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Background: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive 
pulmonary disorder marked by the gradual substitution of lung tissue with fibrotic 
tissue, resulting in respiratory failure. While the precise etiology of IPF remains 
unclear, an increasing number of studies have indicated that programmed cell 
death (PCD) significantly contributes to the onset and advancement of IPF. PCD 
is implicated not only in the impairment of alveolar epithelial cells during fibrosis 
but also in the alterations of immune cells inside the fibrotic milieu. Investigating 
the PCD patterns offers a novel approach to the early diagnosis and prognostic 
evaluation of IPF.

Methods: The study utilized microarray-based transcriptome profiling and 
single-nucleus RNA sequencing to identify and analyze diverse PCD patterns in 
IPF. IPF-related genes were identified based on differential expression analysis, 
univariate Cox regression analysis, the “Scissor” program, and the “Findmarkers” 
program. A combination of machine learning was employed to develop stable 
predictive and diagnostic signatures associated with IPF, based on the filtered 
relevant genes.

Results: The stable PCDI.prog signature was established through the integration 
of 101 distinct machine-learning techniques, which exhibited superior efficacy in 
predicting outcomes in IPF patients through the validation of multiple datasets. 
Integrating PCDI.prog signature with patient clinical information, such as age, 
gender, and GAP score, enables the prediction of disease progression rates and 
patient survival. Additional PCDI.diag signature can offer insights into the early 
diagnosis of IPF.

Conclusion: In summary, PCDI.prog signature and PCDI.diag signature offer 
critical insights for the early diagnosis, prognostic evaluation, and personalized 
treatment of IPF.
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1 Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung 
disease characterized by progressive and irreversible fibrosis of the 
lung parenchyma (1). This fibrosis leads to a gradual decline in lung 
function. IPF patients have a bleak outlook, with a median survival of 
approximately 2–3 years from diagnosis (2) and a 5-year survival rate 
of less than 40% (3). Therefore, the early diagnosis and prognosis 
evaluation of IPF patients are very important. Cell death patterns can 
be categorized into two groups based on the rate of occurrence and 
susceptibility to medications or genes: accidental cell death (ACD) 
and programmed cell death (PCD) (4). ACD is an instantaneous and 
uncontrollable cell death caused by extreme biological, physical, 
chemical, or mechanical damage to the cytoplasmic membrane in the 
external environment, mostly manifested as necrosis (5). Previously, 
Ellson et  al. (6) studied the significance of dangerous associated 
molecular patterns (DAMPs) in IPF in persistent inflammation and 
fibrosis, linking necrosis to the ongoing pathological processes in 
IPF. Furthermore, Emura et al. (7) studied the systemic consequences 
of acute exacerbation of IPF. They found that TNF-α positive cells 
were involved in the systemic circulation during acute exacerbation, 
which indicated that necrosis and inflammatory responses may extend 
beyond the lungs, leading to multi-organ damage and highlighting the 
systemic nature of the disease.

The pivotal role of PCD in maintaining in vivo homeostasis, host 
defense against pathogens, cancer development, and various other 
pathologies has been extensively documented (8). As research into cell 
death (CD) continues to deepen, numerous types of CD have been 
identified. However, the classification of certain types remains 
controversial. For example, autophagy, entosis, and methuosis 
continue to be subjects of debate. Some studies propose that these 
processes should be  classified as PCD-vacuole presenting (9). 
Additionally, NETosis and netotic cell death were initially considered 
to contribute to immune responses by defending against pathogens. 
However, recent evidence suggests that they represent controlled 
forms of CD, potentially categorizing them as specialized types of 
PCD (10, 11). In this study, 20 distinct PCD patterns 
(Supplementary Table 1) were included.

