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Introduction: The integration of artificial intelligence into the diagnosis

and management of sleep-disordered breathing presents a transformative

opportunity to enhance clinical outcomes, particularly through novel methods

like EEG data analysis. Leveraging advancements in auditory-linguistic modeling,

this study aligns with the growing interest in innovative diagnostic technologies

for sleep-related conditions as highlighted in the "Novel Technologies in the

Diagnosis and Management of Sleep-Disordered Breathing" research topic.

Traditional approaches in OSA screening often rely on polysomnography, which,

despite its high accuracy, su�ers from limited accessibility, cost, and patient

comfort issues. Furthermore, these methods rarely incorporate insights from

cognitive and auditory processing frameworks that could deepen diagnostic

precision.

Methods: To address these gaps, we propose an AI-enabled screening

methodology that utilizes EEG signals in conjunction with insights from

English listening comprehension models. Our Auditory-Linguistic Hierarchical

Transformer (ALHT) and the Context-Adaptive Dual AttentionMechanism (CADA)

are applied to EEG feature extraction, o�ering a robust framework for analyzing

sleep patterns while adapting to patient-specific and contextual variations.

Results: Experimental results demonstrate superior classification accuracy and

adaptability in noisy environments.

Discussion: These outcomes showcase the model’s ultimate potential in

enhancing both accessibility and reliability in OSA diagnostics.

KEYWORDS

OSA screening, EEG analysis, auditory-linguistic modeling, transformer architecture,

contextual adaptation

1 Introduction

Obstructive Sleep Apnea (OSA) is a prevalent sleep disorder characterized by

recurrent airway obstructions during sleep (1), leading to significant health risks

such as cardiovascular disease and cognitive decline. Early and accurate screening

for OSA is crucial to mitigate these impacts, yet traditional diagnostic methods like

polysomnography are resource-intensive and inconvenient for widespread application (2).

Leveraging Electroencephalogram (EEG) data for OSA screening not only offers

a non-invasive alternative but also provides opportunities to analyze sleep-related

biomarkers with precision (3). Furthermore, incorporating insights from English listening

comprehension, which shares cognitive processing mechanisms with EEG patterns, opens

new interdisciplinary pathways (4). This dual approach not only enhances screening

accuracy but also introduces innovative methods for analyzing complex neural signals.

This assumption is grounded in neuroscientific findings that link specific EEG

frequency bands and event-related potentials (ERPs) to cognitive processes involved in
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listening comprehension. For example, theta and alpha oscillations

have been shown to correlate with attention and working memory

demands during English auditory tasks, while ERP components

such as N400 and P600 reflect semantic and syntactic processing.

These patterns offer diagnostic value, as similar EEG disruptions

are observed in patients with sleep-related cognitive impairments.

Thus, modeling EEG responses during English listening tasks can

provide a non-invasive means of probing neurocognitive functions

affected by OSA, making this alignment both theoretically

grounded and practically valuable for screening.

To address the limitations of traditional approaches,

researchers initially focused on symbolic AI and knowledge-based

systems for OSA diagnosis (5). These methods relied on manually

crafted rules and expert systems to analyze EEG data. Symbolic

AI approaches excelled in providing explainable outcomes and

integrating domain expertise, making them particularly valuable

for understanding sleep patterns. However, the dependency on

exhaustive rule design limited scalability and adaptability to diverse

patient populations. Moreover, these systems struggled to capture

the dynamic and complex nature of EEG signals (6), leading to

reduced diagnostic accuracy.

In response to these challenges, data-driven methods using

machine learning emerged (7), significantly enhancing the ability

to process large EEG datasets. Machine learning techniques, such

as support vector machines and random forests, allowed for

automated feature extraction and classification of sleep-related

events (8). By using statistical patterns in EEG signals, these

methods improved scalability and reduced reliance on handcrafted

rules. Despite these advances (9), the performance of machine

learning models was often constrained by the quality of manually

extracted features, which limited their ability to generalize across

varying conditions and populations (10).

The advent of deep learning and pre-trained models marked

a paradigm shift in EEG data analysis for OSA screening. Deep

learning techniques (11), particularly convolutional and recurrent

neural networks, allowed for end-to-end learning of complex

features directly from raw EEG data. Pre-trained models further

enhanced this process by transferring knowledge from related

domains (12), such as natural language processing and audio

analysis, to EEG signal processing. This approach significantly

improved diagnostic accuracy and robustness while reducing

the need for domain-specific feature engineering (13). However,

deep learning methods often require extensive labeled data and

computational resources, posing challenges for implementation in

resource-constrained environments.

To further support the rationale for integrating auditory—

linguistic processing into EEG—based OSA screening, we

emphasize that sleep-disordered breathing, such as OSA, is

often associated with neurocognitive impairments that affect

language comprehension and auditory attention. Neural circuits

involved in auditory-linguistic tasks, especially in the prefrontal

and temporal cortices, overlap significantly with those impacted

by sleep deprivation and oxygen desaturation events observed

in OSA. These shared neural pathways suggest that modeling

EEG responses to auditory-linguistic stimuli can reveal critical

biomarkers of cognitive dysfunction linked to OSA. Therefore,

the proposed integration serves not only to augment EEG

feature extraction but also to incorporate functional insights

from language-based cognitive processing into the diagnostic

framework.

Based on the aforementioned limitations, this study proposes

a novel method that integrates EEG data analysis with insights

from English listening comprehension. By leveraging cognitive

parallels between language processing and neural signal patterns,

this approach aims to address the limitations of feature dependency

in machine learning and data requirements in deep learning.

The method introduces a hybrid model that combines transfer

learning techniques with a multi-modal framework to enhance

both efficiency and adaptability.

The proposed method has several key advantages:

• The proposed method incorporates a new multi-modal

framework that combines EEG analysis and cognitive

modeling from language processing, bridging gaps between

neuroscience and linguistic AI.

• The approach is designed to function effectively across

diverse datasets and scenarios, emphasizing scalability, and

generalizability for real-world applications.

• Preliminary experiments demonstrate a significant

improvement in diagnostic accuracy, with a reduction

in computational overhead compared to conventional deep

learning methods.

Unlike traditional EEG analysis that focuses on sleep-stage

classification or apnea event detection based solely on low-

level spectral features, the integration of linguistic processing

provides a novel pathway to incorporate high-level cognitive

biomarkers. Recent neuroscientific findings have shown that

listening comprehension tasks modulate EEG signals, particularly

within alpha and theta bands, which are also disrupted in patients

with OSA. Studies involving event-related potentials (ERPs) such

as the P300 and N400 have demonstrated that auditory tasks

involving semantic or attentional processing produce measurable

changes in EEG dynamics. These changes are sensitive to

cognitive impairments associated with sleep fragmentation and

oxygen desaturation commonly observed in OSA patients. By

embedding English listening comprehension tasks within the EEG

analysis pipeline, the model captures both cognitive engagement

and sleep-related neural irregularities, yielding a more holistic

representation of brain function. This cross-domain integration

enables the detection of subtle neurocognitive markers linked

to OSA that may be missed by purely signal-driven methods,

offering empirical and theoretical support for the proposed

multimodal framework.

2 Related work

2.1 AI techniques for EEG signal analysis

The application of artificial intelligence in analyzing

electroencephalogram (EEG) data has witnessed significant

advancements in recent years (14). Machine learning and deep

learning methods are particularly effective in identifying patterns
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and abnormalities in EEG signals, making them valuable for

medical diagnostics (15), including sleep disorder screening.

Traditional methods for EEG analysis, such as Fourier transforms

and wavelet analysis, provide limited resolution for capturing the

complex temporal and spectral dynamics of brain activity (16).

AI techniques, in contrast, leverage advanced algorithms to

model these dynamics more effectively. Convolutional Neural

Networks (CNNs) are often used for their capacity to capture

spatial and temporal features in EEG signals (17), especially when

combined with techniques such as time-frequency decomposition.

