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Introduction: Coronary Artery Disease (CAD) is a leading cause of global 
mortality, accurate stenosis grading is crucial for treatment planning, it currently 
requires time-consuming manual assessment and suffers from interobserver 
variability. Few deep learning methods have been proposed for automated 
scoring, but none have explored combining radiomic and autoencoder (AE)-
based features. This study develops a machine learning approach combining 
radiomic and AE-based features for stenosis grade evaluation from multiplanar 
reconstructed images (MPR) cardiac computed tomography (CCTA) images.

Methods: The dataset comprised 2,548 CCTA-derived MPR images from 220 
patients, classified as no-CAD, non-obstructive CAD or obstructive CAD. Sixty-
four AE-based and 465 2D radiomic features, were processed separately or 
combined. The dataset was split into training (85%) and test (15%) sets. Relevant 
features were selected and input to a random forest classifier. A cascade 
pipeline stratified the three classes via two sub-tasks: (a) no CAD vs. CAD, and 
(b) nonobstructive vs. obstructive CAD.

Results: The AE-based model identified 17 and 6 features as relevant for the 
sub-task (a) and (b), respectively, while 44 and 30 features were selected in 
the radiomic model. The two models reached an overall balanced accuracy of 
0.68 and 0.82 on the test set, respectively. Fifteen and 35 features were indeed 
selected in the combined model which outperformed the single ones achieving 
on the test set an overall balanced accuracy, sensitivity and specificity of 0.91, 
0.91, and 0.94, respectively.

Conclusion: Integration of radiomics and deep learning shows promising results 
for stenosis assessment in CAD patients.
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1 Introduction

Coronary Artery Disease (CAD) represents one of the leading 
causes of morbidity and mortality worldwide, accounting for 8.9 
million annual deaths (1). Coronary plaque progression may 
determine coronary lumen stenosis and impairing blood supply to the 
myocardium, thus potentially causing major adverse cardiac events 
(2). Grading coronary artery stenosis is a crucial step in the diagnosis 
of patients with suspected CAD, enabling tailored therapeutic 
interventions and clinical decision-making. Based on the Coronary 
Artery Disease-Reporting and Data System (CAD-RADS) (3), the 
standard coronary computed tomography angiography (CCTA)-based 
stenosis severity scoring, six distinct categories are defined: class 0 (no 
stenosis: 0%), class 1 (minimal nonobstructive stenosis: 1–24%), class 
2 (mild nonobstructive stenosis: 25–49%), class 3 (moderate stenosis: 
50–69%), class 4 (severe stenosis: 70–99%), and class 5 (total occlusion: 
100%). However, the therapeutic approach is primarily guided by the 
degree of coronary stenosis, enabling a clinically relevant stratification 
into three fundamental classes: absence of stenosis (CAD-RADS 0), 
nonobstructive (CAD-RADS 1–2, stenosis<50%) and obstructive 
(CAD-RADS 3–4-5, stenosis>50%) stenosis.

It should be  emphasized that CAD-RADS scoring requires a 
high-level of expertise from radiologists and it is subjected to 
interobserver variability, as well as high time-consumption (4). 
Furthermore, plaque segmentation represents a critical challenge 
frequently addressed in literature, especially in radiomics-based 
research (5–13). This is usually manually performed with open-
source software (6, 7), requiring additional time and clinical staff, or 
it relies on semi-automated segmentation methodologies based on 
commercial software (8–11, 13). Some works also tested fully 
automatic deep learning (DL) approaches to achieve stenosis 
detection and segmentation, showing promising results (Dice 
coefficients of 0.83–0.94). However, developing a classification 
approach based on features extracted directly from the images would 
remove the segmentation issue, enhancing both robustness and 
reproducibility of the analysis and overcoming time-
consumption problems.

With respect to stenosis grading, current literature reports a few 
radiomic-based studies (12–14). In these works different data 
representations, such as 2D patches (12), 3D plaque (13), or MPR 
CCTA images (15), and different classification schemes were explored. 
In Jin et al. (12) the authors focused on a five-classes (minimal, mild, 
moderate, severe and occluded) stenosis severity differentiation 
achieving an accuracy of 0.84, while in (13) and (14) a plaque-based 
binary classification into functionally significant or non-significant, 
was achieved with an accuracy of 0.74 and 0.92, respectively.

