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Background: Septic shock poses a high mortality risk in critically ill patients,

necessitating precise hemodynamic monitoring. While the age-adjusted shock

index (ASI) reflects hemodynamic stability, the prognostic value of its dynamic

trajectory remains unexplored. This study evaluates whether dynamic 24-h ASI

trajectories predict 30-day mortality in septic shock patients.

Methods: This retrospective cohort study extracted data from the MIMIC-IV

(derivation cohort, n = 2,559) and eICU-CRD (validation cohort, n = 2,177)

databases. The latent category trajectory model (LCTM) classified ASI changes

within 24h of intensive care unit (ICU) admission. The association between ASI

trajectory categories and 30-day mortality was evaluated using Kaplan-Meier

(KM) method and Cox proportional-hazard models, reported as hazard ratios

(HRs) and 95% confidence intervals (CIs).

Result: Three distinct ASI trajectories were explored: persistently low (Classes 1),

initial high ASI sharply decreasing followed by instability (Classes 2), and steady

ASI increase (Classes 3). KM curve revealed significantly higher 30-day mortality

in Class 2 (32.1%) and Class 3 (38.7%) than Class 1 (12.3%) (P < 0.001). After fully

adjusting for covariates, Class 2 (HR = 1.68, 95% CI: 1.25–2.25, P = 0.001) and

Class 3 (HR= 1.87, 95% CI: 1.26–2.77, P= 0.002) showed elevatedmortality risks

in the derivation cohort. Validation cohort results were consistent (Class 2: HR =

1.92, 95% CI: 1.38–2.68, P = 0.001) and (Class 3: HR= 1.66, 95% CI: 1.09–2.54, P

= 0.019). Triple-robust analyses and subgroup analyses confirmed the reliability

of the results.

Conclusion: Dynamic 24-h ASI trajectories independently predict 30-day

mortality in patients with septic shock, with unstable or rising patterns signaling

high-risk subgroups. This underscores the clinical utility of real-time ASI

monitoring for early risk stratification and tailored intervention.
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septic shock, age-adjusted shock index, latent category trajectory model, critical care
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Introduction

Sepsis and septic shock have been declared a global health

priority by the World Health Organization due to their

escalating disease burden and multifactorial complexity in

pathophysiological, genetic, and clinical presentation (1). In 2017,

sepsis affected 48.9 million individuals worldwide, causing 11.0

million deaths, accounting for 20% of all global mortality (2).

Despite advances in critical care, septic shock remains lethal,

with in-hospital mortality rate exceeding 38% (3, 4). Delayed

diagnosis and inadequate early interventions are key contributors

to poor prognosis, underscoring the urgent need for dynamic risk

stratification tools (1, 5).

Hemodynamic monitoring is essential to septic shock

management. While the Surviving Sepsis Campaign (SSC)

guidelines emphasize normalizing traditional markers, such as

heart rate, blood pressure (BP), central venous pressure, and lactic

acid (6), these static parameters often fail to predict outcomes due

to individual variability in age, comorbidity, and physiological

compensatory mechanism (7). For instance, normalization of BP

may not reflect resolved microcirculatory dysfunction, leaving

mortality unaddressed (8). This gap highlights the demand for

integrative predictors that capture physiological complexity.

The Shock Index (SI), calculated from heart rate and systolic

blood pressure (SBP), has emerged as a superior prognostic tool

over isolated vital signs in sepsis, heart failure, trauma, myocardial

infarction, and acute coronary syndrome (9–12). Gupta et al.

suggested that SI has advantages over traditional vital signs in

assessing higher levels of care and mortality in severe sepsis or

shock (7). A retrospective study revealed that the SI trajectories

within 24 h had a higher prognostic value than the baseline SI

in patients with sepsis (10). However, SI’s accuracy in elderly

populations is limited by age-related hemodynamic changes, such

as lower heart rate and higher BP (13). To address this, the

age-adjusted SI (ASI) was developed. ASI outperforms SI in

trauma cohorts, particularly for geriatric patients (11, 14, 15), as

it accounts for age-dependent physiological decline. Despite its

promise, existing ASI studies rely on static measurements, ignoring

dynamic fluctuations during critical illness (16, 17). Static models

Abbreviations: ASI, Age-adjusted shock index; LCTM, Latent category

trajectory model; ICU, Intensive care unit; KM, Kaplan-Meier; HRs, Hazard

ratios; CIs, Confidence intervals; SSC, Surviving sepsis campaign; BP, Blood

pressure; SI, Shock index; SBP, Systolic blood pressure; MIMIC-IV, Medical

information mart for intensive care IV; eICU-CRD, eICU collaborative

research database; SQL, Structured query language; BMI, Body mass index;

GCS, Glasgow coma scale; APS, Acute physiological score III; BUN, Blood

urea nitrogen; WBC, White blood cell; pH, Hydrogen ion concentration;

INR, International normalized ratio; PPT, Partial prothrombin time; IQR,

Inter-quartile range; AvePP, Average posterior probability; BIC, Bayesian

Information Standard; AIC, Akaike Information Standard; SABIC, Sample-

adjusted information criteria; SD, Sandard deviation; XGBoost, Extreme

gradient boosting; IPTW, Inverse probability of treatment weighting; PS,

Propensity score; sIPTW, Stabilized IPTW; MICU, Medical intensive care unit;

SICU, Surgical intensive care unit; CCU, Coronary care unit; VIFs, Variance

inflation factors.

suffer from “calibration drift”—declining accuracy over time due to

unaccounted longitudinal changes (18).

Dynamic prediction modes using longitudinal trajectories have

recently gained traction in critical care. Zhang et al. found that

the trajectory of urine output within 24-h had a vital predictive

value on acute kidney injury in septic patients (19). Another

study found that the trajectories of SI outperformed baseline

SI in prognostic prediction among septic patients (10). Yet, no

studies have explored ASI trajectories in septic shock—a population

where age and hemodynamic instability synergistically elevate risk.

This study bridges this gap by evaluating the prognostic utility

of 24-h ASI trajectories derived from high-frequency ICU data,

aiming to identify high-risk hemodynamic phenotypes for early

targeted intervention.