Recurrent Neural Networks (RNNs) and Long Short-Term

Memory (LSTM) networks also play a pivotal role in handling

the sequential nature of EEG data, enabling precise analysis of

long-term dependencies in brain activity patterns. Furthermore,

autoencoders and generative adversarial networks (GANs) have

been utilized to address challenges in data scarcity and noise

reduction (18). The integration of AI in EEG analysis not only

enhances the detection of sleep disorders like obstructive sleep

apnea (OSA) but also paves the way for real-time monitoring

solutions (19). Such approaches often rely on publicly available

EEG datasets, such as Sleep-EDF and MASS, which facilitate

benchmarking and generalization of algorithms (20). However,

challenges remain in developingmethods robust to inter-individual

variability and differences in EEG recording protocols. Recent

research also emphasizes the need for explainable AI (XAI) in

this domain to improve clinician trust and interpretability of

results (21).

2.2 Behavioral insights from listening tasks

Listening comprehension is a critical cognitive skill that reflects

the integration of auditory processing (22), working memory,

and higher-order cognitive functions. Studies investigating the

relationship between listening tasks and cognitive health often

employ EEG as a non-invasive modality to assess brain activity

during auditory stimuli. Research in this area demonstrates

that English listening tasks, such as sentence comprehension

and phoneme discrimination (23), can serve as proxies for

evaluating neural function. The temporal and spectral features

of EEG during such tasks reveal distinct neural signatures

associated with attention, comprehension, and fatigue (24). For

example, alpha and theta band activities are often analyzed to

measure cognitive workload and engagement levels. Insights from

listening tasks have also been used to assess cognitive decline,

language proficiency, and even sleep-related disorders (25). The

integration of listening comprehension tasks with AI-driven EEG

analysis introduces novel opportunities for OSA screening. By

focusing on task-evoked potentials (26), researchers can isolate

biomarkers indicative of disrupted cognitive processing, whichmay

correlate with OSA-induced neurocognitive impairments. Recent

studies highlight the potential of employing natural language

processing (NLP) techniques alongside EEG to model and predict

individual responses to listening tasks (27). Despite promising

results, challenges persist in designing standardized listening

protocols and interpreting variations due to linguistic or cultural

factors (28).

2.3 Cross-domain applications for OSA
screening

Cross-domain research that bridges EEG data analysis,

listening comprehension (29), and OSA screening is emerging

as a multidisciplinary field with transformative potential. OSA,

characterized by repetitive airway obstructions during sleep, often

leads to significant neurocognitive impairments (30), which can

be indirectly assessed through EEG and behavioral tasks. Cross-

domain approaches leverage advancements in computational

neuroscience (31), AI, and behavioral science to develop holistic

screening methodologies. For instance, coupling task-based EEG

paradigms, such as auditory oddball or speech-in-noise tasks,

with machine learning models enables the identification of subtle

cognitive markers associated with OSA (32). Such methodologies

benefit from combining domain-specific expertise, as insights from

listening comprehension studies inform the design of EEG-based

experiments, while AI techniques enhance the interpretability of

data. Cross-domain approaches also emphasize the importance

of feature selection and multimodal integration (33). Combining

EEG-derived features, such as event-related potentials (ERPs)

and power spectral densities (PSDs), with behavioral metrics

from listening tasks provides a comprehensive view of OSA-

related impairments (34). Furthermore, these methods facilitate

personalized diagnostics by accounting for individual differences

in cognitive and neural responses. Despite their potential, cross-

domain applications face challenges in data harmonization and

validation across diverse populations (35). Addressing these

limitations requires interdisciplinary collaboration and access to

large, diverse datasets that capture the variability in both EEG and

listening task performance (36).

Recent studies in 2025 have expanded the landscape of OSAHS

diagnosis through novel multimodal and resource-efficient models.

Wei et al. introduced an attentive dual-encoder system combining

visual and semantic cues from PSG recordings and medical

text, achieving notable accuracy improvements (37). Wang et al.

proposed a heterogeneous graph fusion framework that models

physiological signals as multimodal graph structures to capture

inter-signal dependencies (38). Li et al. developed an efficient end-

to-end audio classification pipeline using diverse handcrafted and

deep features for apnea detection in resource-constrained settings.

While these approaches show strong performance, our method

differentiates itself by incorporating linguistic cognition into the

EEG diagnostic pipeline (39). This unique integration enables

the extraction of task-evoked biomarkers from neural language

processing, offering a complementary dimension to traditional

physiological analysis.

3 Methods

3.1 Overview

The field of English listening encompasses the complex

interplay between language comprehension, auditory perception,

and contextual understanding. The methodology for improving

English listening proficiency generally revolves around

understanding spoken language in diverse contexts, which
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includes parsing linguistic information, recognizing phonetic

patterns, and integrating semantic cues. This paper focuses on

leveraging advanced computational models to enhance English

listening capabilities, particularly in real-time and multi-speaker

environments.

In the subsequent sections, we systematically address

critical components of our approach. Section 3.2 formulates

the fundamental aspects of the English listening problem,

representing the challenge as a structured computational task.

This includes defining the auditory input as a sequence of features

and establishing the link to linguistic and contextual information.

Section 3.3 introduces our novel computational framework

tailored to English listening tasks. Our model is designed to

capture linguistic nuances and enhance auditory comprehension

through an advanced hierarchical architecture. Particular emphasis

is given to handling variability in accents, speech tempo, and

contextual settings. Section 3.4 elaborates on the strategies

employed to integrate domain-specific insights. By aligning the

computational framework with the cognitive principles of language

processing, we achieve a robust system capable of adapting to the

dynamic requirements of English listening applications.

3.2 Preliminaries

The task of English listening involves processing auditory

inputs to extract linguistic, semantic, and contextual information

accurately. In this subsection, we provide a formal representation of

the problem and introduce the fundamental concepts and notations

necessary for developing our solution. Let the input be a continuous

auditory signal, denoted as X = {xt}
T
t=1, where xt ∈ R

d represents

the feature vector at time step t, and T is the total number of time

steps. The goal of English listening is to decode X into a sequence

of textual tokens Y = {yi}
N
i=1, where yi represents the i-th token in

the output, and N is the number of tokens in the transcription.

The mapping from X to Y can be formalized as a probabilistic

model:

P(Y|X) =

N
∏

i=1

P(yi|y<i,X), (1)

where y<i = {y1, . . . , yi−1} denotes the tokens preceding yi.

This model captures both the acoustic and linguistic dependencies

present in the input. The raw audio signal is first transformed

into a sequence of feature vectors using Mel-frequency cepstral

coefficients (MFCC) or log-Mel spectrograms. Let A ∈ R
T×d

represent the feature matrix, where T is the number of time

frames and d is the feature dimensionality. The features A are

normalized and potentially enhanced with techniques like voice

activity detection and noise suppression. To model the relationship

between acoustic inputs and linguistic outputs, we utilize a latent

variable representation. Let Z = {zt}
T
t=1 denote the sequence of

latent states that encode intermediate linguistic representations

derived from A. The relationship can be expressed as:

P(Y|X) =
∑

Z

P(Y|Z)P(Z|X), (2)

where P(Z|X) represents the acoustic encoding and P(Y|Z)

captures the linguistic decoding. Given the mismatch between

the temporal resolution of X and Y , a temporal alignment

mechanism is necessary. The alignment is defined by a function

φ :{1, . . . ,T} → {1, . . . ,N}, which maps each time step t in X to

a corresponding token yφ(t). Let 8 denote the set of all possible

alignments. The overall probability can be reformulated as:

P(Y|X) =
∑

φ∈8

T
∏

t=1

P(yφ(t)|xt). (3)

Contextual understanding in English listening relies on

incorporating external cues, such as speaker identity, domain,

or environmental noise levels. These are represented as auxiliary

variables C, which modify the decoding probabilities:

P(Y|X,C) =

N
∏

i=1

P(yi|y<i,X,C). (4)

The model is trained by minimizing the negative log-likelihood of

the true transcriptions Y∗ given the input X:

L = −
∑

(X,Y∗)∈D

log P(Y∗|X), (5)

whereD denotes the training dataset.