The DL literature presents a broader spectrum of methodological 
approaches, with studies employing different architectures with a 
strong focus on convolutional neural networks (CNN) (8, 15–22), 
along with Vision Transformers (20), transfer learning strategies (15, 
16, 19), ConvLSTM architecture (8) and commercial tools (23). 
Conventional or MPR CCTA images were primarily used as input in 
these works, building end-to-end models for CAD-RADS 
classification. Different classification tasks were addressed with the 
binary one being the most common approach. DL studies have 
focused on the discrimination between two groups of CAD-RADS 
score, obtained with different stenosis threshold - mainly 50%, (0–1-2 
vs. 3–4-5) (16, 18–20, 23–25) - achieving the highest performance 

with accuracy values from 0.60 to 0.99. Other studies addressed more 
challenging tasks achieving multi-class stratification (8, 15, 21, 22, 25, 
26). Few of them (21, 22, 26) focused on stratifying the three 
CAD-RADS classes (0 vs. 1–2 vs. 3–4-5) providing valuable clinical 
information for therapeutic decision-making, with reported accuracy 
values ranging from 0.81 to 0.86.

Among the existing literature, two significant research gaps are 
found. First, no studies have explored the application of autoencoders 
(AEs) for stenosis evaluation. AEs encode the input data into a lower-
dimensional space through an unsupervised learning approach, 
capturing essential data patterns independently of class labels. This 
characteristic provides greater flexibility with respect to other 
DL-architectures a CNN networks, as the extracted features can 
be  applied to various downstream analyses beyond classification, 
including risk prediction or survival analysis. Second, combination of 
radiomic and DL-based features remains largely unexplored in the 
cardiac field, where only two existing studies focused on scar 
identification in hypertrophic patients (27, 28).

AEs, which compress input data into latent-space vectors through 
unsupervised learning, have not yet been explored for coronary artery 
MPR image reconstruction. Additionally, no previous research has 
investigated the integration of radiomic and AE-based features for 
stenosis evaluation. The advantage of this approach lies in the latent-space 
vector that contains a minimal representation of the input and it can 
be used as feature matrix, input to a machine learning model (29).

The aim of the present study is twofold: first to assess whether a 
simple AE model can be used to effectively compress MPR images. 
The second aim is to develop a machine learning pipeline assessing 
the value of radiomic features and AE-based features, singularly and 
in combination, for the automated patient-based evaluation of stenosis 
from CCTA.

2 Materials and methods

2.1 Patients and image dataset

The study population included 220 patients who underwent 
CCTA at IRCCS Centro Cardiologico Monzino (Milan, Italy) between 
2016 and 2018 for suspected CAD. Clinical characteristics are shown 
in Table 1. The study was reviewed and approved by the institutional 
review board (registration number: R1061/19-CCM 11 25). All 
patients provided their written informed consent to participate in 
this study.

CCTA scans were acquired using Discovery CT 750 HD or 
Revolution CT (GE Healthcare, Milwaukee, IL) following the Society 
of Cardiovascular Computed Tomography guidelines (30).

CCTA images were evaluated by pairs of 10 experienced cardiac 
imagers (radiologists and cardiologists with 5–10 years of experience). 
Each scan was assigned a CAD-RADS score, with disagreements 
resolved by a senior cardiac imager with 10 years of experience. Each 
patient was assigned to one of these three classes: no CAD (0% 
stenosis, n = 40), nonobstructive CAD (stenosis<50%, n = 80) and 
obstructive CAD (stenosis≥50%, n = 100). The dataset is composed 
of CCTA longitudinal sections of the three main coronary arteries: left 
anterior descending, left circumflex, and right coronary artery. From 
the CCTA, MPR images were obtained by rotating images 45 degrees 
around the vessel centerline and subsequently analyzed. MPR images 
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were derived for each of the three coronary artery, allowing 
visualization of the entire course of the vessel in 2D. Finally, the study 
considered a total of 340 coronary artery segments. As not all patients 
had all the eight MPR images, due to technical artifacts, a total of 
2,548 MPR images was available for the analysis.

2.2 Region of interest definition

The region of interest (ROI) was defined as a 40-pixel wide 
rectangle, centered along the straightened coronary centerline. The 
ROI lower boundary aligned with the inferior margin of the image, 
while the upper boundary was defined to exclude the ventricular 
muscle (see Figure 1). ROI delineation was performed on a single view 
of a patient’s coronary artery and then applied to all the images of the 
same vessel. The images containing the ROIs constituted the input to 
both radiomics and DL analysis (see Figure 2 for the workflow).