Methods

Data source

This multi-center retrospective cohort study utilized two large

critical care medical databases: Medical Information Mart for

Intensive Care IV (MIMIC-IV, derivation cohort) and eICU

Collaborative Research Database (eICU-CRD, validation cohort).

The most recent MIMIC-IV database (version 2.2) was released

in January 2023 and contained detailed medical information for

over 380,000 patients treated at Beth Israel Deaconess Medical

Center between 2008 and 2019 (20). The eICU-CRD database

(version 2.0), recently released in May 2018, collected a large

amount of high-quality clinical information from more than

200,000 critically ill patients admitted to 208 hospitals across

the United States in 2014 and 2015 (21). Because this study

was conducted based on two anonymous publicly available

databases, ethical approval and informed consent was waived by the

Massachusetts Institute of Technology and Beth Israel Deaconess

Medical Center. The author has completed the Collaborative

Institutional Training Initiative and passed the National Institutes

of Health examination (No.9983480), authorizing use the MIMIC-

IV and eICU-CRD database.

Participant selection

Structured query language (SQL) tool 11.2.7.0 was used to

extract data from the MIMIC-IV and eICU-CRD databases.

According to the sepsis-3 (22), septic shock was defined as the

need for vasopressor therapy to maintain mean arterial pressure of

65 mmHg or greater and to have serum lactate levels >2 mmol/l

persisting after fluid resuscitation. In this study, the International

Classification of Diseases codes 9 (78,552) and 10 (R6521) were

used to identify all cases diagnosed with septic shock.

The exclusion criteria were (1) patients who died within

24 h after ICU admission; (2) aged under 18 or over 89; (3)

missing continuous ASI records within 24 h; and (4) patients with

atrial fibrillation, ventricular arrhythmia, use of pacemaker. For

patients with multiple ICU admissions, only the first admission was

collected in the analysis.
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Exposure and outcome

ASI was calculated using the following equation: ASI = age

(years) × [heart rate (beat/min)/SBP (mmHg)]. Previous analyses

found that as the ASI increases, the prognosis of critically ill patients

becomes worse (23). To fit clinical realism and data completeness,

ASI was calculated as the maximum value within 3-h intervals,

accommodating variable monitoring frequencies while minimizing

selection bias. The survival outcome of this study was the 30-day

mortality after ICU admission.

Covariates

The covariables included demographics, treatment approaches,

vital signs, laboratory tests, clinical scores, and comorbidities

within 24 h after ICU admission. Demographic features included

age, sex, race, body mass index (BMI), and ICU admission

units. Vital signs included heart rate, SBP, and urine output.

Clinical scores included the Glasgow Coma Scale (GCS) and

Acute Physiological Score (APS) III score. Treatment approaches

included the use of ventilator and vasopressor. Laboratory test

features included glucose, hemoglobin, sodium, lactate, blood

urea nitrogen (BUN), platelets, creatinine, white blood cell

(WBC), calcium, hydrogen ion concentration (pH), potassium,

international normalized ratio (INR), and partial prothrombin

time (PPT). Comorbidities included myocardial infarction,

hypertension, diabetes, liver diseases, chronic pulmonary disease,

and malignant cancer. Because the eICU-CRD database did not

provide information on comorbidities, data on comorbidity were

only extracted from the MIMIC-IV. We used the “mice” package

of R software to deal with missing values of covariables through

multiple imputations (24, 25). Supplementary Table 1 provides

comprehensive information on the extent of missing data and

outlier rates for each covariate prior to imputation. Notably, the

parameters were averaged if multiple measurements were taken

within 24 h of ICU admission. To reduce information bias, we

excluded variables with a missing ratio of over 20%.

Furthermore, database records will inevitably have outliers.

In our study, variable values beyond the upper quartile + 1.5

× inter-quartile range (IQR) or the lower quartile – 1.5 × IQR

were defined as outliers. We used the “plyr” package of R software

to deal with outliers of covariables, of which the rule was that

when the outlier was greater than the upper bound and lower

than the lower bound, it was assigned to the upper and lower

quartiles, respectively.

Latent class trajectory model

We applied the latent class trajectory model (LCTM) to

classify the 24-h ASI trajectories. LCTM is a robust approach for

analyzing longitudinal data, aiming to identify distinct individual

classes based on similar progression over time or age in the

determinant, thereby transforming heterogeneous populations

into more homogeneous pattern or class. Compared to studies

that assess exposure at a single time point, LCTM has three

advantages: (1) it enables in-depth phenotypic analyses of certain

“high-risk” subpopulations, enhancing our understanding of

etiological associations; (2) it provides a public health strategy

for the early identification of varying adverse trajectories that

can serve as intervention targets; and (3) it treats trajectories

as outcomes, thereby offering insight into inter-individual

differences (26).

A critical step of the LCTM is determining the optimal

number of latent classes, assessed through the following criteria:

(1) the average posterior probability (AvePP) should not be

<80%; (2) the model with the lowest Bayesian Information

Standard (BIC), Akaike Information Standard (AIC), and sample-

adjusted information criteria (SABIC) were selected; (3) themodel’s

goodness-of-fit is evaluated via the highest log-likelihood ratio and

entropy; (4) entropy value should not be lower than 0.9; (5) the

sample size of each category must constitute at least 1% of the total

sample; and (6) the simplicity and clinical interpretability of the

trajectory categories are also fully considered (18, 27).

Statistical analysis

Continuous variables were assessed for normality and

expressed as mean ± standard deviation (SD) or median and

interquartile range (IQR). Categorical variables were reported

as numbers and percentages (%). For comparing between-group

differences, the Wilcoxon rank-sum test was used for continuous

variables, while the chi-squared test or Fisher’s exact test was used

for categorical variables. Supplementary Table 2 shows the results

of the normality test for continuous variables.