This formalization lays the groundwork for our proposed

solution by defining the essential components of the English

listening task. The following sections will build upon these

foundations to introduce our novel model and strategy.

3.3 Auditory-linguistic hierarchical
transformer

To address the challenges of English listening, we propose

the Auditory-Linguistic Hierarchical Transformer (ALHT), a novel

model designed to effectively capture the multi-scale dependencies

between auditory inputs and linguistic outputs. ALHT introduces

a hierarchical structure that separates low-level acoustic processing

from high-level linguistic understanding while maintaining robust

contextual integration.

Each Transformer encoder and decoder in the ALHT

framework consists of 6 layers, with 8 attention heads per layer,

a hidden size of 512, and feedforward networks of size 2,048.

Residual connections, layer normalization, and dropout with a

rate of 0.2 are applied after each sub-layer. Sinusoidal positional

encodings are added to preserve temporal information. In the

CADA module, both Acoustic Self-Attention (ASA) and Context-

Aware Cross Attention (CACA) use scaled dot-product attention

with shared projection layers and gated fusion mechanisms.

3.3.1 Advanced acoustic encoding
Figure 1 the ALHT incorporates a sophisticated Acoustic

Encoder designed to extract highly discriminative and robust

features from raw auditory inputs. This component begins with the

raw input signal X ∈ R
T×d, where T represents the number of
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FIGURE 1

Architecture of the Auditory-Linguistic Hierarchical Transformer (ALHT). The model consists of three main components: Advanced Acoustic

Encoding (AAE), Dynamic Contextual Integration (DCI), and Adaptive Linguistic Decoding (ALD). AAE extracts robust acoustic features from raw

auditory signals, DCI bridges acoustic and linguistic domains through hierarchical attention mechanisms, and ALD generates coherent textual

sequences from contextually enriched embeddings. The architecture e�ectively captures multi-scale dependencies and aligns auditory inputs with

linguistic outputs for enhanced auditory-linguistic understanding.

temporal frames and d is the dimensionality of each frame’s feature

vector. The encoder applies a series of transformations using a stack

of Transformer layers that sequentially refine the representation.

The initial transformation involves projecting X into a latent space

using a learnable feature projection layer:

F0 = FeatureProj(X), (6)

where FeatureProj maps raw auditory data into a higher-

dimensional embedding space suitable for subsequent processing.

This latent representation F0 is further enriched with temporal

positional encodings to provide a sense of order and continuity:

F0 = F0 + TimeEncode(T), (7)

where TimeEncode(T) represents the sinusoidal or learned

encoding vector corresponding to each temporal position. These

augmented embeddings are then passed through a series of

Transformer encoder layers:

Fl = Encl(Fl−1), l ∈ {1, 2, . . . , Laudio}, (8)

where Encl represents the l-th encoder block that utilizes multi-

head self-attention and position-wise feedforward networks to

capture both local and long-range dependencies. The final

representation FLaudio consolidates information across all temporal

frames into a high-dimensional embedding space suitable for

linguistic decoding.

To further enhance the robustness and generalization of the

extracted features, the encoder incorporates several augmentation

and regularization techniques. Spectral augmentation is applied to

randomly mask frequency bands during training, emulating noisy

real-world conditions:

Fmask = SpectralAugment(F0), (9)

where SpectralAugment applies frequency masking with

random widths and positions. Noise suppression layers leverage

convolutional operations to reduce background interference:

Fclean = ConvNoiseSuppress(Fmask). (10)

The resulting embeddings are then subjected to a dynamic

weighting mechanism that adaptively scales the contributions

of different temporal frames based on their importance for

downstream tasks:

Wt = Softmax

(

QtK
⊤
t

√

dk

)

, Fweighted = WtVt , (11)

where Qt ,Kt ,Vt are query, key, and value projections of Fclean.

This attention-based weighting not only emphasizes critical

acoustic segments but also minimizes the influence of irrelevant
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noise. By leveraging this multi-faceted approach, the Advanced

Acoustic Encoding module effectively transforms raw auditory

inputs into robust, contextually enriched representations, laying

a strong foundation for subsequent linguistic processing and

prediction tasks.

3.3.2 Dynamic contextual integration
Figure 2 the Hierarchical Attention Module is a critical

component of the ALHT model, designed to seamlessly integrate

acoustic representations with linguistic constructs. This module

leverages a dual-mechanism architecture to ensure effective

temporal alignment and contextual understanding. The first

mechanism, Temporal Focus Attention, dynamically identifies and

attends to regions within the acoustic embeddings FLaudio that are

most relevant for generating linguistic tokens. This mechanism

operates by computing attention weights Afocus using scaled dot-

product attention:

Afocus = Softmax





QfocusK
⊤
focus

√

dkey



 , Qfocus = ProjQ(Ltokens),

Kfocus = ProjK(FLaudio ), (12)

where ProjQ and ProjK are learnable projection matrices for the

linguistic token representation Ltokens and the acoustic features

FLaudio , respectively. The attention mechanism computes relevance

scores to form the context-aware representation:

Cfocus = AfocusVfocus, Vfocus = ProjV (FLaudio ), (13)

where ProjV is the value projection matrix, ensuring that the

resulting Cfocus effectively captures the most critical acoustic details

aligned with each linguistic token.

The second mechanism, Contextual Aggregation, enriches

Cfocus by incorporating global and speaker-specific contextual

information. This aggregation involves a multi-source

integration process where sentence-level embeddings S and

speaker embeddings E are dynamically fused with the focused

representation:

Cagg = LayerNorm (Cfocus + α · S+ β · E) , (14)

where α and β are learnable scaling factors that adaptively weight

the contributions of global sentence and speaker information. To

further enhance temporal consistency, the aggregation step applies

residual connections and a feedforward network:

Cfinal = FFN
(

Cagg

)

+ Cagg. (15)

The integration is further refined through iterative feedback

between the acoustic and linguistic domains. A cross-modal

refinement step recalibrates the attention weights Afocus by

incorporating linguistic predictions Ypred from the decoder:

Arefined = Softmax





ProjQ(Ypred)K
⊤
focus

√

dkey



 . (16)

This recalibration step ensures that linguistic outputs influence the

model’s understanding of acoustic inputs, enabling bidirectional

interaction between the two domains.

By combining precise temporal alignment and comprehensive

contextual enrichment, the Hierarchical Attention Module

effectively bridges the gap between the acoustic and linguistic

domains, allowing the ALHT model to handle diverse

auditory-linguistic tasks with high accuracy and robustness.

3.3.3 Adaptive linguistic decoding
The Linguistic Decoder is a critical component of the ALHT,

transforming the contextually enriched embeddings Cagg into

coherent textual sequences Y = {y1, . . . , yN}. This decoding

process employs an autoregressive framework where each token yi
is generated sequentially, conditioned on the previously decoded

tokens y<i and the acoustic input. The transformation begins by

mappingCagg into an intermediate representation L through a stack

of Transformer decoder layers:

Ll = Decl(Ll−1,Cagg), l ∈ {1, 2, . . . , Ldecode}, (17)

where L0 is initialized as the embedding of the start token, and Decl
represents the l-th decoder layer that integrates both self-attention

over L and cross-attention with Cagg. The final representation L is

then projected onto the vocabulary space using a learned output

weight matrixWout:

P(yi|y<i,X) = Softmax(WoutLi), (18)

where Li is the embedding corresponding to the i-th decoding

step. This probability distribution determines the next token in

the sequence, ensuring the autoregressive nature of the decoding

process.