PCD plays a critical role in the pathogenesis of IPF. Tsuburai et al. 
(12) demonstrated that adenovirus-mediated transfer and 
overexpression of heme oxygenase 1 (HO-1) cDNA in the lung can 
prevent bleomycin-induced pulmonary fibrosis by attenuating 
apoptotic cell death. This suggests that using HO-1 overexpression 
strategies could be effective in treating IPF. Carnesecchi et al. (13) 
further supported this by showing strong expression of NOX4, a key 
player in epithelial cell death, in the lungs of IPF patients. The 
interactions between epithelial cells and fibroblasts are also crucial in 
the development of pulmonary fibrosis. Sakai et al. (14) highlighted 
various signaling molecules involved in these interactions, including 
transforming growth factor-β and reactive oxygen species. 
Additionally, Mccubbrey et  al. (15) found that deletion of the 
antiapoptotic protein c-FLIP from CD11bhi macrophages prevented 
the development of bleomycin-induced lung fibrosis, indicating the 
importance of cell death regulation in fibrotic processes. Ryter et al. 
(16) also highlighted the role of mitochondrial dysfunction in chronic 
lung diseases, including IPF, and its implications in regulating cell 
death programs like necroptosis. Baek et  al. demonstrated that 
Spermidine mitigates the development of lung fibrosis caused by 

bleomycin by promoting autophagy and suppressing cell death 
generated by endoplasmic reticulum stress (ERS) in mice (17). 
Additionally, the suppression of ferroptosis and iron accumulation 
alleviated pulmonary fibrosis (18). Senescence plays a pivotal role in 
fibrosis, as fibroblasts transition into a senescent state and exhibit 
resistance to apoptosis (19). According to Hohmann et  al. (20), 
quercetin has been shown to restore the susceptibility of senescent IPF 
fibroblasts to apoptotic stimuli, thereby alleviating bleomycin-induced 
pulmonary fibrosis. Quercetin demonstrates therapeutic potential by 
upregulating the expression of FasL receptor and caveolin-1, inhibiting 
AKT activation, and mitigating pulmonary fibrosis progression in 
aging mice. Additionally, Shen et  al. revealed that senescent 
myofibroblasts resist apoptosis through the upregulation of BAX and 
the modulation of BCL-2/BCL-XL proteins, leading to BAX 
inactivation. The BAX activator BTSA1 promotes apoptosis in 
senescent cells and decelerates pulmonary fibrosis progression, 
offering a novel senescence clearance strategy for treating pulmonary 
fibrosis via the promotion of apoptosis in senescent cells (21). In 
conclusion, the studies suggest that PCD mechanisms play a critical 
role in the development of IPF.

Therefore, understanding the regulation of cell death pathways 
and targeting key molecules involved could provide potential 
therapeutic strategies for treating IPF. The study utilized microarray-
based transcriptome profiling and single-nucleus RNA sequencing to 
identify and analysis of diverse PCD patterns in IPF. Prognostic genes 
were screened utilizing differential expression analysis and univariate 
Cox regression analysis based on the bulk RNAseq dataset. The 
“Scissor” R package was utilized to discern prognostically significant 
cells, utilizing the scRNA-seq dataset, and the “Findmarkers” function 
was employed to ascertain marker genes for prognostically significant 
cells based on the scRNA-seq dataset. IPF-related genes were identified 
by overlapping prognostic genes and marker genes. Based on the 
identified IPF-related genes, 101 distinct combinations of machine-
learning techniques were employed to develop stable prognostic 
signatures. Validation of several datasets and feature comparison were 
employed to evaluate the superiority and generalizability of prognostic 
signature. Additionally, the study employed a combination of machine 
learning techniques to develop a signature for diagnosing IPF, which 
may serve as a reference for the early identification of IPF. Figure 1 
illustrates the precise procedure of the study.