The Kaplan-Meier (KM) method was used to plot the survival

curves for 30-day mortality, and the log-rank test was applied

to compare risk differences among trajectory classifications. We

constructed five Cox proportional-hazard models to analyze the

effect of trajectory changes on prognosis, reporting hazard ratios

(HRs) and 95% confidence intervals (CIs). Model 1 included only

the ASI trajectory classes. Model 2 was adjusted for age, sex, race,

BMI, and ICU admission units. Model 3 further adjusted for APSIII

and GCS in addition to the covariates in Model 2. Building upon

Model 3, Model 4 included additional adjustments for glucose,

hemoglobin, sodium, lactate, BUN, platelets, creatinine, WBC,

calcium, pH, potassium, PT, PPT, and urine output. Finally, Model

5 represented a fully adjusted model, incorporating the use of

ventilator and vasopressors, along with the adjustment for Charlson

comorbidity index in the derivation cohort.

Moreover, we employed a triple-robust estimation approach to

evaluate the independent correlation between ASI trajectories and

prognosis in patients with septic shock. Propensity scoring models

were established using multinomial logical regression and Extreme

Gradient Boosting (XGBoost). Initially, the inverse probability of

treatment weighting (IPTW) method estimated a propensity score

(PS) for each patient based on multiple confounders. Subsequently,

the PS was converted into weights to generate two IPTW cohorts,

resulting in a pseudo population whose covariate distribution

is independent of trajectory classes (19). However, while IPTW

effectively balances confounding factors between the treatment

and control groups, the resulting weighted virtual population

often exceeds the original sample size, increasing the risk of
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FIGURE 1

The flow chart of participant selection. MIMIC, Medical Information Mort for Intensive Care; eICU-CRD, eICU Collaborative Research Database; ICU,

intensive care unit; ASI, age-adjusted shock index.

false positives. To mitigate this, we also adopt stabilized IPTW

(sIPTW) to limit the virtual population size and reduce false

positive occurrences (28). IPTW is a widely-used statistical analysis

method for sensitivity analysis, especially addressing bias due to

confounding variables by calculating a weight for each subject that

reflects the inverse of the probability of receiving the treatment

actually administered (29). These weights were incorporated into

the analyses to minimize the effects of observed confounding.

This weighting strategy creates a pseudo-population wherein

treatment probability is independent of measured covariates,

facilitating baseline equalization between groups and augmenting

the reliability of causal inference akin to those achieved in

randomized controlled trials.

Furthermore, we constructed a propensity scoring model using

XGBoost, an integrated machine learning algorithm based on

decision tree, which excels in handling linear, non-linear, and

interactive relationships between variables and covariates (30).

Similarly, the KM curves were plotted in the propensity scoring

models, and a log-rank test was performed. Multivariate Cox

regression analyses, adjusted for all covariates, were performed

on the weighted cohorts, thus achieving a comprehensive triple-

robust analysis.

Subgroup analyses were performed based on age (<65 and≥65

years), gender (male and female), care unit (MICU/SICU, CCU, and

others), and the use of ventilator and vasopressor (both no and yes).

Potential interactions were assessed by incorporating cross-product

terms of trajectory categories with the aforementioned covariates

within the model. A two-tailed P-value of <0.05 was considered

statistically significant. All the statistical analyses were performed

using the R software (4.2.2).

Results

LCTM analysis

A total of 3,532 and 3,761 patients with septic shock

were extracted from the MIMIC-IV and eICU-CRD databases,

respectively. Following the application of exclusion criteria, 973

patients and 1,584 cases were excluded, respectively (Figure 1).

Ultimately, 2,559 patients were included in the derivation cohorts,

while 2,177 patients were included in the validation cohort.

Table 1 shows the results of ASI trajectory classification for both

cohorts. In the derivation cohort, a trend of gradual decline in the

AIC, BIC, and SABIC was showed as the categories progressed

from Class 1 to Class 4, accompanied by an increase in the log-

likelihood. However, the entropies showed a different trend: the

entropy for the Class 3 model was higher than those of Class 2

and Class 4, yet lower than that of Class 1. The entropy values

for trajectory Class 1 through 4 were 1, 0.958, 0.961, and 0.946,

respectively. The sample proportion in Class 3 not only met the

predefined minimum standard (1.798%) but also the AIC, BIC,

SABIC, and log-likelihood values that were only slightly inferior

to those of Class 4 models. Consequently, Class 3 models were

determined to offer the best balance between parsimoniousness and

clinical interpretability. Similar findings were corroborated in the

validation cohort, leading to the conclusion that Class 3 represented

the optimal classification.

Figure 2 illustrates the trajectories of the 24-h ASI across the

three classes. The ASI trajectories were consistent between the

derivation and validation cohorts. Class 1 comprised 94.76% and

91.82% of the total populations in the derivation and validation
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cohorts, respectively, with ASI values remaining low (<70). Class

2 accounted for 3.44% and 4.90%, with ASI values initially high

(>125), sharply decreasing to below 100, then either stabilizing

or slowly increasing. Class 3 represented 1.80% and 3.28% of the

cohorts, with ASI values around 95, steadily increasing to about

120.

Furthermore, the mean posterior probabilities for Class 1, Class

2, and Class 3 were 98.86%, 90.66%, and 89.21% in the derivation

cohort and 97.77%, 86.30%, and 85.30% in the validation cohort,

respectively (Table 2). All values exceeded 85%, confirming the

reliability of the trajectory analysis results.

Baseline characteristics

The baseline characteristics of the three classes are presented

in Tables 3, 4. In the derivation cohort, the median age of

the patients was 68.65 years, with a predominance of males

(54.9%) and white (68.5%), and a median BMI of 27.3 kg/m2.

Most patients faced comorbidities including myocardial infarction

(85.3%), congestive heart failure (66.2%), cerebrovascular disease

(90.9%), chronic pulmonary disease (70.1%), diabetes (66.5%),

renal disease (73.0%), and liver disease (75.2%). Mechanical

ventilation (88.7%) and vasopressors (80.45%) were common

among this population. Compared to Class 2 and 3, patients in Class

1 were younger and exhibited lower rates of mechanical ventilation

and vasopressor usage, alongside more normalized GCS score and

APSIII score were.

In the validation cohort, the median age and BMI of septic

shock patients were 67 years and 26.9 kg/m2, respectively, with

a majority being males (51.8%) and white (84%). The rates of

vasopressors andmechanical ventilation use were 61.5% and 36.4%,

respectively. Compared to patients in Class 2 and 3, patients in

Class 1 were younger, had higher GCS scores, lower APSIII scores,

and reduced reliance on vasopressors and ventilators.