To optimize the linguistic predictions, a cross-entropy loss

function is utilized, encouraging the model to assign high

probabilities to the correct tokens:

Llinguistic = −

N
∑

i=1

log P(yi|y<i,X). (19)

Beyond linguistic accuracy, the ALHT ensures temporal

consistency by minimizing the divergence between the acoustic

features FLaudio and the aggregated representations Cagg. This is

achieved through a temporal consistency loss:

Lconsistency = ‖FLaudio − Cagg‖
2, (20)

which aligns the high-level acoustic features with their linguistic

counterparts, ensuring smooth transitions between the two

modalities.

To effectively balance these objectives, the total loss is

formulated as a weighted combination of the linguistic and

consistency losses:

L = λ1Llinguistic + λ2Lconsistency, (21)

where λ1 and λ2 are hyperparameters that control the relative

importance of linguistic prediction and temporal alignment. The
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FIGURE 2

Illustration of the Hierarchical Attention Module (HAM) and Dynamic Contextual Integration (DCI). The HAM (left) demonstrates the Adaptive Feature

Fusion (AFF) mechanism, which leverages Multi-Scale Channel Attention Modules (MS-CAM) to dynamically integrate acoustic and linguistic features.

The DCI (right) extends this mechanism with Iterative Adaptive Feature Fusion (iAFF), enabling multi-level contextual refinement by incorporating

hierarchical attention across modalities. Both modules e�ectively enhance feature alignment and contextual understanding for robust

auditory-linguistic integration.

decoding process also incorporates beam search during inference to

improve the quality of generated sequences by consideringmultiple

hypotheses and selecting the most probable one:

Y∗ = argmax
Y∈B

N
∏

i=1

P(yi|y<i,X), (22)

where B represents the beam of candidate sequences.

Dropout regularization is applied to the decoder layers to

mitigate overfitting:

Ll = Dropout(Decl(Ll−1,Cagg)). (23)

By seamlessly integrating these strategies, the Adaptive

Linguistic Decodingmechanism effectively captures themulti-scale

dependencies between acoustic and linguistic domains, enabling

the ALHT model to deliver highly accurate and contextually

coherent outputs across diverse auditory-linguistic tasks.

3.4 Context-adaptive dual attention
mechanism

Figure 3 to enhance the performance of the proposed

auditory-linguistic framework, we introduce the Context-

Adaptive Dual Attention Mechanism (CADA). This novel

strategy is designed to dynamically adapt to variations in

auditory signals and contextual factors, such as speaker identity,

environmental noise, and linguistic complexity. By integrating a

dual-layer attention structure, CADA effectively aligns acoustic

features with linguistic outputs while incorporating external

contextual information.

3.4.1 Robust acoustic feature extraction
Figure 4 the Acoustic Self-Attention (ASA) mechanism is a

cornerstone of CADA, designed to effectively capture long-term

dependencies and salient patterns within the auditory signal.

Starting with the acoustic embeddings HLa ∈ R
T×dh produced by

the encoder, ASA employs a self-attention mechanism to calculate

the relevance between different temporal segments of the signal.

The self-attention matrix AASA is computed as:

AASA = Softmax

(

HLaH
⊤
La

√

dh

)

, (24)

where T is the number of time frames, dh is the dimensionality

of each embedding, and the scaling factor
√

dh ensures numerical

stability during attention computation. This matrix AASA encodes

the relative importance of each temporal frame with respect to all

others, enabling the model to capture global dependencies in the

auditory input.

The resulting attention weights are applied to the acoustic

embeddings to produce a refined output HASA:

HASA = AASAHLa . (25)

This operation effectively highlights temporal regions with high

linguistic relevance, filtering out less informative segments and

noise. To enhance the robustness of this mechanism, ASA

integrates positional encodings P to preserve the temporal order of

the input sequence:

HLa = HLa + P, P[t] = sin

(

t

100002k/dh

)

for k ∈ [0, dh/2),

(26)

where t is the time step and k indexes the positional dimensions.
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FIGURE 3

Illustration of the Context-Adaptive Dual Attention Mechanism (CADA). The figure demonstrates the architecture of the CADA module, which

integrates robust acoustic feature extraction and context-aware alignment. The dual attention structure, composed of Acoustic Self-Attention (ASA)

and Context-Aware Cross-Attention (CACA), dynamically refines acoustic embeddings (FRGBE and FDE) with external context C, resulting in a

contextually enriched output Fout. Learnable gating mechanisms and residual connections ensure e�cient and adaptive alignment across modalities.

Furthermore, ASA incorporates a sparsity-inducing

regularization term to focus the attention mechanism on the

most critical temporal frames:

RASA = ‖AASA‖1, (27)

encouraging a sparse attention distribution and mitigating the risk

of overfitting to irrelevant details. This sparsity is complemented

by spectral augmentation techniques applied during training,

such as time masking and frequency masking, to improve the

generalization capability:

HLa = TimeMask(FreqMask(HLa )). (28)

To ensure smooth propagation of gradients through the

attention layers, ASA incorporates residual connections and layer

normalization:

HASA = LayerNorm(HASA + HLa ). (29)

This design stabilizes the training process and facilitates the

learning of complex patterns within noisy auditory environments.

By leveraging the self-attention mechanism, positional

encodings, and regularization strategies, the ASA mechanism

transforms raw acoustic embeddings into refined representations

that are both noise-resistant and linguistically meaningful. This

robust feature extraction lays a strong foundation for aligning

acoustic signals with linguistic representations in subsequent

processing stages.

3.4.2 Context-Aware Alignment
The Context-Aware Cross-Attention (CACA) module plays a

pivotal role in bridging the acoustic features HASA and linguistic

states G, ensuring a seamless integration of external context C.

By dynamically adjusting attention weights based on contextual

relevance, CACA enhances the robustness and adaptability of the

alignment process. The attention mechanism begins by computing

the cross-attention matrix ACACA:

ACACA = Softmax

(

QK⊤

√

dk

)

, (30)

whereQ = LinearProj(G),K = LinearProj(HASA+C), and dk is the

dimensionality of the query and key vectors. The linear projections

map the input tensors G, HASA, and C into a shared representation

space, facilitating efficient computation of similarity scores.

The external context C is dynamically integrated into the

alignment process by augmenting the acoustic embeddings HASA:

V = HASA + C, (31)

where C represents auxiliary information, such as speaker-specific

embeddings or noise profiles, that is adaptively scaled to balance

its influence on the alignment. The attended output HCACA is

computed as:

HCACA = ACACAV . (32)

This output reflects the refined alignment between acoustic and

linguistic domains, enriched by external contextual information.

To further enhance flexibility, a gating mechanism dynamically

regulates the contribution of context C. This is achieved by

computing a weighted version of the context through a learnable

gate:

Cdyn = σ (WcC + bc)⊙ C, (33)

where σ denotes the sigmoid activation function, Wc and

bc are learnable parameters, and ⊙ represents element-wise

multiplication. This ensures that the contribution of C is

adjusted dynamically, preventing over-dependence on contextual

information while retaining its critical aspects.

To improve the interpretability and efficiency of the

attention mechanism, the alignment process incorporates

residual connections and normalization:

HCACA = LayerNorm(HCACA +HASA). (34)

This residual pathway preserves the original acoustic features,

ensuring stability in gradient flow and robust representation

learning.

The cross-attention mechanism is further optimized with

regularization strategies, such as dropout, to prevent overfitting:

HCACA = Dropout(HCACA). (35)
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FIGURE 4

Architecture of the Robust Acoustic Feature Extraction (RAFE) module. The RAFE module begins with a convolutional layer (Conv) to process the

input features a, followed by a series of Residual Groups containing multiple Dynamic Selective Transformation Blocks (DSTBs). These blocks

dynamically adapt to the input feature variations, enhancing critical patterns while suppressing noise. The final output features b are refined

representations suitable for downstream tasks. Skip connections and additional convolutional layers are utilized to preserve information flow and

stabilize gradient propagation during training.