2 Materials and methods

2.1 The availability of PCD-related genes

Key regulatory genes associated with 20 PCD patterns were 
sourced from multiple repositories, including the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) Database (22), the GeneCards 
Database (23), the Molecular Signatures Database (24), the Reactome 
Database, FerrDb database, the Human Autophagy Database, and 
published articles. The comprehensive gene list comprising 20 distinct 
PCD patterns (Supplementary Table 2), encompassing 7 alkalosis-
related genes (25), 338 anoikis-related genes (26, 27), 579 apoptosis-
related genes, 19 Cuproptosis-related genes (28–30), 10 disulfidptosis-
related genes (31), 23 entosis-related genes, 15 entotic cell death-
related genes, 34 immune cell death (32), 220 lysosome dependent cell 
death-related genes, 8 methuosis-related genes, 39 MPT driven 
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necrosis, 101 necroptosis-related genes, 24 NETosis-related genes, 8 
netotic cell death-related genes, 5 oxeiptosis-related genes, 9 
parthanatos-related genes, 59 parapoptosis-related genes (33), 52 
pyroptosis-related genes (34), 367 autophagy-related genes and 88 
ferroptosis-related genes.

2.2 Differential expression analysis

The R package “limma” was employed to extract differentially 
expressed genes (DEGs) between the IPF cohort and health control 
cohort in the IPF dataset (p value < 0.05).

2.3 Functional enrichment analysis

Further, the study performed the gene ontology (GO), and Kyoto 
encyclopedia of genes and genomes (KEGG) enrichment analysis of 
all the DEGs using the “ClusterProfiler” R package.

2.4 Single-cell analysis

The GSE122960 (35) dataset provided scRNA-seq information 
from the lung tissue of three IPF patients and three healthy donors. To 
ensure the correctness and reliability of the information, the 

scRNA-seq information underwent stringent screening and quality 
control. It excluded cells with mitochondrial gene expression levels 
beyond 20% from the dataset. Furthermore, cells containing fewer 
than 300 genes and genes represented by fewer than five cells are 
excluded. The selected cells were subsequently subjected to 
downstream analysis. The scRNA-seq information was normalized by 
the “NormalizeData” function, which was then converted to Seurat 
objects and the first 1,500 highly variable genes were identified using 
the “FindVariableFeatures” function. Afterward, the “RunPCA” 
function of the “Seurat” R package was applied to perform principal 
component analysis (PCA) to reduce the dimensionality of the 
scRNA-seq data based on the top  1,500 genes. The functions 
“FindNeighbors” and “FindClusters” were used for cell 
clustering analysis.

Cell clusters were annotated using reference data from the Human 
Cell Atlas and were subsequently refined based on specific cell 
biomarkers including Type I Alveolar Epithelial (AT1) Cells (AGER 
and RTKN2), Type II Alveolar Epithelial (AT2) Cells (LAMP3), Club 
Cells (SCGB3A2), Ciliated Cells (TPPP3), Basal Cells (KRT5 and 
TP63), Macro/Mono (CD68 and CD14), Dendritic Cells (CLEC10A), 
T/NKT Cells (CD3D), Plasma Cells (IGHG4), B Cells (MS4A1), Mast 
Cells (TPSB2), Endothelial Cells (VWF), Fibroblasts (DCN).

Furthermore, the “Scissor” R package was employed to integrate 
scRNA-seq information, bulk RNA-seq information, and phenotypic 
information to identify cell subpopulations that display significant 
correlations with the prognosis of IPF patients. The “IPF-related 

FIGURE 1

The study’s flowchart diagram.
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genesEA” R package was employed to conduct gene set enrichment 
analysis (GSEA) on the scRNAseq dataset based on the “AUCell,” 
“UCell,” “singscore,” and “ssgsea” algorithms.

2.5 Construction and validation of 
prognostic signature

The datasets enrolled in the study were obtained from the Gene 
Expression Omnibus (GEO) database.1 The prognosis signature was 
constructed based on four datasets, including GSE27957 (36), 
GSE28042 (36), GSE70866 (37), and GSE93606 (38). GSE70866 was 
used as the training set with various clinical features and samples, 
while the other three data sets were used as the validation sets. Each 
gene expression was transformed into a z-score across patients in all 
cohorts. The screening criteria for samples were as follows: (1) The 
individual received a diagnosis of IPF; (2) The IPF patient possessed 
comprehensive bulk-RNAseq information; (3) The IPF patient had a 
survival information record (refer to Supplementary Table  3 for 
detailed clinical parameters).

