and potential
bottlenecks may arise. Additionally, as the system scales, the
costs related to network and computational resources may
increase, particularly due to the alignment of semantic reasoning
across multiple images. To address these challenges, further
refinement of the Hyperledger framework could support the
broader deployment of the system.

7 Conclusion

This study establish SL as a robust framework for privacy-
preserving decentralized AI in medical imaging, demonstrating
its clinical utility through optimized deep learning nodes.
We achieve precise visual localization of fracture patterns
with surgical-level accuracy. Automated diagnostic support
may significantly reduce the workload of radiologists, while
securely enabling multi-institutional data collaboration without
compromising patient confidentiality. Systematic validation
against state-of-the-art solutions reveals superior performance
in diagnostic accuracy, computational efficiency, and clinical
workflow integration—particularly for osteosurgical cases
requiring preoperative planning. By overcoming traditional
barriers to data sharing while maintaining the medical data
compliance, our SL paradigm provides a scalable solution
for global fracture diagnostics, offering both technical and
practical advancements over existing FL approaches. These
findings position decentralized AI as a transformative
tool for orthopedic imaging, with applications in trauma
centers and potential extensions to other image-guided
surgical specialties.
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