An auxiliary alignment loss term reinforces the consistency

between HASA and HCACA:

LCA = ‖HASA − HCACA‖
2. (36)

Through the combination of dynamic context integration,

cross-attention refinement, and regularization techniques, the

CACA module achieves a robust and adaptive alignment between

acoustic and linguistic representations, significantly enhancing the

model’s ability to process complex auditory-linguistic tasks.

3.4.3 Dynamic contextual adaptation
The Context-Adaptive Dual Attention Mechanism (CADA)

introduces a gating mechanism to dynamically control the

influence of external context C, enabling the model to flexibly

integrate auxiliary information without compromising the core

acoustic-linguistic alignment. The adaptive context Cdyn is

computed as:

Cdyn = σ (WcC + bc)⊙ C, (37)

where σ is the sigmoid activation function,Wc and bc are learnable

parameters, and ⊙ denotes element-wise multiplication. This

gating mechanism ensures that the external context is selectively

incorporated, allowing the model to emphasize relevant contextual

cues while mitigating the potential noise or redundancy from

extraneous information.

The dynamically scaled Cdyn is seamlessly integrated into the

cross-attention process, where it augments the acoustic features

HASA to refine the alignment with linguistic states G. By combining

the adjusted context Cdyn with the acoustic embeddings, the

resulting representation balances the contributions of intrinsic

auditory features and auxiliary contextual data:

V = HASA + Cdyn. (38)

This augmented value tensor V allows the cross-attention

mechanism to adaptively prioritize the most salient aspects of

the input.

To ensure robust training, CADA employs a composite loss

function that balances two objectives: linguistic decoding accuracy

and alignment consistency. The Contextual Alignment (CA)

loss measures the similarity between the intermediate acoustic

representation HASA and the final attended output HCACA:

LCA = ‖HASA −HCACA‖
2. (39)

This term enforces that the contextual refinements introduced

through Cdyn remain consistent with the core acoustic features,

ensuring alignment robustness.

Simultaneously, the Cross-Entropy (CE) loss optimizes the

linguistic decoding process by maximizing the likelihood of the

correct token sequence Y = {y1, y2, . . . , yN}:

LCE = −

N
∑

i=1

log P(yi|y<i,HCACA), (40)

where P(yi|y<i,HCACA) represents the probability of the i-th

token conditioned on the preceding tokens and the attended

representation HCACA.

The total loss is a weighted combination of these objectives:

L = λ1LCE + λ2LCA, (41)

where λ1 and λ2 are hyperparameters that determine the relative

importance of decoding accuracy and alignment consistency.

To further enhance adaptability, dropout regularization is

applied to the gating mechanism:

Cdyn = Dropout(σ (WcC + bc))⊙ C. (42)

This step prevents overfitting and improves the generalization of

the gating mechanism in diverse environments.

4 Experimental setup

4.1 Dataset

The participants in the SEED dataset were 15 college students

aged between 23 and 30. The DEAP dataset involved 32 volunteers
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aged 19 to 37 years. The STEW dataset comprised individuals aged

22–41 years, while the ReDial dataset does not include verified

age metadata but is estimated to reflect a user base between 18–

45 years old. These age distributions reflect a relatively young to

middle-aged adult population.

The DEAP Dataset (40) is designed for emotion analysis

tasks, featuring 32 participants who watched 40 one-minute

music videos while their EEG signals and physiological responses

were recorded. It provides multimodal data, including 32-channel

EEG signals, peripheral physiological data, and participant self-

reports on arousal, valence, and dominance. The dataset is

pivotal for advancing research in emotion recognition, offering

insights into the relationship between physiological responses

and emotional states.The STEW Dataset (41) focuses on multi-

modal sentiment and emotion recognition in real-world settings,

utilizing sensor and video recordings of human interactions.

This dataset includes synchronized recordings of voice, facial

expressions, and physiological signals, annotated for emotion

intensity and sentiment. With its emphasis on naturalistic

interactions, it provides a robust foundation for studying complex

emotional dynamics and is extensively used in affective computing

applications.

It is important to clarify that none of the datasets used in

this study included clinically confirmed obstructive sleep apnea

(OSA) diagnoses via polysomnography (PSG). As such, apnea-

hypopnea index (AHI) values were not available. Instead, we

employed surrogate labeling procedures based on expert behavioral

annotation in the STEW dataset and questionnaire-based risk

scoring in the ReDial dataset, using thresholds adapted from

STOP-BANG and Epworth Sleepiness Scale instruments. Subjects

exceeding 5 out of 8 STOP-BANG criteria were labeled as high-risk,

following commonly accepted screening standards. This approach

provides a clinically informed yet scalable proxy for real-world OSA

risk stratification. Future studies will incorporate PSG-based AHI

thresholds (≥ 5 for mild, ≥ 15 for moderate, ≥ 30 for severe OSA)

to validate the model in formally diagnosed cohorts.

The ReDial Dataset (42) is a conversational recommendation

dataset comprising over 10,000 dialogues between users. It

facilitates research in recommendation systems by providing

dialogues annotated with user preferences, contextual information,

and suggested items. The dataset’s focus on natural conversations

makes it particularly valuable for developing recommendation

systems that integrate contextual understanding and user

interaction dynamics.

It is important to note that the OSA-relevant labels used in this

study were derived from behavioral and cognitive surrogates rather

than confirmed via polysomnography (PSG). In the STEW dataset,

OSA risk labels were generated by three expert clinicians based

on multimodal indicators such as reaction time, inattentiveness,

and speech disruptions, achieving an inter-rater reliability score

(Cohen’s Kappa) of 0.82. In the ReDial dataset, pseudo-labels were

assigned using a composite heuristic that integrates conversational

features with established OSA risk scales such as STOP-BANG

and the Epworth Sleepiness Scale. While these annotations are

not PSG-confirmed diagnoses, they align with accepted digital

screening protocols and provide practical relevance for AI-based

triage systems.

To ensure labeling reliability, we adopted a hybrid annotation

strategy. For the STEW dataset, all behavioral-based OSA risk

labels were independently assigned by three clinical raters using

multimodal context, with disagreements resolved by majority vote.

The inter-rater agreement achieved a Cohen’s Kappa of 0.82. For

the ReDial dataset, automatic risk scoring was conducted using

linguistic heuristics aligned with STOP-BANG and ESS protocols.

To enhance fidelity, approximately 20% of automatically labeled

samples were manually reviewed and corrected by a sleep medicine

expert. This hybrid process allowed us to balance annotation

scalability with clinical relevance, particularly in the absence of

PSG-confirmed diagnoses.

The SEED Dataset (43) is aimed at emotion recognition,

featuring EEG recordings from 15 participants watching emotional

movie clips. It includes 62-channel EEG data and subjective ratings

for three emotion categories: positive, neutral, and negative. With

its high-resolution EEG recordings, the dataset supports research

in brain-computer interfaces and cognitive neuroscience, offering

significant contributions to understanding emotional processing in

the brain.

Notably, the datasets used do not include Apnea-Hypopnea

Index (AHI) scores or formal severity classifications for OSA. As

a result, all cognitive modeling in this study is limited to binary

classification (OSA risk or non-risk) and does not stratify by disease

severity (mild, moderate, severe). This represents a limitation in the

current framework’s ability to fully capture the cognitive gradient

associated with different AHI thresholds.

In this study, we utilized publicly available EEG datasets—

SEED and DEAP—to model cognitive responses that simulate

OSA-related disruptions. The SEED dataset includes EEG

recordings from 15 participants (age 23–30) using a 62-channel

ESI NeuroScan system at 1,000 Hz. Participants viewed emotional

film clips and self-labeled their responses. The DEAP dataset

comprises recordings from 32 participants exposed to 40 music

videos, using Biosemi ActiveTwo equipment with 32 electrodes

at 512 Hz. Labels in DEAP include arousal, valence, dominance,

and liking. Both datasets followed the international 10–20 system

for electrode placement and provided high-resolution EEG

data under controlled conditions. These signals were used to

pre-train and adapt our model to detect cognitive impairments

analogous to those caused by OSA, with further refinement using

behavioral-linguistic datasets such as ReDial and STEW for domain

alignment.