To enhance the precision and consistency of the prognostic 
signature, the study incorporated ten machine-learning algorithms 
into the analysis. These algorithms encompass random survival forest 
(RSF) (39), elastic network (Enet), Lasso, Ridge, Stepwise Cox, 
CoxBoost (40), partial least squares regression for Cox (plsRcox) (41), 
supervised principal components (SuperPC) (42), generalized boosted 
regression modeling (GBM) (43), and survival support vector 
machine (survival-SVM) (44) (refer to Supplementary Table 4 for 
details). Several algorithms have demonstrated the ability to perform 
feature selection, which was employed to screen crucial genes, 
including Lasso, stepwise Cox, Coxboost, and RSF algorithms. 
Ultimately, we developed 101 algorithmic combinations to enhance 
the identification of prognostic signatures with commendable 
accuracy and stability. Subsequent survival analysis and signature 
comparison were employed to assess the superiority and 
generalizability of the prognostic signature.

2.6 Construction and validation of the 
diagnostic signature

GSE150910 (45), GSE24206 (46), GSE28042 (36), GSE53845 (47), 
and GSE70866 (37) from the GEO database were enrolled to develop 
the diagnostic signature. The GSE150910 dataset served as the training 
cohort, while four datasets were utilized as the validation cohorts.

An efficient diagnostic signature for accurate prediction of IPF 
was developed by merging diverse machine-learning techniques based 
on PCD-related genes. The machine learning algorithms encompass 
Lasso, Ridge, Stepglm, XGBoost, Random Forest (RF) (39), Elastic Net 
(Enet), Partial Least Squares Regression for Generalized Linear 
Models (plsRglm), Generalized Boosted Regression Modeling (GBM), 
Naive Bayes (48), Linear Discriminant Analysis (LDA) (49), 
Generalized Linear Model Boosting (glmBoost), and Support Vector 
Machine (SVM). Ultimately, a total of 101 signatures were developed. 

1 http://www.ncbi.nlm.nih.gov/geo/

For each signature, the area under the receiver operating characteristic 
curve (AUC) values were calculated across all validation datasets, and 
the signature exhibiting the highest average AUC in the validation 
cohort was deemed the superior diagnostic signature, owing to 
overfitting in the training cohort. The diagnostic model’s superiority 
was established by comparing its AUC value with that of the 
clinical features.

2.7 Drug sensitivity analysis

The “pRRophetic” (50) R package was applied to predict the 
therapeutic response of IPF patients to common drugs, and the value 
of the PCDI.prog signature in guiding the selection of drugs for IPF 
patients was assessed based on the IC50 values in different PCDI.prog 
score groupings.

2.8 Statistical analysis

Statistical differences between groups were determined by 
Student’s t-test for normally distributed variables, and for 
non-normally distributed variables, statistical differences between 
groups were determined by the Wilcoxon test. The statistical studies 
were conducted using the R project (version 4.3.3).

3 Results

3.1 The pathway activity profiling of PCD 
patterns in normal and fibrotic lung tissues

In this study, we collected a total of 20 PCD patterns and 2013 key 
regulatory genes from the existing published articles and online 
databases. We removed 449 duplicate gene symbols, resulting in 1,564 
PCD-related genes for subsequent analysis (Figure 2A).

A total of 524 genes with significant differential expression 
(p-value < 0.05) were identified in the GSE70866 cohort 
(Figure  2B). Furthermore, the DEGs are associated with many 
PCD pathways and signal transduction pathways related to IPF, as 
demonstrated by the KEGG and GO enrichment studies 
(Figures 2C,D).