2.3 Radiomic features extraction

Four-hundred sixty-five 2D radiomic features were extracted from 
both the original and filtered version of the images (Wavelet 
transformation) using Pyradiomics 3.0 (31). Default settings were 
considered for extracting the radiomic features, namely B-spline 
interpolation, and fixed-bin histogram discretization, with 25 bins. 
Four Wavelet decomposition images as HH, LL, LH, HL (where “H” 
stands for a high-pass filter and “L” for a low-pass filter) were 
considered. Thus, 18 first order statistics and 75 textural features (24 
gray level co-occurrence matrix, 16 gray level run length matrix, 16 
gray level size zone matrix, 5 neighboring gray tone difference matrix 
and 14 gray level dependence matrix) were computed from the 
original image and the 4 wavelet transforms, resulting in 465 
radiomic features.

2.4 AE-based features extraction

AEs are unsupervised neural networks trained to reconstruct the 
input data by minimizing the error between the input and predicted 
output. An AE consists of three main components: the encoder, the 
decoder, and the latent-space representation. The encoder projects the 
input into a low-dimensional space, called latent space or bottleneck 
vector, while the decoder up-scales the latent space back to the original 

dimension. The decoder layers mirrored the encoder ones. As a 
product, AEs automatically extract a set of numerical features 
incapsulating the most important information.

In this study, three AE architectures were evaluated, considering 
different number of hidden layers and latent space vector size (256, 128, 
64 neurons), to investigate the impact on prediction of different level of 
abstraction. The first AE (AE256) follows a design with one neuron 
layer of size 512 in the encoder, a latent space vector of size 256 and a 
symmetric decoder. The second architecture (AE128) introduces an 
additional layer of 256 neurons in both encoder and decoder and 
reduces the latent space to 128 neurons following a geometric 
progression in layer dimensions with a reduction factor of two 
(512 → 256 → 128). The third architecture (AE64) further extends this 
progression, introducing another layer of 128 neurons in the encoder 
and decoder (512 → 256 → 128 → 64), achieving the highest 
compression ratio. Across all architectures, ReLU activation functions 
are used in the intermediate layers to prevent vanishing gradients and 
introduce beneficial sparsity in neural activations, while linear activation 
in the bottleneck preserves the full range of encoded information, and 
sigmoid activation in the output layer ensures normalized 
reconstructions in the range [0,1]. The progressive reduction in layer 
dimensions (compression ratio ≈ 0.5 between consecutive layers) 
enables the network to learn hierarchical features capturing increasingly 
complex and abstract features with greater depth (32).

The AEs were trained by applying the backpropagation strategy 
setting the mean squared error between the input data x and its 
reconstruction x̂ as loss function. Adam optimizer was used with a 
maximum number of training epochs set to 300 and a batch size 
equal to 48.

The structural similarity (SSIM) index was used as metric to 
measure the similarity between the original image and the 
reconstructed one (33). The SSIM index ranges between −1 and 1, 
where 1 indicates perfect similarity, 0 indicates no similarity, and −1 
indicates perfect anti-correlation. Once chosen the autoencoder 
architecture an ablation study was conducted by modifying various 
model’s parameters, such as learning rate from 0.1 to 0.001, loss 
function and optimization algorithm optimizer, to determine their 
contribution to the overall autoencoder reconstruction performance.

2.5 Machine learning pipeline

The dataset was partitioned into training (85%) and test set 
(15%), using a patient and label-stratified split. During the training 

TABLE 1 Baseline characteristics of study population.

All No-CAD Nonobstructive CAD Obstructive CAD

n 220 40 80 100

Age (y), mean ± std 60.8 ± 12.0 51.4 ± 12.5 59.7 ± 11.2 65.6 ± 9.7

Male, n (%) 155 (70) 19 (48) 58 (73) 78 (78)

Hypertension, n (%) 77 (35) 8 (20) 28 (35) 41 (41)

Hyperlipidemia, n (%) 69 (31) 7 (18) 16 (20) 46 (46)

Diabetes, n (%) 19 (8) 0 (0) 2 (3) 17 (17)

Smoker, n (%) 40 (18) 5 (13) 11 (14) 24 (24)

Family history, n (%) 78 (35) 14 (35) 31 (39) 33 (33)
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phase, further 30 training (80%) and validation (20%) stratified 
splits were applied to assess the pipeline robustness. In the training 
phase, scaling and feature selection, as well as data balancing 
were applied.