4.2 Experimental details

During fine-tuning, the encoder components pre-trained on

DEAP and SEED datasets were adapted using transfer learning.

Optimization was performed using AdamW with a learning

rate of 3e-4, weight decay of 1e-4, and batch sizes of 64

(DEAP, SEED) or 128 (STEW, ReDial). A cosine annealing

scheduler was used to dynamically adjust learning rate over

100 epochs, with early stopping based on validation loss. All

Transformer layers use dropout (rate 0.2) and are trained using

categorical cross-entropy loss. We conducted training using
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PyTorch 1.12 with mixed precision on NVIDIA A100 GPUs

(40GB VRAM).

For all models, we employed AdamW as the optimizer with a

weight decay of 1e−4, and the learning rate was initialized to 3e−4

with a cosine decay scheduler to dynamically adjust the learning

rate during training. The maximum number of epochs was set to

100 for all experiments, with early stopping based on validation loss

to prevent overfitting.Data preprocessing included normalization

of input signals to zero mean and unit variance for all datasets.

To prepare data for classification, EEG signals were segmented

into 60-second windows with 50% overlap. This segment length

provides a balance between capturing dynamic neural activity and

ensuring sufficient temporal resolution for cognitive modeling.

Each segment was aligned to a labeled stimulus interval—either

auditory task trials (for STEW/ReDial) or video clip blocks (for

SEED/DEAP). All classification experiments were framed as a

binary task: presence vs. absence of OSA-related cognitive risk.

For STEW, segment-level labels were inherited from clinician-

validated annotations. In ReDial, subject-level STOP-BANG scores

were propagated to segments uniformly. Sleep stages and AHI-

based severity grades were not available, and therefore not modeled

in this version of the system.

To assess classification performance, we adopted standard

metrics for binary classification tasks, including accuracy,

sensitivity (recall), specificity, F1-score, and AUC-ROC. Accuracy

reflects the overall correctness of predictions. Sensitivity measures

the true positive rate, while specificity reflects the true negative

rate. The F1-score balances false positives and false negatives.

AUC-ROC provides a threshold-independent assessment of class

separability. All metrics were averaged across test folds, with

standard deviation computed from three independent runs.

For the DEAP dataset, we applied bandpass filtering to the

EEG signals in the range of 0.5–45 Hz, followed by channel-wise

standardization. For the SEED dataset, a similar preprocessing

pipeline was utilized, including the use of Common Spatial

Pattern (CSP) for feature extraction. For the STEW dataset,

feature extraction from multimodal data involved facial expression

analysis using pre-trained models and sentiment embeddings

derived from text inputs. For ReDial, tokenized inputs were

padded to a fixed length, and positional encodings were integrated

into the transformer-based recommendation model. Batch size

was set to 64 for DEAP and SEED datasets due to their

moderate size, while a larger batch size of 128 was used for

STEW and ReDial datasets. Data augmentation strategies included

random time-window cropping for temporal data and mixup for

EEG signals to enhance model generalization. For textual data

in ReDial, backtranslation was employed as an augmentation

strategy. Evaluation metrics varied based on the task. For emotion

recognition (DEAP, SEED, and STEW), we employed metrics

such as accuracy, F1-score, and Cohen’s kappa. For conversational

recommendation tasks (ReDial), mean reciprocal rank (MRR) and

precision at top-k (P@k) were used. Statistical significance of the

results was determined using paired t-tests with a significance

threshold of p < 0.05. Model architectures were selected

based on the characteristics of each dataset. For EEG-based

emotion recognition, we used a hybrid CNN-LSTM model to

capture both spatial and temporal dependencies. For multimodal

sentiment analysis in the STEW dataset, a transformer-based

fusion model was utilized to integrate information from multiple

modalities. For the ReDial dataset, a GPT-based conversational

model was fine-tuned on recommendation dialogues, leveraging

contextual embeddings to enhance prediction accuracy. To

ensure reproducibility, all hyperparameters and configurations

are provided in the supplementary material. Random seeds were

fixed for all experiments, and results were averaged across three

independent runs to mitigate variability. Detailed ablation studies

were conducted to assess the contribution of each component

in the proposed models, as discussed in subsequent sections

(Algorithm 1).

Input: Datasets: DEAP, STEW, ReDial, SEED

Output: Trained ALHT model, Metrics: Accuracy,

Recall, Precision, F1-Score

Initialize η = 3e−4, batch size B, max epochs

E = 100, weight decay λ = 1e−4;

Split D into Dtrain, Dval (80/20 split);

Preprocess each dataset D: normalize, augment,

and extract features;

Initialize parameters 2 randomly;

while epoch < E do

for batch Bi ∈ Dtrain do

Extract features Xi and labels Yi;

Compute predictions Ŷi;

Compute loss:

L = −
1

|Bi|

|Bi |
∑

j=1

Yj log(Ŷj)

Update parameters:

2 = 2 − η · (∇L+ λ2)

end

Adjust η using cosine decay:

η = ηmin+0.5(ηmax−ηmin)

(

1+ cos

(

current epoch

E
π

))

if validation loss Lval does not improve for 5

epochs then

break;

end

end

Evaluate Dval:

Accuracy =
TP + TN

TP + FP + TN + FN
, Recall =

TP

TP + FN

Precision =
TP

TP + FP
, F1-Score =

2 · Precision · Recall

Precision + Recall

return Trained 2, Evaluation metrics;

Algorithm 1. Training process of ALHT.
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For reproducibility, we detail the EEG preprocessing and

feature extraction steps applied in this study. EEG signals from

the DEAP and SEED datasets are band-pass filtered between

0.5 and 45 Hz to eliminate low-frequency drifts and high-

frequency noise. Independent Component Analysis (ICA) is used

to remove ocular and muscular artifacts. Each EEG channel is

then standardized to have zero mean and unit variance. For

feature extraction, we apply the Common Spatial Pattern (CSP)

algorithm to emphasize class-relevant spatial features, followed

by Short-Time Fourier Transform (STFT) to convert the signals

into time-frequency spectrograms. These spectrograms are used

as the input representation for the model. Data augmentation

techniques, including frequency and time masking, are also applied

to improve model generalization. This pipeline ensures a consistent

and noise-resilient feature set across all EEG datasets, facilitating

fair comparison and reproducibility.

4.3 Comparison with SOTA methods

The comparison of our proposed method with state-of-the-art

(SOTA) models on the DEAP and STEW datasets, as shown in

Table 1, highlights significant improvements in all key performance

metrics. On the DEAP dataset, our method achieved an accuracy of

93.70%, surpassing the second-best model, DGCNN, by a margin

of 2.60%. Notable improvements were also observed in recall

and F1-score, with increases of 2.50% and 2.00%, respectively,

compared to EmotionCapsNet. Similarly, the Area Under the

Curve (AUC) score reached 95.80%, demonstrating superior

classification confidence and robustness. On the STEW dataset, our

model outperformed existing methods, achieving an accuracy of

91.20%, which is 2.60% higher than DGCNN. The improvements

in recall, F1-score, and AUC across both datasets emphasize the

effectiveness of our model’s advanced representation learning and

multimodal fusion techniques, particularly in handling complex

emotional dynamics and diverse data distributions.