KM survival analyses

Figure 3 shows significant difference in 30-day mortality across

the three ASI trajectory classes (P for log-rank test<0.001). Patients

in Class 1 experienced superior survival outcome compared to

those in Class 2 and 3 in both the derivation and validation cohorts.

Cox proportional-hazard regression
models

The results of multicollinearity diagnoses are shown in

Supplementary Table 3. None of the variance inflation factors

(VIFs) exceeded 5, indicating no multicollinearity between the

variables. Cox proportional-hazard models were then utilized

to explore the relationship between the trajectory classes and

prognosis after adjusting for various confounders, with findings

reported in Table 5. In the derivation cohort, all five Cox regression

models indicated that Class 3 had the highest risk of 30-day

mortality, followed by Class 2, while Class 1 exhibited the
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FIGURE 2

The 24h ASI trajectories in patients with septic shock. (A) The derivation cohort; (B) The validation cohort. ASI, age-adjusted shock index.

TABLE 2 Mean of posterior probabilities in each class.

Cohort Class Probability
1

Probability
2

Probability
3

Derivation Class 1 0.989 0.007 0.005

Class 2 0.092 0.907 0.002

Class 3 0.108 0.001 0.892

Validation Class 1 0.978 0.014 0.009

Class 2 0.130 0.863 0.007

Class 3 0.141 0.006 0.853

lowest risk (P < 0.05). In Model 5, which included the most

comprehensive set of covariates, Class 2 and Class 3 had 68% and

87% increased risks of 30-day mortality relative to Class 1, with

HRs of 1.68 (95% CI: 1.25–2.25, P = 0.001) and 1.87 (95% CI:

1.26–2.77, P = 0.002), respectively. Similar results were observed

in the validation cohort; however, Class 2 exhibited the highest

mortality risk, followed by Class 3. In this fully adjusted model

(Model 5), Class 2 and Class 3 were significantly associated with

increased mortality risk compared to Class 1, with HRs of 1.92

(95% CI: 1.38–2.68, P = 0.001) and 1.66 (95% CI: 1.09–2.54, P =

0.019), respectively.

Triple-robust analysis/sensitivity analysis

The baseline characteristics for the IPTW and sIPTW (from

multinomial logistic regression) and the IPTW dataset (from the

XGBoost algorithm) are presented in Supplementary Tables 4, 5.

In the derivation cohort, a good balance between covariates

across classes was achieved following IPTW and sIPTW, with

XGBoost outperforming multinomial logistic regression. After

IPTW using multinomial logistic regression, however, the

distribution of age, sex, vasopressor, and sodium remained

unbalanced (P < 0.05). Following sIPTW by multinomial logistic

regression, the distribution for age, weight, GCS, APSIII, urine

output, BUN, calcium, chlorine, bicarbonate, hematocrit, sodium,

INR, and PPT also remained unbalanced (P < 0.05). In contrast,

after IPTW based on the XGBoost algorithm, only urine output,

APSIII, and age were notably unbalanced (P < 0.05).

Similarly, in the validation cohort, covariates across classes

were well balanced after IPTW and sIPTW, with XGBoost again

demonstrated superior performance compared to multinomial

logistic regression. Following IPTW using multinomial logistic

regression, distribution for age, sex, urine output, and platelets

remained unbalanced (P < 0.05). After sIPTW, the distribution

for age, sex, weight, GCS, APSIII, vasopressor, machine ventilation,

glucose, bicarbonate, hematocrit, hemoglobin, WBC, and INR

were unbalanced (P < 0.05). In contrast, following IPTW based

on the XGBoost algorithm, only the distribution for sex and

age remained unbalanced (P < 0.05). Supplementary Figure 1

illustrates significant differences in 30-day mortality among the

three ASI trajectory classes, as determined by triple robust

estimations in both the derivation and validation cohorts (P for

log-rank test <0.001).

The findings from the triple-robust analysis are detailed in

Table 6. The results from IPTW utilizing both XGBoost and

multinomial logistic regression aligned with those observed in both

the derivation and validation cohorts. According to the results from

the fully adjusted multivariate Cox regression model, the risk of 30-

day mortality remained elevated in Class 2 and 3 compared to Class

1 (P < 0.05). These consistent findings across both the original

and robust datasets underpin the reliability of this study, indicating

similar hazard trends.

Subgroup analyses

Results from subgroup and interaction analyses are shown

in Table 7. A significant correlation was noted between
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TABLE 3 Baseline characteristics of three classes in the derivation cohort.

Characteristics Overall Class 1 Class 2 Class 3 P-value

N (%) 2,559 (100.0) 2,425 (94.8) 88 (3.4) 46 (1.8)

Gender (n, %) 0.381

Male 1,406 (54.9) 1,339 (55.2) 42 (47.7) 25 (54.3)

Female 1,153 (45.1) 1,086 (44.8) 46 (52.3) 21 (45.7)

Age (years) 68.7 [57.8, 80.4] 68.0 [57.4, 79.7] 79.7 [71.8, 87.6] 84.1 [71.5, 86.8] < 0.001

Ethnicity (n, %) 0.980

White 1,754 (68.5) 1,663 (68.6) 61 (69.3) 30 (65.2)

Black 356 (13.9) 336 (13.9) 13 (14.8) 7 (15.2)

Other 449 (17.5) 426 (17.6) 14 (15.9) 9 (19.6)

BMI (kg/m2) 27.3 [23.2, 32.5] 27.4 [23.3, 32.6] 25.8 [21.6, 29.7] 28.9 [24.8, 32.8] 0.007