In particular, feature selection was performed in three steps 
assessing non-redundancy and feature significance. The first step 
consisted of a correlation-based feature selection, performed to ensure 
a set of features with low internal redundancy. When a pair of features 
had an absolute Spearman correlation coefficient above 0.95, only one 
of the two was kept. In particular, the one with lower mean correlation 
with all the other features was selected. In the second step, a Wilcoxon 
rank-sum test was performed on each feature to identify the ones 
significantly differentiating the compared groups (no CAD vs. any 
CAD or nonobstructive vs. obstructive CAD). Finally, the least 
absolute shrinkage and selection operator (LASSO) was used to select 
the final set of features.

Data balancing in the training set was obtained by using the 
Synthetic Minority Over-sampling TEchnique algorithm (34).

Finally, a random forest classifier was trained on the entire 
training set, and then applied on the test set.

A cascade machine learning pipeline was developed to achieve 
a 3-class stratification through two simpler sub-tasks: (a) no CAD 
vs. any CAD and, then, (b) nonobstructive vs. obstructive 

CAD. The classification has been performed for each image, and 
the final patient classification was based on the majority 
voting criterion.

The above-described pipeline was used to develop a single 
radiomic model, an AE-based model and the combined model. In this 
last approach radiomic and AE features were merged together and 
submitted to all the feature selection and processing steps 
previously described.

The predictive performance of the model was evaluated through 
the balanced accuracy, sensitivity, specificity, f1-score, and Area 
Under the Curve of the Receiving Operating Characteristic curve 
(AUC-ROC). For multiclass tasks, the macro averaging version of 
f1-score, AUC-ROC, sensitivity, and specificity was used.

Finally, to provide deeper insights into the relationship between 
encoded image information and clinical variables, statistical analyses 
were performed on the AE-based features selected by the combined 
model. Mann Whitney U test was used to compared feature 
distributions between patient subgroups stratified according to 
available clinical characteristics reported in Table 1 (sex, hypertension, 
smoking status, hyperlipidemia, diabetes, family history). Additionally, 
a correlation analysis, using Spearman coefficient, was performed to 
evaluate the relationship between the selected AE-based features and 
patients’ age.

FIGURE 1

Example of multiplanar reconstruction image, i.e., a straightened coronary artery CCTA image, with superimposed the region of interest (blue solid 
line).

FIGURE 2

General workflow for radiomic, autoencoder (AE) and combined approach.
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3 Results

3.1 AE reconstruction

Figure  3 shows the loss function for the three AEs with the 
different latent space vector sizes: it can be  noted that all three 
architectures present small values of the loss. The computational 
complexity for each of the three models, in terms of parameters 
number, training time and inference time, is reported in Table 2. It 
can be noticed that the differences among these metrics are negligible, 
with variations in the number of parameters less than 0.23% (41,152 
parameters) between models, and comparable training and inference 
times. Moreover, the mean value of the SSIM index on the entire 
database was 0.90 ± 0.06, 0.90 ± 0.06, and 0.89 ± 0.07 for the AE with 
latent space vector size of 64, 128, and 256, respectively. Being the 
performance very similar, the most parsimonious model (i.e., the one 
with the smallest latent space vector size, named AE64) was chosen 
and used for further analysis. Supplementary Table S1 shows the 
AE64 performance across different model configuration. In Figure 4 
can be seen an example of original and reconstructed images for the 
different classes, i.e., no CAD, nonobstructive CAD, and obstructive 
CAD. It is worth noting that in all three cases original and 
reconstructed images are very similar with SSIM index ≥0.96. 
Figure 5 shows the distribution of the SSIM index for AE64 over all 
the analyzed images. It can be observed that most images have a SSIM 
index higher than 0.8, with only 5% of the images reconstructed with 
a lower similarity.

3.2 Model building and validation

Figure 6 illustrates the cascade system employed to determine the 
final patient’s label reporting two examples of classification.

When considering AE-based features, i.e., features extracted 
from the bottleneck layer of the AE64, the feature selection step 
identified 17 and 6 features for the sub-task (a) and (b), respectively. 
Table 3 shows the performance metrics on the training-validation 
splits for the AE64. It can be observed that sub-task (a) obtained 
better performances than that of sub-task (b), with significant 
statistical differences (p < 0.001) for all the metrics except sensitivity. 
Figure 7A shows the confusion matrix on the test set, associated with 
the following metrics: balanced accuracy = 0.68, macro 
sensitivity = 0.68, macro specificity = 0.82 and macro AUC = 0.75.