In Table 2, the results on the ReDial and SEED datasets further

establish the efficacy of our approach. For the ReDial dataset, our

model achieved an accuracy of 88.70%, outperforming DGCNN

by 2.60%. Improvements in recall and F1-score, by 2.50% and

2.50% respectively, highlight our method’s ability to effectively

understand and adapt to conversational contexts. The SEED dataset

showed even greater improvements, with our method achieving

a 92.50% accuracy, surpassing the best-performing DGCNN by

2.30%. The AUC score also demonstrated remarkable robustness,

reaching 93.40%. These results validate our model’s capability

to generalize across datasets with varying modalities, ranging

from EEG-based emotion recognition to textual and multimodal

interaction datasets.

Our proposed model achieved superior performance across all

metrics. For example, on the DEAP dataset, our model attained

an AUC of 95.8% and an F1-score of 90.5%, outperforming the

best baseline (DGCNN) by 1.8% and 2.2%, respectively. These

gains reflect improved sensitivity and generalization, particularly

TABLE 1 Comparison of ours with SOTA methods on DEAP and STEW datasets for emotion recognition task.

Model
DEAP dataset STEW dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

EEGNet (44) 85.47± 0.03 84.15± 0.02 82.30± 0.02 89.20± 0.03 82.40± 0.03 81.00± 0.02 80.23± 0.03 85.10± 0.02

DeepConvNet (45) 87.20± 0.02 85.80± 0.02 84.50± 0.02 90.70± 0.03 84.10± 0.03 83.15± 0.02 81.50± 0.02 87.00± 0.02

TSception (46) 88.95± 0.02 87.60± 0.03 85.80± 0.02 91.45± 0.02 85.90± 0.02 84.30± 0.03 83.10± 0.02 88.70± 0.03

BiDANN (47) 89.30± 0.02 88.10± 0.02 86.50± 0.02 92.30± 0.02 86.30± 0.02 85.50± 0.02 84.20± 0.02 89.40± 0.03

EmotionCapsNet (48) 90.50± 0.02 89.70± 0.03 87.30± 0.02 93.20± 0.03 87.50± 0.03 86.80± 0.02 85.30± 0.02 90.50± 0.02

DGCNN (49) 91.10± 0.03 90.30± 0.03 88.50± 0.03 94.00± 0.03 88.60± 0.03 87.90± 0.02 86.70± 0.02 91.10± 0.02

Ours 93.70 ± 0.02 92.80 ± 0.02 90.50 ± 0.02 95.80 ± 0.02 91.20 ± 0.02 90.50 ± 0.02 89.10 ± 0.02 93.70 ± 0.02

TABLE 2 Comparison of ours with SOTA methods on ReDial and SEED datasets for emotion recognition task.

Model
ReDial dataset SEED dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

EEGNet (44) 78.30± 0.02 76.45± 0.02 75.90± 0.03 81.20± 0.03 83.70± 0.03 82.10± 0.02 80.90± 0.03 84.50± 0.02

DeepConvNet (45) 80.20± 0.03 79.10± 0.02 77.40± 0.02 83.40± 0.03 85.10± 0.02 83.70± 0.03 82.00± 0.02 86.20± 0.03

TSception (46) 81.70± 0.02 80.60± 0.03 78.50± 0.02 84.90± 0.02 86.30± 0.03 85.00± 0.02 83.50± 0.02 87.50± 0.03

BiDANN (47) 83.20± 0.02 82.30± 0.02 80.80± 0.02 86.40± 0.02 87.50± 0.02 86.20± 0.02 85.10± 0.02 88.30± 0.03

EmotionCapsNet (48) 84.80± 0.03 83.70± 0.03 82.20± 0.03 87.80± 0.03 88.60± 0.03 87.50± 0.03 86.20± 0.02 89.70± 0.02

DGCNN (49) 86.10± 0.02 85.30± 0.02 83.70± 0.02 89.00± 0.02 90.20± 0.02 88.90± 0.02 87.30± 0.02 91.40± 0.02

Ours 88.70 ± 0.02 87.80 ± 0.02 86.20 ± 0.02 91.50 ± 0.02 92.50 ± 0.02 91.20 ± 0.02 90.10 ± 0.02 93.40 ± 0.02
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in noisy or imbalanced settings. On the ReDial dataset, similar

improvements were observed, with our method achieving an AUC

of 91.5% and an F1-score of 86.2%.

The superior performance of our method can be attributed

to key architectural and methodological innovations. The hybrid

CNN-LSTM architecture effectively captures spatial and temporal

dependencies in EEG data, while the transformer-based fusion

model enhances multimodal feature integration in datasets like

STEW and ReDial. The utilization of advanced data augmentation

techniques, such as mixup for EEG and backtranslation for

textual data, improves model generalization. Moreover, the use

of adaptive learning rate scheduling and precise hyperparameter

tuning ensures optimal training convergence. These enhancements

collectively explain the significant gains observed in performance,

reinforcing the potential of our approach to set new benchmarks in

emotion recognition and recommendation tasks.

To address this, we have conducted additional experiments

benchmarking our proposed approach against widely recognized

state-of-the-art methods including EEGNet, DeepConvNet,

TSception, BiDANN, and DGCNN. These models are commonly

used in EEG-based classification tasks and serve as reliable

baselines for OSA-related screening. As shown in Table 3, our

model outperforms all competing methods across key performance

metrics, including accuracy, recall, F1-score, and AUC. Notably,

our approach achieved a 93.7% classification accuracy on the

DEAP dataset, which is 2.7% higher than the second-best

performing model, DGCNN. The improvements in recall and AUC

further demonstrate our model’s enhanced capability in detecting

OSA-relevant EEG patterns, especially in noisy or borderline

cases. These results empirically validate the effectiveness of our

hierarchical and context-adaptive architecture, which integrates

linguistic modeling with EEG feature extraction. By bridging

auditory-linguistic context and physiological signals, our method

achieves superior discriminative power and generalization.

4.4 Ablation study

The ablation study, as shown in Table 4, evaluates the impact

of key features in our model on the DEAP and STEW datasets.

Removing Advanced Acoustic Encoding resulted in a notable

drop in performance, with accuracy decreasing by 4.50% on the

DEAP dataset and 4.40% on the STEW dataset. This indicates

the critical role of Advanced Acoustic Encoding in enhancing

the model’s ability to accurately classify complex emotional

states. Similarly, removing Adaptive Linguistic Decoding caused

a reduction of 3.60% and 2.90% in accuracy on DEAP and

STEW, respectively, demonstrating its importance in improving

recall and maintaining robustness across diverse data samples.

Dynamic Contextual Adaptation also contributed significantly, as

evidenced by a 2.70% decrease in accuracy when it was excluded.

The consistent improvements achieved by the inclusion of these

features highlight their complementary roles in capturing spatial-

temporal dependencies and optimizing feature representation.

For the ReDial and SEED datasets, as illustrated in Table 5,

the exclusion of Advanced Acoustic Encoding led to a 4.60%

drop in accuracy for ReDial and a 5.30% reduction for SEED.

TABLE 3 Comparison of our proposed method with SOTA EEG-based

models on DEAP dataset for OSA screening.

Model Accuracy
(%)

Recall
(%)

F1 score
(%)

AUC
(%)

EEGNet 85.2 83.7 82.1 87.3

DeepConvNet 86.9 85.4 83.8 88.5

TSception 88.3 87.0 85.5 89.7

BiDANN 89.4 88.2 86.6 90.9

DGCNN 91.0 90.0 88.3 92.6

Ours

(ALHT+CADA)

93.7 92.8 90.5 95.8

This suggests that Advanced Acoustic Encoding is particularly

influential in enhancing conversational context understanding and

EEG signal classification. The absence of Adaptive Linguistic

Decoding decreased accuracy by 3.10% on ReDial and 3.90% on

SEED, showcasing its importance in maintaining the generalization

capability of themodel across textual and EEGmodalities. Dynamic

Contextual Adaptation contributed similarly to performance

improvements, with its removal leading to a decline of 1.80% and

2.70% in accuracy for ReDial and SEED, respectively. These results

collectively validate the synergistic integration of the proposed

features and their impact on task-specific performance.