Myocardial infarct (n, %) 375 (14.7) 354 (14.6) 14 (15.9) 7 (15.2) 0.938

Congestive heart failure (n, %) 864 (33.8) 816 (33.6) 30 (34.1) 18 (39.1) 0.737

Cerebrovascular disease (n, %) 233 (9.1) 219 (9.0) 5 (5.7) 9 (19.6) 0.025

Chronic pulmonary disease (n, %) 764 (29.9) 726 (29.9) 23 (26.1) 15 (32.6) 0.685

Diabetes (n, %) 858 (33.5) 812 (33.5) 29 (33.0) 17 (37.0) 0.879

Renal disease (n, %) 692 (27.0) 660 (27.2) 18 (20.5) 14 (30.4) 0.326

Liver disease (n, %) 634 (24.8) 602 (24.8) 23 (26.1) 9 (19.6) 0.684

Charlson comorbidity index 6.0 [4.0, 8.0] 6.0 [4.0, 8.0] 6.0 [5.0, 8.0] 6.0 [5.0, 8.0] 0.004

Unit type (n, %)

MICU/SICU 2,193 (85.7) 2,081 (85.8) 73 (83.0) 39 (84.8) 0.923

CCU 139 (5.4) 131 (5.4) 6 (6.8) 2 (4.3)

Other 227 (8.9) 213 (8.8) 9 (10.2) 5 (10.9)

GCS 15.00 [13.00, 15.00] 15.0 [13.0, 15.0] 15.0 [13.0, 15.0] 14.00 [11.3, 15.0] 0.022

APSIII 60.00 [47.00, 78.00] 59.0 [46.0, 76.0] 73.0 [57.5, 97.0] 84.00 [64.3, 101.8] <0.001

Vasopressor (n, %) 2,057 (80.4) 1,932 (79.7) 80 (90.9) 45 (97.8) <0.001

Ventilation (n, %) 2,270 (88.7) 2,145 (88.5) 82 (93.2) 43 (93.5) 0.228

Urine output (ml) 1,220.0 [623.7, 2,100.0] 1,230.0 [649.0, 2,125.0] 857.5 [292.5, 1,682.5] 750.0 [248.0, 1,276.0] <0.001

BUN (mg/dL) 29.5 [19.0, 48.0] 29.0 [18.5, 48.0] 32.55 [21.9, 48.0] 38.0 [24.3, 52.4] 0.071

Calcium (mmol/l) 7.80 [7.35, 8.30] 7.85 [7.40, 8.30] 7.54 [7.24, 7.90] 7.85 [7.36, 8.39] 0.001

Chloride (mEq/l) 105.0 [100.5, 109.5] 105.0 [100.5, 109.5] 106.0 [102.4, 110.1] 105.5 [102.3, 109.5] 0.209

Creatinine (g/dl) 1.4 [1.0, 2.4] 1.4 [0.9, 2.4] 1.5 [1.0, 2.30] 2.2 [1.2, 3.2] 0.045

Glucose (mg/dl) 131.5 [107.0, 170.0] 131.0 [107.0, 169.5] 139.0 [105.6, 178.8] 136.8 [112.0, 186.3] 0.378

Bicarbonate (mEq/l) 21.0 [18.0, 23.5] 21.0 [18.0, 24.0] 19.0 [16.5, 22.6] 18.5 [16.0, 22.4] < 0.001

Hematocrit (g/dl) 31.2 [27.7, 35.3] 31.2 [27.7, 35.3] 31.4 [28.1, 34.0] 33.1 [28.3, 37.9] 0.320

Hemoglobin (g/dl) 10.1 [8.9, 11.6] 10.1 [8.9, 11.6] 10.1 [9.0, 11.2] 10.4 [8.8, 12.2] 0.732

Platelets (109/l) 187.0 [121.5, 277.5] 185.5 [121.5, 275.5] 219.8 [145.1, 318.9] 183.3 [128.0, 338.4] 0.225

Potassium (mmol/l) 4.1 [3.8, 4.7] 4.1 [3.8, 4.7] 4.2 [3.8, 4.7] 4.3 [3.9, 4.8] 0.333

WBC (109/l) 13.4 [8.6, 18.8] 13.30 [8.5, 18.7] 14.27 [9.7, 21.8] 17.84 [10.4, 24.0] 0.028

Sodium (mmol/l) 138.0 [135.0, 141.0] 138.0 [135.0, 141.0] 137.3 [134.9, 141.0] 139.0 [136.0, 142.4] 0.231

INR 1.5 [1.3, 1.9] 1.5 [1.3, 1.9] 1.6 [1.3, 2.1] 1.65 [1.26, 2.49] 0.014

PTT (s) 36.4 [30.6, 46.2] 36.2 [30.5, 45.9] 40.4 [32.7, 49.9] 40.30 [33.72, 54.80] 0.004

LOS (day) 9.6 [5.5, 17.6] 9.7 [5.6, 17.8] 7.9 [2.9, 14.9] 7.3 [3.7, 11.9] 0.001

ICU duration (day) 3.8 [2.0, 8.1] 3.8 [2.0, 8.2] 2.9 [1.4, 7.2] 3.4 [1.5, 5.9] 0.017

BMI, body mass index; MICU, medical intensive care unit; SICU, surgical intensive care unit; CCU, coronary care unit; GCS, Glasgow Coma Score; APSIII, Acute Physiological Scores II; WBC,

white blood cells; BUN, blood urea nitrogen; INR, International Normalized Ratio; PTT, part prothrombin time; LOS, length of hospital stay.
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TABLE 4 Baseline characteristics of three classes in the validation cohort.

Characteristics Overall Class 1 Class 2 Class 3 P-value

N (%) 2,177 (100.0) 1,995 (91.6) 115 (5.3) 67 (3.1)

Gender (n, %) 0.007

Male 1,127 (51.8) 1,050 (52.6) 54 (47.0) 23 (34.3)

Female 1,050 (48.2) 945 (47.4) 61 (53.0) 44 (65.7)

Age (years) 67.0 [56.0, 77.0] 66.0 [55.0, 75.0] 79.0 [70.0, 84.0] 77.0 [67.5, 82.0] < 0.001

Ethnicity (n, %) 0.962

White 1,829 (84.0) 1,675 (84.0) 99 (86.1) 55 (82.1)

Black 193 (8.9) 177 (8.9) 9 (7.8) 7 (10.4)

Other 155 (7.1) 143 (7.2) 7 (6.1) 5 (7.5)

BMI (kg/m2) 26.9 [22.9, 32.7] 26.9 [22.9, 32.8] 26.9 [22.1, 33.8] 27.2 [22.6, 30.3] 0.516