When considering radiomic features, the feature selection step 
identified 44 and 30 features for the sub-task (a) and (b), respectively. 
Table 3 shows the performance metrics on the training-validation 
splits. Similar to the AE64, also radiomics obtained better 
performances on sub-task (a), with performance metrics significantly 
higher (p < 0.001) than that of sub-task (b). Figure 7B shows the 
confusion matrix on the test set, associated with the following 
metrics: balanced accuracy = 0.82, macro sensitivity = 0.82, macro 
specificity = 0.88 and macro AUC = 0.84. Comparing results in 
Figures 7A,B, it can be observed that differently from the AE-based 
model, the radiomic one correctly classified all the patients without 
CAD, and it also outperforms the prediction of patients with 
nonobstructive and obstructive CAD.

When combining radiomic and AE-based features, 50 and 35 
features were selected for sub-task (a) and B, respectively. Most of the 

selected features were radiomic, with 8 AE-based features selected in 
the first sub-task and 6  in the second one. Comparing the two 
subtasks, sub-task (a) obtained significantly higher values (p < 0.001) 
in all the metrics score. Table 3 shows the performance metrics on 
the training-validation splits. Overall, the model combining 
AE-based and radiomic features provided better performance with 
respect to both AE64 and radiomic models, with statistically 
significant difference observed in balanced accuracy, f1 score 
and AUC.

Figure 7C shows the confusion matrix on the test set for the 
model based on combined radiomic and AE-based features. It can 
be  observed that the prediction of both nonobstructive and 
obstructive CAD was improved, with a total of only 4 wrong 
classifications, compared to 10 and 7 wrong classifications for AE and 
radiomic-based model, respectively. The performance metrics for the 
combined model were: balanced accuracy = 0.91, macro 
sensitivity = 0.91, macro specificity = 0.94 and macro AUC = 0.89.

The results of statistical analyses examining the relationship 
between the 6 AE-based features selected by the combined model and 
clinical variables are reported in Supplementary Figures S1, S2. All 
the AE features exhibit at least two significant differences between 
patient subgroups stratified by the clinical characteristics. Feature 20 
stands out by showing statistical significance across nearly all clinical 
variables (except hyperlipidemia), suggesting its ability to capture a 
comprehensive cardiovascular risk profile. Other features 
demonstrate more targeted findings: Features 57 and 58 show 
significant differences in subgroups defined by hypertension, sex, and 
smoking status, while features 27, 31, and 62 exhibit differences 
specifically in groups characterized by hypertension and smoking 
status. The Spearman correlation analysis with age, instead, revealed 
weak associations, with correlation coefficients not exceeding 0.17 in 
absolute value.

4 Discussion

Automated evaluation of stenosis from CCTA is an open 
challenge, and the detection and classification of coronary artery 
plaques are essential for CAD prevention and treatment. In this study, 
we proposed a novel approach based on the integration of features 
extracted by radiomics and by an AE, to perform a patient therapy-
driven stratification into three classes: absence of stenosis (CAD-
RADS 0), nonobstructive (CAD-RADS 1–2, stenosis<50%) and 
obstructive (CAD-RADS 3–4–5, stenosis>50%) stenosis. This task 
was addressed using CCTA-based MPR images. The main findings of 
the study are: (i) a simple AE with bottleneck size of 64 can efficiently 
reconstruct the MPR images of a coronary artery and (ii) the machine 
learning integration of radiomic and AE-based features improves the 
performance of single domain reaching a balanced accuracy of 0.91. 
The AE64 was able to reconstruct the MPR images with high 
similarity (average SSIM = 0.90), with only 5% of images with a SSIM 
index lower than 0.80. No significant improvement was found when 
a larger latent space vector size was considered (128 or 256 samples), 
highlighting the effectiveness of the proposed AE64.

The analysis was further supplemented by investigating potential 
relationships between AE-based features and patient clinical 
characteristics through statistical testing. The findings demonstrated 
that specific AE-based features revealed distinct patterns with 
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FIGURE 3

Autoencoder loss function with bottleneck size of (A) 64, (B) 128 and (C) 256 as function of epochs for training (dashed red line) and validation (solid 
blue line).
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particular patient subgroups defined by clinical variables such as 
hypertension, smoking status, and other cardiovascular risk factors. 
This suggests that the AE’s computational representation may reflect 
meaningful patient-level characteristics, in the context of automated 
CCTA analysis for patient stenosis scoring.