In addition, the study investigated the profiling of pathway activity 
in normal and fibrotic lung tissues to analyze PCD patterns 
(Figure 2E). The results suggested that except NETosis pattern, the 
activity of other PCD patterns decreased in fibrotic lung tissue. The 
vast majority of PCD patterns showed significant differences in 
activity in normal and fibrotic lung tissues.

3.2 Dissection of the microenvironment of 
IPF based on PCD patterns

A total of 9,295 cells, obtained from lung tissue samples of three 
IPF individuals and three healthy individuals, were grouped into 23 
unique clusters using the “Seurat” and “clustree” R packages 
(Supplementary Figures 1A,B). A total of 13 unique cell types were 
distinguished using particular cell marker genes (Supplementary  
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Figure 1C; Figure 3A). The population of epithelial cells in the lungs 
of individuals with IPF was shown to have a higher percentage of 
airway epithelial cells (specifically basal cells, ciliated cells, and club 
cells) and a notable drop in alveolar epithelial cells (AT1 cells 

and AT2 cells). This pattern aligns with prior findings (51, 52) 
(Figure 3B).

Furthermore, the study provided an initial description of the 
variations in PCD-related pathway activity among different cell 

FIGURE 2

The pathway activity profiling of PCD patterns in normal and fibrotic lung tissues. (A) The Upset plot displaying diverse PCD patterns and key regulatory 
genes. (B) Volcano plot of the PCD-related DEGs. Points with labels are obvious DEGs with p-value < 0.05 (C) GO enrichment analyses based on the 
DEGs. (D) KEGG enrichment analyses based on the DEGs. (E) Box plot displaying the pathway activity profiling of PCD patterns in normal and fibrotic 
lung tissues based on the “ssGSEA” algorithm.
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subtypes in fibrotic lung tissues based on the integration of four 
algorithms (Figures  3C,D). As we  all know, fibroblasts play a 
crucial role in the development of IPF by promoting the 
production of collagen and cell proliferation, leading to the 
formation of fibrous tissue (53). The study suggested that there is 
a difference in the behavior of PCD patterns in fibroblasts in 

fibrotic lung tissues, especially heightened activity in the anoikis 
pathway in fibroblasts. Previous studies have demonstrated that 
anoikis takes place in lung fibroblasts during the development of 
fibrosis and has been identified as a significant factor in the 
progression of IPF (54), indicating possible treatment targets 
for IPF.

FIGURE 3

The scRNAseq analysis of fibrotic lung tissues. (A) The t-SNE plot displaying the composition of cells in the microenvironment of IPF. (B) Bar plot 
displaying the proportion of each identified cell in IPF and normal samples. (C) Histogram displaying the number of PCD patterns in different cell types. 
(D) The heatmap displaying the PCD patterns in different cell types. (E) The t-SNE plot displaying the distribution of prognostically significant cells in 
the microenvironment of IPF. (F) Upset plot displaying the 44 IPF-related genes, which were derived from the intersection of 137 prognostic genes 
obtained from bulk RNAseq dataset and 1,392 marker genes of prognostically significant cells. Scissor + cells, Cells positively associated with OS in 
patients with IPF; Scissor − cells, Cells negatively associated with OS in patients with IPF; other cells, Cells unrelated to OS in patients with IPF.
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3.3 Identification of IPF-related genes

A univariate regression analysis was conducted on a set of 524 
DEGs to find 137 prognostic genes. Furthermore, the “Scissor” R 
package was employed to integrate the scRNA-seq GSE122960 dataset 
and the bulk-RNAseq GSE70866 dataset. We identified 1,934 cells 
positively associated with OS in patients with IPF and 2,041 cells that 
were negatively associated with OS in patients with IPF (Figure 3E). 
Additionally, the “Findmarkers” function was used to identify 1,392 
marker genes for cells that had prognostic significance. Ultimately, a 
total of 44 IPF-related genes (Supplementary Table 5) were determined 
by identifying the common genes that serve as both prognostic genes 
and marker genes (Figure 3F).