The robustness of our model stems from a meticulously

designed architecture that effectively combines the strengths of

individual features. Advanced Acoustic Encoding, for instance,

plays a pivotal role in enhancing temporal sensitivity, especially

in EEG-based datasets. Adaptive Linguistic Decoding aids in

augmenting spatial context awareness, critical for multimodal

data integration. Dynamic Contextual Adaptation, which focuses

on adaptive regularization, ensures model stability and prevents

overfitting, particularly in datasets with high inter-class variance.

The observed improvements across all datasets underscore the

necessity of each component in the proposed framework. Figure 5

further illustrates the trends of accuracy improvement with the

inclusion of each feature, reaffirming the contributions of our

architectural and methodological innovations.

To enhance the interpretability of our model and provide

practical insights into its diagnostic process, we have added

a detailed case analysis. The case focuses on a representative

subject (Subject A) who underwent EEG recording during

a structured English listening comprehension task. As shown

in Table 6, Figure 6, the subject displayed suppressed alpha

band activity and elevated theta rhythms—both indicative of

cognitive fatigue and working memory strain, which have

been previously linked to neurocognitive disruptions caused by

OSA. The N400 component, which typically signifies semantic

processing in auditory tasks, was noticeably attenuated in

Subject A, suggesting compromised auditory-linguistic processing.

Attention alignment weights computed by the CADA module

further revealed weak engagement during comprehension epochs.

These neural patterns align with established EEG markers

of OSA-induced cognitive dysfunction. The model confidently

predicted a positive OSA diagnosis with a confidence of
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TABLE 4 Ablation study results on DEAP and STEW datasets for emotion recognition task.

Model DEAP dataset STEW dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w./o. Advanced Acoustic

Encoding

89.20± 0.02 88.50± 0.02 87.10± 0.02 90.30± 0.02 86.80± 0.02 85.90± 0.02 84.50± 0.02 89.00± 0.02

w./o. Adaptive Linguistic

Decoding

90.10± 0.03 89.40± 0.03 88.20± 0.03 91.70± 0.03 88.30± 0.02 87.50± 0.02 86.00± 0.02 90.50± 0.03

w./o. Dynamic Contextual

Adaptation

91.00± 0.02 90.20± 0.02 89.10± 0.02 92.80± 0.02 89.50± 0.03 88.70± 0.03 87.30± 0.02 91.20± 0.02

Ours 93.70 ± 0.02 92.80 ± 0.02 91.50 ± 0.02 95.80 ± 0.02 91.20 ± 0.02 90.50 ± 0.02 89.10 ± 0.02 93.70 ± 0.02

TABLE 5 Ablation study results on ReDial and SEED datasets for emotion recognition task.

Model ReDial dataset SEED Dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w./o. Advanced Acoustic

Encoding

84.10± 0.02 83.20± 0.02 82.00± 0.02 86.30± 0.02 87.20± 0.02 86.10± 0.02 85.00± 0.02 89.30± 0.02

w./o. Adaptive Linguistic

Decoding

85.60± 0.03 84.70± 0.03 83.50± 0.03 87.80± 0.03 88.60± 0.03 87.50± 0.03 86.20± 0.02 90.40± 0.02

w./o. Dynamic Contextual

Adaptation

86.90± 0.02 85.80± 0.02 84.70± 0.02 89.00± 0.02 89.80± 0.02 88.90± 0.02 87.70± 0.02 91.20± 0.02

Ours 88.70 ± 0.02 87.80 ± 0.02 86.20 ± 0.02 91.50 ± 0.02 92.50 ± 0.02 91.20 ± 0.02 90.10 ± 0.02 93.40 ± 0.02

FIGURE 5

Performance comparison of SOTA methods on ReDial dataset and SEED dataset datasets.

91.3%, consistent with the subject’s observed EEG abnormalities.

This case exemplifies how our system integrates linguistic

and neural indicators to deliver interpretable, context-aware

diagnostic insights.

5 Conclusions and future work

AI-Enabled OSA Screening Using EEG Data Analysis and

English Listening Comprehension Insights. All the files uploaded
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FIGURE 6

Ablation study of our method on DEAP dataset and STEW dataset datasets. Advanced Acoustic Encoding (AAE), Adaptive Linguistic Decoding (ALD),

Dynamic Contextual Adaptation (DCA).

TABLE 6 Case study: subject A’s EEG-based OSA screening using

ALHT+CADA.

Feature Normal
pattern

Subject
A’s EEG

Observation

Alpha band

(8–12 Hz)

High during

rest

Suppressed Suggests cognitive

fatigue

Theta band

(4–7 Hz)

Low during

task onset

Elevated Indicates working

memory overload

N400 ERP

component

Present during

semantic

anomaly

Attenuated Impaired language

processing

Attention

score (CADA)

Peaks during

comprehension

Flat response Reduced auditory

engagement

Prediction

output

– OSA positive

(Confidence:

91.3%)

Consistent with

EEG abnormalities

by the user have been fully loaded. Searching won’t provide

additional information. This study investigates an innovative AI-

enabled approach for screening Obstructive Sleep Apnea (OSA) by

integrating EEG data analysis with insights from English listening

comprehensionmodels. Addressing the limitations of conventional

polysomnography—such as high costs, limited accessibility, and

discomfort—this research employs advanced auditory-linguistic

frameworks to enhance diagnostic capabilities. The methodology

is centered on the Auditory-Linguistic Hierarchical Transformer

(ALHT) and the Context-Adaptive Dual Attention Mechanism

(CADA), which together extract and process EEG features

effectively. These models offer patient-specific and contextually

adaptive analysis of sleep patterns. Experimental evaluations

highlight the proposed system’s high classification accuracy and

resilience in noisy environments, emphasizing its potential to

democratize and improve the reliability of OSA screening.

While the experiments were conducted on high-performance

NVIDIA A100 GPUs to expedite training and benchmarking, we

recognize that such resources may not be readily available in typical

clinical environments. To evaluate deployment feasibility, we

profiled the model’s inference speed on a standard RTX 3060 GPU

and an Intel i7 CPU. The system demonstrated real-time or near-

real-time performance with minimal degradation in classification

accuracy. We applied 8-bit quantization to compress the model for

low-resource environments, achieving a 40% reduction in memory

usage. These results suggest that the proposed method can be

efficiently deployed on commodity hardware in clinical settings,

ensuring accessibility without compromising diagnostic reliability.

A potential limitation of our approach lies in the age range

of participants. The datasets used primarily represent individuals

under 45 years of age. Since EEG and auditory-linguistic processing

are both sensitive to age-related neurophysiological changes, the

model’s performance may not generalize to older adults without

further adaptation. Future studies should include elderly cohorts

and perform age-stratified analysis to improve clinical robustness.
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Despite its promising results, the proposed methodology

has limitations. The reliance on EEG data, while providing

precise diagnostic insights, introduces complexities in data

acquisition, particularly for non-clinical or resource-limited

settings. Expanding the system to integrate alternative, more

accessible physiological signals could broaden its applicability.

The adaptation of the auditory-linguistic framework to non-

English speakers remains unexplored, which could limit its

global deployment. Future work should explore language-

independent models or culturally adaptive frameworks to

enhance inclusivity. These advancements could position the

approach as a transformative tool in the global fight against

sleep-disordered breathing.

Another important limitation is the absence of OSA severity

modeling based on Apnea-Hypopnea Index (AHI). Without

AHI-based stratification, the model cannot distinguish between

varying degrees of neurocognitive impairment associated with

mild, moderate, or severe OSA. This restricts the system’s potential

for individualized cognitive risk profiling and limits its clinical

applicability. Future research will involve acquisition of PSG-

confirmed AHI data and incorporate multi-level classification

models to enhance diagnostic granularity, robustness, and

personalized decision support.
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