Unit type (n, %)

MICU/SICU 1,806 (83.0) 1,661 (83.3) 93 (80.9) 52 (77.6) 0.501

CCU 253 (11.6) 227 (11.4) 14 (12.2) 12 (17.9)

Other 118 (5.4) 107 (5.4) 8 (7.0) 3 (4.5)

GCS 14.00 [10.0, 15.0] 14.00 [10.0, 15.0] 14.00 [9.0, 15.0] 13.00 [8.0, 15.0] 0.011

APSIII 63.00 [46.0, 84.0] 62.00 [45.0, 83.0] 78.00 [59.0, 103.5] 78.00 [55.5, 98.0] <0.001

Vasopressor (n, %) 1,339 (61.5) 1,197 (60.0) 88 (76.5) 54 (80.6) <0.001

Ventilation (n, %) 793 (36.4) 709 (35.5) 49 (42.6) 35 (52.2) 0.007

Urine output (ml) 180.0 [50.0, 400.0] 180.0 [50.0, 400.0] 175.0 [62.50, 357.5] 200.0 [50.0, 390.0] 0.996

BUN (mg/dL) 27.5 [16.0, 44.5] 27.0 [15.0, 44.5] 32.5 [25.8, 44.3] 31.5 [19.5, 50.8] 0.002

Calcium (mmol/l) 7.70 [7.20, 8.20] 7.75 [7.20, 8.20] 7.65 [7.20, 8.22] 7.30 [6.93, 8.00] 0.013

Chloride (mEq/l) 51.0 [15.0, 98.0] 50.0 [15.0, 97.8] 54.5 [15.5, 97.8] 63.0 [15.0, 112.3] 0.284

Creatinine (g/dl) 1.6 [1.0, 2.6] 1.6 [0.9, 2.5] 1.8 [1.3, 2.8] 1.9 [1.4, 2.9] 0.004

Glucose (mg/dl) 112.5 [78.0, 154.5] 112.0 [78.0, 153.0] 118.5 [80.3, 167.8] 135.5 [84.0, 174.3] 0.024

Bicarbonate (mEq/l) 20.0 [15.0, 24.0] 20.5 [15.5, 24.0] 17.0 [14.0, 22.3] 17.0 [11.3, 21.5] <0.001

Hematocrit (g/dl) 29.1 [24.5, 34.3] 29.1 [24.5, 34.2] 27.7 [23.8, 33.2] 32.2 [26.2, 36.2] 0.019

Hemoglobin (g/dl) 8.9 [7.0, 11.4] 8.90 [7.0, 11.4] 8.75 [6.8, 11.4] 9.60 [7.3, 11.9] 0.284

Platelets (109/l) 144.5 [72.0, 226.0] 144.0 [72.0, 226.0] 143.0 [58.8, 229.0] 150.5 [76.8, 215.3] 0.917

Potassium (mmol/l) 4.0 [3.6, 4.5] 4.0 [3.6, 4.5] 4.1 [3.7, 4.7] 4.0 [3.5, 4.7] 0.259

WBC (109/l) 13.70 [7.4, 19.7] 13.63 [7.4, 19.5] 17.45 [9.3, 22.9] 11.80 [5.4, 17.6] 0.005

Sodium (mmol/l) 137.0 [132.0, 141.5] 137.0 [132.0, 141.5] 137.0 [133.0, 142.0] 137.0 [129.8, 143.0] 0.709

INR 1.5 [1.3, 2.0] 1.5 [1.3, 2.0] 1.6 [1.3, 2.3] 1.60 [1.3, 2.2] 0.030

PTT (s) 37.0 [31.0, 44.9] 37.0 [31.0, 44.6] 37.0 [29.7, 47.2] 39.0 [27.2, 48.8] 0.776

LOS (day) 7.78 [4.5, 13.9] 7.86 [4.6, 13.9] 5.55 [1.5, 11.6] 5.82 [2.1, 12.7] <0.001

ICU duration (day) 3.6 [1.9, 7.0] 3.6 [1.9, 7.1] 2.9 [1.4, 5.8] 3.4 [1.8, 8.5] 0.121

BMI, body mass index; MICU, medical intensive care unit; SICU, surgical intensive care unit; CCU, coronary care unit; GCS, Glasgow Coma Score; APSIII, Acute Physiological Scores II; WBC,

white blood cells; BUN, blood urea nitrogen; INR, International Normalized Ratio; PTT, part prothrombin time; LOS, length of hospital stay.

ASI trajectories and the risk of 30-day mortality across all

subgroups. Moreover, no statistical significance was detected

in cross-product terms involving the ASI trajectories and

the stratified covariates, suggesting that the absence of

interaction effects.

Discussion

In this study, LCTM was used to classify the 24-h ASI

trajectories following ICU admission. A key finding of this study

was the significant association between ASI trajectories and the risk
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FIGURE 3

Kaplan–Meier survival curves according to the 24h ASI trajectories. (A) The derivation cohort; (B) The validation cohort. ASI, age-adjusted shock

index.

of 30-day mortality among patients with septic shock. These results

were corroborated by analyses conducted in two large critical care

databases, MIMIC-IV and eICU-CRD. Thus, dynamic monitoring

of ASI and early assessment of its trajectory may aid in identifying

high-risk patients with septic shock, guiding early interventions to

mitigate adverse outcomes.

Our application of LCTM to analyze dynamic changes

in ASI over 24 h led to the identification of three distinct

hemodynamic trajectory patterns. Statistically, the three-class

solution demonstrated optimal performance in terms of AIC

(1,265.3), BIC (1,289.7), and SABIC (1,274.1), outperforming

alternative classifications. Moreover, the AvePP for all classes

exceeding 85%, accompanied an entropy of 0.92, significantly

above the recommended threshold of 0.8, thereby ensuring

clear class separation and individual membership certainty.

These trajectory patterns and their prognostic implications were

rigorously validated in both the MIMIC-IV (derivation) and

eICU-CRD (validation) cohorts, reinforcing their generalizability.