Current literature reports several studies addressing stenosis 
grading from CCTA images, which has become a crucial non-invasive 
imaging modality for comprehensive plaque evaluation (35, 36).

Several machine learning models using different input 
parameters, as healthy area of lumen estimation (37), vessel intensity 
and geometric features (38), multiple scales describing the properties 
of stenotic lesions (39), computational fractional flow reserve derived 
data (40), or radiomic features (12, 13), have been proposed.

Few studies (12–14) have explored the radiomic-based 
approach. Jin et al. (12) classified plaques into five classes (minimal, 
mild, moderate, severe and occluded), reaching an accuracy of 
0.84  in the test set. However, their analysis was limited to 2D 
patches containing the lesion, performing a plaque-based analysis 
rather than adopting the clinically relevant patient-level stenosis 
classification approach used in the present study. Li et  al. (13) 
focused on classifying plaques as functionally significant or 
non-significant according to the fractional flow reserve values (with 
0.8 as cutoff), achieving an accuracy of 0.74 on the test set. Unlike 
the present study, which analyzed the full spectrum of cases from 
normal coronary arteries (0% stenosis) to severe stenosis (>50%), 
their study was limited to patients with at least one lesion stenosis 
degree between 30 and 90%, i.e., mild-to-severe stenosis. Notably, 
also this research employed a plaque-based classification instead of 
a patient-based assessment. While the current work outperformed 
both studies (balanced accuracy of 0.91), direct comparisons are 
challenging due to fundamental differences in the analyzed data 
(2D patches and 3D plaques versus MPR images) and 
classification objectives.

DL has gained increasing attention as a tool for coronary stenosis 
evaluation in CCTA. Different architectural solutions have been 
proposed in literature, varying both in their input data format and 
classification objectives. Several studies employed standard CCTA 
images. Jin et al. (16) applied a transfer learning-based ResNet18 
model to classify coronary stenosis as normal (stenosis rate < 50%) 
or abnormal (stenosis rate > 50%). Although they reported a high 
accuracy of 0.99, their study was limited to a basic binary classification 
and a relatively small dataset of 126 images. A similar binary 
approach was developed in Han et  al. (23), where a commercial 
CCTA-based artificial intelligence platform was employed for binary 
classification using either 50% or 70% stenosis as cutoff values, 
achieving AUCs of 0.85 and 0.78, respectively, on 318 patients. 
Conventional CCTA images were also used by Lin et  al. (41) 
employing ConvLSTM network to address a different discrimination 
task into five CAD-RADS classes (1-2-3-4-5). While their multicenter 
study achieved a balanced accuracy of 0.87 on the test set, it required 
a substantially larger training dataset (921 patients, 5,045 lesions) 
compared to our method.

Other studies investigated different input data representations. 
Muscogiuri et al. (17) performed various classifications analyzing 121 
CCTA MPR images per patient, placing them in an 11×11 squared 
image input to a CNN model. Which might lead to lose lesion details. 
When considering a three-class analysis (0 vs. 1-2 vs-3-4-5), they 
obtained an accuracy value of 0.60, which is lower than our results. 

Differently from the current study, their approach focused on 
classifying individual lesions rather than providing a comprehensive 
patient-level assessment, and the final results might have been 
overestimated since no clear patient-based splitting strategy between 

TABLE 2 Analysis of computational complexity for the three autoencoder 
architectures, in terms of parameters number, training time and 
interference time.

Autoencoder 
architecture

Parameters 
(n)

Training 
time (s)

Mean inference 
time/image 

(ms)

AE64 18,100,160 2603.69 0.4 ± 0.016

AE128 18,091,904 2554.38 0.4 ± 0.080

AE256 18,059,008 5921.62 0.4 ± 0.045

FIGURE 4

In each panel, the original image (top) is shown together with its 
reconstructed version (bottom) using AE64. (A) No CAD, 
(B) nonobstructive CAD, and (C) obstructive CAD. The SSIM index for 
these reconstructed images was 0.97, 0.96, 0.96, respectively. AE, 
autoencoder; SSIM, structural similarity.