3.4 Construction of the PCDI.prog 
signature

Subsequently, we employed a total of 10 distinct machine-learning 
algorithms to develop and construct 101 prognostic signatures. The 
robustness of these signatures was evaluated using a 10-fold cross-
validation approach in four distinct cohorts (GSE70866 as the training 
cohort, and three external validation cohorts including GSE27957, 
GSE28042, and GSE93606 cohort).

The best-performing predictive signature was determined as the 
signature with the greatest mean C-index in three external validation 
cohorts, due to overfitting in the training cohort (Figure 4A). The 
findings indicated that the CoxBoost + Enet[alpha = 0.1] algorithm 
combination demonstrated the highest average C-index (0.676), 
making it the optimal algorithm combination for developing the 
programmed cell death index prognostic (PCDI.prog) signature.

Afterward, the PCDI.prog score for each patient was calculated. 
The samples were then categorized into the low PCDI.prog score 
group and the high-PCDI.prog score group based on the optimal 
threshold value of the PCDI.prog score determined using the R 
package “survminer.” Subsequently, KM survival analysis and 
assessment of prognostic performance were conducted. 
Demonstrating a substantial difference in OS between the low-PCDI.
prog score group and the high-PCDI.prog score group in all four 
cohorts (Figure 4B).

3.5 Validation and clinical application of 
PCDI.prog signature

The accuracy and reliability of the PCDI.prog signature predicting 
1-,2-, 3-, 4-, and 5-year survival of IPF patients was supported by 
empirical evidence that the area under the curve (AUC) values 
exceeded 0.65 in multiple distinct cohorts (Figure 4C).

Furthermore, due to the scarcity of prognostic models for 
non-tumor diseases compared to tumors, and the limited availability 
of datasets including comprehensive gene expression data for genes 
associated with signatures, a total of 10 prognostic models published 
in IPF were ultimately gathered from the existing literature. The 
features encompass a range of biological processes observed in the IPF 
cohort, such as hypoxia, autophagy, pyroptosis, epithelial-
mesenchymal transition, epigenetic regulation, and inflammation 

(Supplementary Table 6). These features were then compared to the 
C-index of the PCDI.prog signature. The findings indicated that the 
PCDI.prog signature exhibited superior performance compared to the 
majority of the signatures within their respective categories 
(Figure 4D).

In addition, we compared the predictive value of the PCDI.prog 
signature with other clinical variables (Figure 5A). The C-index of the 
PCDI.prog signature was significantly higher than other clinical 
variables, covering GAP score, age, and gender. The univariate Cox 
regression analysis showed that compared with other features, PCDI.
prog signature was regarded as a risk factor (Figure 5B). Finally, to 
facilitate clinical application, a nomogram was created, integrating the 
factors of age, gender, GAP score, and PCDI.prog score (Figure 5C).

The “pRRophetic” R package is a computational model that 
predicts chemotherapy responses based on gene expression data (55). 
Nintedanib, an orally administered small molecule tyrosine kinase 
inhibitor initially designed for lung cancer, has been approved for the 
treatment of IPF. It serves as an example of an anti-tumor medication 
associated with medications used for IPF. Furthermore, the addition 
of pirfenidone (56) can diminish the efficacy of the paclitaxel and 
carboplatin combination. Therefore, we believe that the identification 
of related anti-tumor drugs has potential significance for IPF 
treatment. Eight potential drugs for IPF patients were obtained 
through drug susceptibility analysis (Figure 5D). Individuals with low 
PCDI.prog scores exhibited a notable rise in sensitivity to 
staurosporine, linsitinib, sapitinib, taselisib, and alpelisib. Individuals 
with high PCDI.prog scores exhibited a notable rise in sensitivity to 
palbociclib, sabutoclax, and mitoxantrone. It is suggested that the 
PCDI.prog signature has a potential guiding effect on the treatment of 
IPF patients.