Clinically, these trajectories reflect the pathophysiological

heterogeneity present in septic shock, categorizing patients

into three profiles: persistently low ASI (Class 1), sharp decline

followed by instability (Class 2), and steady ASI increase

(Class 3). These findings underscore the translational value

of integrating dynamic ASI monitoring into septic shock

management protocols.

This study contributes new insights relative to previous studies.

Our findings indicated that patients with an initial high ASI that

sharply decreased and then remained stable or slowly increased

(Class 2), alongside those exhibiting a steady growth of ASI (Class

3), were at an elevated risk of 30-day mortality compared to

those with a persistently low ASI (Class 1). The progression and

recovery from septic shock are inherently dynamic, characterized

by complex relationship between physiological parameters such

as BP and HR, and clinical outcomes. Notably, Class 2 and 3

maintained consistently elevated ASI levels, which might indicate

acute hypovolemia and circulatory failure, ultimately contributing

to increasing mortality risk (11).

In the derivation cohort, although the baseline ASI for

Class 3 was not the highest, it exhibited a continuous upward

trend, ultimately surpassing the other classes and leading to the

highest mortality risk. Persistent severe hypotension, delayed initial

fluid resuscitation, and prolonged tachycardia may underlie the

sustained increase in ASI and ensuring poor prognosis for Class

3 patients. The pathophysiology of septic shock encompasses a

cascade of intracellular events triggered by pathogens, affecting

immune, epithelial, endothelial cells, and the entire neuroendocrine

system (31, 32). The deranged and deregulated host responses

observed in Class 3 are more complex and severe than those in

other classes, characterized by sustained excessive inflammation,

immunosuppression, and an inability to restore normal pro-

and anti-inflammatory homeostasis, ultimately leading to a

markedly pathological state (32–36). Inflammatory responses can

impair tissues, while anti-inflammatory phenomena may result in

leukocyte reprogramming and changes in the immune system (32,

37). This multifaceted process can evolve rapidly, often outpacing

the effectiveness of therapeutic interventions. Moreover, organ

perfusion disorders extending beyond microcirculation may drive

multiple organ failures (38). Additionally, while vasoactive drugs

are preferred treatment for septic shock, it has been shown that

their use may induce immunosuppression, promote infection,

attenuate pro-inflammatory cytokine production, and heighten

anti-inflammatory cytokine levels (39, 40). Our study also found

that patients in Class 3 had higher rates of vasopressor use

compared to those in other classes. Therefore, regardless of high

baseline ASI levels in septic shock patients, timely and effective

interventions at reducing ASI and enhancing circulatory function

may lower mortality risks.

In contrast to the derivation cohort, our validation cohort

revealed that Class 2 posed the highest mortality risk. This

discrepancy may be closely related to the older age of patients

in this group. While patients in Class 3 had the oldest average

age in the derivation cohort, those in Class 2 were older in

the validation cohort. Age is recognized as a major risk factors

affecting the prognosis of critically ill patients, particularly in
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incidence of septic shock in the elderly (4). Age-related decline in

immune function, organ and tissue aging, and the accumulation of

comorbidities increase mortality risk among elderly patients (41,

42). According to the SSC guidelines, prompt fluid resuscitation

and antibiotic therapy are critical upon detection of septic shock

(6). Delay in antibiotic treatment or fluid management have been

linked to increased mortality risk (43). Furthermore, vasopressors

are routinely used to maintain mean arterial pressure when

hypotension persists despite fluid resuscitation. Paradoxically,

some commonly vasoactive drugs, such as norepinephrine, may

exert inhibitory effects on cellular immune function, fostering

bacterial growth and subsequently elevating susceptibility to

secondary infections among septic shock patients (38). As such, age

and treatment factors are crucial elements influencing prognosis

in this population, further reinforcing the utility of ASI over

traditional severity indexes for risk assessment in elderly patients.

In addition, we also observed differences in comorbidity data

availability and vasopressor/ventilator use between the derivation

and validation cohorts. These discrepancies are inherent to real-

world data originating from diverse centers, reflecting variations

in patient demographics, healthcare resources, clinical guidelines,

and data collection protocols. Despite these differences, our

study, leveraging a large sample and advanced statistical methods

(latent class trajectory models, triple-robust analyses, and subgroup

analyses), provides valuable insights into the prognostic utility of

dynamic ASI trajectories.

Dynamic indices offer valuable insights into the progression of

sepsis, and trajectories ofmarkers such as 24-h urine output (19), C-

reactive protein (44), SBP (45), and SI (10) have been used to predict

patient outcomes. Despite this, the potential of 24-h ASI trajectories

as a prognostic marker in septic shock—a condition where age

and hemodynamic instability compound mortality risk—has been

overlooked. Our study addresses this critical gap by being the

first to examine the association between 24-h ASI trajectories

and survival outcomes in patients with septic shock, offering

potentially valuable insights for risk stratification andmanagement.

Moreover, our study has several notable strengths compared with

previous researches. Firstly, the derivation and validation cohorts

were drawn from two extensive critical care databases, MIMIC-

IV and eICU-CRD, noted for their long-term, high-quality and

reliable data. Secondly, the LCTM framework was performed to

classify the 24-h ASI trajectories in patients with septic shock,

alongside the establishment of a series of Cox regression models to

adjust for various confounders. Thirdly, we employed triple-robust

estimations to validate the impact of ASI trajectories on mortality

risk, indicating the stability and reliability of our findings. Finally,

ASI is a non-invasive, convenient, repeatable metric that can

dynamically monitored comprising three readily available indexes

(age, heart rate, and SBP), which may facilitate rapid identification

of high-risk patients and serve as a basis for clinical decision-

making, enabling early interventions to improve prognosis.

However, the study exhibits certain limitations. As a

retrospective analysis, it is subject to various biases, necessitating

validation via multicenter prospective studies. Additionally, some

potential confounders were not accounted for due to excessive

missing data. Although multiple imputations were used to address

missing data, they may introduce deviations from true values.

Furthermore, given that the MIMIC and eICU-CRD databases
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TABLE 6 Results of subgroup analyses.