FIGURE 5

Distribution of the SSIM index for AE64 (autoencoder with latent 
space vector size = 64). AE, autoencoder; SSIM, structural similarity.
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training and test sets was specified. Additionally, compression of 
images into an 11×11 format can lead to loosing crucial lesion details. 
In (18), the authors focused on different anatomical structures, i.e., 
left ventricular myocardium, extracting its characteristic features 
using a CNN-based architecture. Patients were classified according 
to the presence of functionally significant stenosis using a support 
vector machine classifier based on the left ventricle features, thus not 
providing analysis at the coronary vessel level.

Similar to our study, few researches (15, 19, 20, 24, 25) relied on 
MPR image stacks which allow to display the complete course of a 
vessel in 2D (25). CNN-based networks were largely employed 
among these works. In Tejero-de-Pablos et al. (19) a pre-trained 
CNN was used to extract texture features from MPR images of 57 
patients getting an accuracy value of 0.80 on a leave-one-out cross-
validation, to predict significant stenosis (obstruction >50%). This 
method was limited by both its small sample size and its focus on 
individual lesion classification rather than providing a 
comprehensive patient-level assessment, neglecting the overall 
coronary context in the decision-making process. A lesion-specific 
analysis approach is also presented in the study by Gupta et al., (24) 
that tested different DL models (EfficientNet, ResNet15, DenseNet16, 

Inception-ResNet) to detect significant stenosis in individual 
coronary arteries (left anterior descending artery (LAD), right 
coronary artery, or left circumflex artery), using two distinct stenosis 
thresholds: 50% (CAD-RADS 0-1-2 vs. 3-4-5) and 70% (CAD-
RADS 0-1-2-3 vs. 4–5). Maximum AUC values of 0.95 and 0.94 was 
obtained using the LAD-based model using a 50 and 70% as 
thresholds, respectively. However, the study included a small number 
of positive cases (36% for the 50% threshold and 19% for the 70% 
threshold), which may limit the reliability of these findings. The 
same two cut-off values for binary classification were tested in 
Verpalen et al. (20) where pre-trained CNN architectures (21, 42) 
performed a patient-based CAD-RADS scoring analysis. Fifty 
patients and 148 vessels, were evaluated reaching a maximum 
accuracy value of 0.82 and 0.94 for the 50 and 70% stenosis 
thresholds, respectively. Similarly, study (15) employed a 2.5 CNN 
for patient-based classification, achieving an accuracy of 0.865 in 
binary stratification (0 vs. 1-2-3-4-5) and extending the analysis to 
a complete six-class CAD-RADS categorization (0–1–2-3-4-5) 
which got an accuracy of 0.825. A different multi-class analysis was 
performed by Penso et  al. (25), who developed a token-mixer 
architecture to address both binary (50% stenosis threshold) and 

FIGURE 6

Examples of two patients’ classification. Patient 1, with 21 MPR CCTA images and a true diagnosis of non-obstructive stenosis, exemplifies a 
misclassification in the first sub-task: 13 out of 21 images were classified as no-stenosis, preventing progression to the subsequent classification step. 
Patient 7, with 17 images and a true diagnosis of obstructive stenosis, represents an example of successful classification: 13 out of 17 images were 
correctly identified as stenosis in the first step, allowing progression to the final sub-task where the patient received the correct classification 
(obstructive stenosis).
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four-class CAD-RADS classification (0 vs. 1–2 vs. 3–4 vs. 5). Their 
method achieved an accuracy of 0.87  in the binary task but the 
performance decreased to 0.72 when extending the analysis to a 
four-class stratification. Notably, these studies reported performance 
values lower or comparable with respect to ones achieved in the 
current study. However, a direct comparison is challenging due to 
different analytical approaches from individual lesion evaluation to 
distinct CAD-RADS classification tasks.

Considering a three-class (0 vs. 1-2 vs. 3–4-5) stratification task 
using MPR images, literature reports few studies achieving it. Paul 
et al. (21) used an inceptionV3 neural network to obtain a patient-
based classification. Their approach, based on majority voting of nine 
curved multiplanar reformatted CCTA images achieved a balanced 
accuracy of 0.81, lower than the performance obtained in the current 
study (accuracy of 0.91). Their study was limited by an unbalanced 
dataset with underrepresentation of CAD-RADS 3 cases (7.5% of 
patients) and a predominance of non-obstructive cases (71.6%). 
Moreover, the model showed a considerable number of false positives, 
with 15.1% of normal cases being misclassified as nonobstructive 
stenosis, potentially leading to unnecessary additional testing in 
clinical practice. Zreik et al. (22) implemented a multi-task recurrent 
CNN on a dataset of 163 patients (98 for training, 65 for testing), 
showing poorer performance compared to the current study with an 
accuracy of 0.75. A more recent study by Gerbasi et al. (26) explored 
a fine-tuned multi-axis Vision Transformer architecture for both 
binary (0-1-2 vs. 3-4-5) and three-class (0 vs. 1-2-3 vs. 4-5) 
categorization, reaching accuracy values of 0.82 and 0.86, respectively. 
While this approach eliminated the need for image annotations, the 
limited dataset size raised concerns about the robustness of the 
trained network.