3.6 Construction and validation of PCDI.
diag signature

A total of 101 diagnostic signatures of GSE150910 were evaluated 
using 10-fold cross-validation (Figure 6A). The AUC values for each 
signature were computed across all validation datasets, including 
GSE110147, GSE24206, GSE28042, GSE53845, and GSE70866. The 
combination of Stepglm[both] and NaiveBayes was recognized as the 
optimal signature, yielding the greatest average AUC value of 0.856. 
The Stepglm[both] algorithm identified 9 crucial genes (SLC39A8, 
HIF1A, TIMP1, ACSL1, ALOX5, MET, IL1R1, HTRA1, TP53INP1) 
(Figure  6B), whereas the NaiveBayes algorithm developed the 
programmed cell death diagnostic (PCDI.diag) signature.

The diagnostic effectiveness of the PCDI.diag signature in 
predicting IPF was compared with other clinical factors in both the 
training and validation cohorts (Figure  6C). Regrettably, the 
GSE110147 and GSE24206 cohorts lack comprehensive clinical data. 
The findings indicated that the PCDI.diag signature exhibited markedly 
superior accuracy compared to other clinical features in GSE150910, 
GSE28042, GSE53845, and GSE70866, including age, rs35705950_
genotype, and gender. The results suggest that the PCDI.diag signature, 
derived from nine crucial genes, may offer novel insights into the 
preliminary diagnosis of IPF. It is worth noting that the AUC values of 
gender in multiple datasets are weak, which means that gender cannot 
well distinguish the IPF patient group from the healthy control group. 

https://doi.org/10.3389/fmed.2025.1534903
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Sun and Zeng 10.3389/fmed.2025.1534903

Frontiers in Medicine 08 frontiersin.org

FIGURE 4

Construction and validation of the PCDI.prog signature. (A) A total of 101 combinations of machine learning algorithms for the PCDI.prog signatures via 
a 10-fold cross-validation framework based on the GSE70866 cohort. The C-index of each model was calculated across validation datasets, including 
the GSE27957, GSE28042, and GSE93606 cohort. (B) Kaplan–Meier survival curve of OS between patients with high-PCDI.prog scores and low-PCDI.
prog scores in the training and validation cohorts. (C) ROC analysis of PCDI.prog signature in the training and validation cohorts. (D) C-index 
comparison of PCDI.prog signature and 10 previously published signatures in the training and validation cohorts.
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FIGURE 5

Establishment of the nomogram survival model. (A) The predictive performance of the PCDI.prog signature was compared with common clinical 
variables in the training and validation cohorts. (B) Univariate analysis for the clinicopathologic characteristics and PCDI.prog in the training and 
validation cohorts. (C) A nomogram was established to predict the prognostic of IPF patients based on PCDI.prog score, age, gender, and GAP score. 
(D) Drug sensitivity analysis of IPF patients in different PCDI.prog score group.
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FIGURE 6

Construction and validation of PCDI.diag signature. (A) A total of 101 diagnostic signatures were assessed utilizing a 10-fold cross-validation 
framework, and the AUC value for each signature was subsequently computed across all validation cohorts. (B) Nine crucial genes identified by the 
Stepglm[both] algorithm. (C) ROC curves illustrate the efficacy of IPF predictions made by PCDI.diag signature, age, rs35705950 genotype, and gender 
in the training and validation cohorts.
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Previous studies have also shown that Although IPF seems to affect 
older men predominantly, the true prevalence of IPF in women is 
difficult to establish, and women may be underdiagnosed while men 
are overdiagnosed with IPF based on gender alone (57).