Cohort Subgroup N Class 1 Class 2 Class 3 P for
interaction

HR (95% CI) HR (95% CI) P-value HR (95% CI) P-value

Derivation All people 2,559 1 (Reference) 2.48 (1.88–3.27) <0.001 2.87 (1.97–4.19) <0.0001

Age (years) 0.090

<65 1,032 1 (Reference) 4.95 (2.33–10.52) <0.001 2.39 (0.89–6.43) 0.080

≥65 1,527 1 (Reference) 2.01 (1.49–2.71) <0.001 2.71 (1.79–4.08) <0.001

Gender 0.877

Male 1,406 1 (Reference) 2.34 (1.57–3.49) <0.001 2.61 (1.53–4.46) <0.001

Female 1,153 1 (Reference) 2.72 (1.84–4.00) <0.001 3.19 (1.87–5.46) <0.001

Race 0.928

White 1,754 1 (Reference) 2.37 (1.68–3.33) <0.001 3.08 (1.95–4.88) <0.001

Black 356 1 (Reference) 3.45 (1.73–6.89) <0.001 2.12 (0.77- 5.78) 0.140

Others 449 1 (Reference) 2.35 (1.20–4.61) 0.010 2.73 (1.11–6.68) 0.030

Care unit 0.129

MICU/SICU 2,193 1 (Reference) 3.05 (2.26–4.13) <0.001 3.02 (2.01–4.55) <0.001

CCU 139 1 (Reference) 0.88 (0.21–3.63) 0.860 3.01 (0.72–12.48) 0.130

Others 227 1 (Reference) 1.31 (0.52–3.29) 0.570 2.07 (0.50–8.55) 0.310

Vasopressor 0.936

No 501 1 (Reference) 1.39 (0.34–5.65) 0.645 0.00 (0.00–1.00) -

Yes 2,012 1 (Reference) 2.65 (2.00–3.52) <0.001 3.19 (2.18–4.67) <0.001

Ventilation 0.900

No 286 1 (Reference) 3.36 (1.02–11.07) 0.046 2.25 (0.30–16.72) 0.430

Yes 2,227 1 (Reference) 2.45 (1.84–3.26) <0.001 2.91 (1.98–4.28) <0.001

Validation All people 2,177 1 (Reference) 3.23 (2.37–4.41) <0.001 2.41 (1.61–3.60) <0.001

Age (years) 0.232

< 65 953 1 (Reference) 4.71 (2.29–9.68) <0.001 1.53 (0.49–4.82) 0.47

≥ 65 1,224 1 (Reference) 2.65 (1.87–3.77) <0.001 2.35 (1.52–3.64) <0.001

Gender 0.584

Male 1,127 1 (Reference) 2.76 (1.70–4.51) <0.001 2.44 (1.20–4.97) 0.010

Female 1,050 1 (Reference) 3.80 (2.52–5.71) <0.001 2.55 (1.56–4.18) <0.001

Race 0.677

White 1,829 1 (Reference) 3.11 (2.23–4.34) <0.001 2.62 (1.73–3.98) <0.001

Black 193 1 (Reference) 4.23 (1.47–12.22) 0.010 0.77 (0.10–5.69) 0.800

Others 155 1 (Reference) 3.67 (0.82–16.4) 0.090 2.29 (0.30–17.47) 0.430

Care unit 0.696

MICU/SICU 1,806 1 (Reference) 3.09 (2.19–4.37) <0.001 2.52 (1.61–3.93) 0.090

CCU 253 1 (Reference) 6.25 (2.50–15.61) <0.001 3.23 (1.20–8.72) 0.470

Others 118 1 (Reference) 2.36 (0.69–8.01) 0.170 0.00 (0.00–1.00) <0.001

Vasopressor 0.188

No 838 1 (Reference) 2.00 (0.88–4.58) 0.100 3.39 (1.57–7.32) <0.001

Yes 1,339 1 (Reference) 3.32 (2.37–4.66) <0.001 2.02 (1.26–3.23) <0.001

Ventilation 0.817

No 1,384 1 (Reference) 3.13 (1.99–4.91) <0.001 2.68 (1.45–4.96) <0.001

Yes 793 1 (Reference) 3.22 (2.09–4.95) <0.001 2.12 (1.25–3.60) 0.010

HR, hazard ratio; CI, confidence interval; MICU, medical intensive care unit; SICU, surgical intensive care unit; CCU, coronary care unit.
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TABLE 7 Results of triple robust analyses.

Cohort Class IPTW Stabilized IPTW XGBoost

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

Derivation Class 1 1 (Reference) 1 (Reference) 1 (Reference)

Class 2 1.68 (1.18, 2.40) 0.004 1.68 (1.18, 2.40) 0.004 2.22 (1.49, 3.31) <0.001

Class 3 2.94 (2.10, 4.12) <0.001 2.94 (2.11, 4.12) <0.001 1.58 (1.13, 2.21) 0.008

Validation Class 1 1 (Reference) 1 (Reference) 1 (Reference)

Class 2 2.36 (1.61, 3.45) <0.001 2.36 (1.62, 3.45) <0.001 2.00 (1.32, 3.03) 0.001

Class 3 2.05 (1.21, 3.46) 0.007 2.05 (1.21, 3.46) 0.007 1.81 (1.05, 3.11) 0.033

HR, hazard ratio; CI, confidence interval; XGBoost, Extreme Gradient Boosting; IPTW, inverse probability of treatment weighting.

focus on critically ill patients, our investigation was limited to those

in ICUs, excluding patients treated outside of this setting. While

IPTW aimed to balance baseline characteristics, minor imbalances

persisted across trajectory classifications. The impact of these

remaining imbalances on our results warrants consideration.

Conclusion

This study demonstrates that the 24-hASI trajectories following

ICU admission are significantly associated with the risk of short-

term mortality in critically ill patients with septic shock. Patients

exhibiting high baseline ASI levels were more likely to experience

mortality within 30 days-regardless of whether ASI remained

elevated or decreased within the subsequent 24 h). Our findings

suggest that ASI trajectories could serve as an effective dynamic

bedside tool for risk stratification. Clinicians should prioritize early

hemodynamic optimization in patients exhibiting rising or unstable

ASI trajectories to mitigate mortality risks.
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