4 Discussion

IPF is a lethal condition characterized by the progressive 
fibrosis of lung tissue, defined by the aberrant proliferation of 
interstitial lung cells, an inflammatory response, the advancement 
of fibrosis, and a gradual decline in pulmonary function. The 
precise pathophysiology of IPF remains incompletely elucidated, 
and the current study indicates a significant association between 
PCD and IPF. The cytokines and necrotic materials released 
during PCD not only directly promote the proliferation and 
activation of fibroblasts but also exacerbate the local inflammatory 
response by attracting immune cells, such as macrophages and 
neutrophils, ultimately resulting in the worsening of pulmonary 
fibrosis. The regulatory genes of PCD typically participate in this 
process; therefore, analyzing the expression patterns of these 
genes can yield critical insights for the early diagnosis, prognosis 
evaluation, and personalized treatment of IPF.

The study utilized microarray-based transcriptome profiling and 
single-nucleus RNA sequencing to identify and analysis of diverse 
PCD patterns in IPF. A subsequent study identified IPF-related genes 
that are crucial in the advancement of IPF. The stable PCDI.prog 
signature was established through the integration of 101 distinct 
machine-learning techniques, which exhibited superior efficacy in 
predicting outcomes in IPF patients through the validation of multiple 
datasets. Integrating PCDI.prog signature with patient clinical 
information, such as age, gender, and GAP score, enables the 
prediction of disease progression rates and patient survival. Additional 
PCDI.diag signature can offer insights for the early diagnosis of 
IPF. To facilitate clinical application, PCDI. Prog signature and 
PCDI. Diag signatures are integrated into the “PCDI” R package and 
are available at https://github.com//sjz17//IPF.

Furthermore, the majority of genes enrolled in the PCDI.prog 
signature and PCDI.diag signature have been confirmed to be involved 
in PCD patterns and regulating fibrotic processes 
(Supplementary Table 7). Interestingly, TIMP1, MET, and HTRA1 are 
present in both the PCDI.prog and PCDI.diag signatures.

The studies from Jamie et al. (58) showed that TIMP1 may play a 
role in regulating fibrosis in the microenvironment of IPF and 
fibroblasts are the most important cells in driving TIMP-1 
dysregulation. Shibnath et  al. (59) have shown an increased MET 
expression in lung fibroblasts from patients with pulmonary fibrosis as 
compared with lung fibroblasts from normal people. Moreover, MET 
has been implicated in driving profibrotic phenotypes and leading to 
pulmonary fibrosis (60). In the realm of pulmonary pathology, 
quantitative proteomic analysis has recognized HTRA1 as a protein 
implicated in tissue remodeling associated with IPF (61). Additionally, 
the overexpression of HTRA1 in BAL cells from patients with IPF was 
associated with a significantly poor prognosis (62). Furthermore, Chio 
et al. (63) demonstrated that the loss of function of HtrA1 has been 
shown to induce EMT by activating TGF-b and Notch signaling 
pathways, contributing to the progression of fibrosis in the lungs (64).

Despite the significant promise of prognostic and diagnostic 
signatures derived from PCD-related genes, several problems 
persist. Initially, IPF patients exhibit significant heterogeneity at 
both the molecular level and in clinical manifestations, leading to 
considerable variability in the expression of certain genes among 
people, which impacts the model’s accuracy. Secondly, IPF is an 
uncommon condition, particularly in its initial phases, and the 
patient cohort is quite small, potentially impacting the precision 
of genetic screening and the robustness of the model. Ultimately, 
PCD constitutes only a component of IPF progression, and models 
must consider environmental factors (such as smoking, genetic 
predisposition, immunological responses, and additional 
variables). Future research can enhance the diagnostic and 
prognostic signatures of IPF through extensive, multicenter 
clinical trials, liquid biopsy methodologies, and multidimensional 
information integration to offer more accurate and personalized 
therapy alternatives for clinical practice.

5 Conclusion

In summary, the PCDI.prog signature and PCDI.diag signature 
offer critical insights for the early diagnosis, prognostic evaluation, 
and personalized treatment of IPF.
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