It should be noted that most of the cited works employed DL 
architectures different from AEs whose choice was driven by its 
unique ability to perform unsupervised dimensionality reduction, 
compressing the input 2D images from 35,014 samples (854 × 41) to 
a compact 64-sample latent space vector while maintaining high 

reconstruction fidelity. This approach offers several advantages over 
different DL architectures such as CNNs: while CNNs are inherently 
supervised and specifically designed for classification tasks, AEs 
provide greater flexibility through their unsupervised learning 
framework, making them suitable for various downstream analyses 
beyond classification. In addition, all the reported studies employed 
single domain data, such as radiomics or DL. Only one previous 
investigation (14) explored the combination of these two domains, 
but with substantial methodological differences from the present 
study: their analysis was restricted to a binary classification task 
(high-degree stenosis >50% versus low-degree stenosis <50%), 
focused on coronary-level rather than patient-level assessment. 
Additionally, differently from the present analysis, the authors used 
only shape descriptors from segmented lesions as input to a 
CNN-based network, rather than integrating radiomic and DL 
features in a comprehensive analysis framework. Moreover, to the 
best of authors’ knowledge, in the cardiac imaging field, only two 
studies (27, 28) combined DL with radiomics, employing CNN-based 
architectures rather than AE. Compared to the literature, the present 
study introduced major novelties in the field: (i) it pioneered the use 
of autoencoder architecture for DL-based coronary feature extraction 
and integrated them with radiomic features extracted directly from 
MPR images and (ii) proposed a segmentation-free approach. As 
regards the first aspect, the developed approach provided a more 
comprehensive image characterization combining mathematically-
defined radiomic features that quantify image characteristics (such as 
texture and intensity distribution), with learned compressed 
representations that could capture additional information. As regards 
the second aspect, a segmentation-free approach represents a major 
advancement, by overcoming the time-consumption issue and 
enhancing the robustness and reproducibility of the analysis while 
maintaining high performance (overall balanced accuracy of 0.91 on 
the test set).

Considering all the above, the present study proposed a novel 
strategy for coronary stenosis grading and achieved better diagnostic 
performance compared to the state-of-the-art models addressing 
patients’ therapy-driven stratification.

Several limitations should be acknowledged in this study. First, 
the dataset presented significant class imbalance, which could affect 
the model’s generalization capabilities. Second, the single-center 
nature of the data collection and the absence of external validation 
limited the assessment of the algorithm’s generalizability across 
different clinical settings. Ultimately, even if some relations between 
the AE features and clinical variables were found, an exhaustive 
interpretation of this AE-derived representation, along with 
established direct clinical correlations with patients’ medical 
characteristics, remained challenging.

Future developments will focus on addressing these limitations 
through multiple approaches. A crucial enhancement would involve 
expanding the dataset to include multiple centers, thereby 
increasing both sample size and population diversity to improve the 
model’s robustness. Additionally, testing the model on external 
validation sets, from different imaging datasets, would provide a 
rigorous assessment of the model’s generalization capabilities. 
Another interesting development would be the implementation of 
interpretability strategies to link bottleneck features to specific 
image regions, providing clinicians with more transparent and 
interpretable results. Such improvements would represent crucial 

TABLE 3 Performance metrics on 30 stratified training-validation splits.

Model Metric Task (a) Task (b)

AE-based 

features

Balanced accuracy 0.72 ± 0.02 0.62 ± 0.02

Macro sensitivity 0.79 ± 0.09 0.76 ± 0.09

Macro specificity 0.72 ± 0.02 0.62 ± 0.02

Macro F1-score 0.84 ± 0.05 0.69 ± 0.04

Macro AUC 0.77 ± 0.06 0.62 ± 0.07

Radiomic 

features

Balanced accuracy 0.86 ± 0.02 0.71 ± 0.02

Macro sensitivity 0.88 ± 0.05 0.75 ± 0.09

Macro specificity 0.83 ± 0.04 0.72 ± 0.02

Macro F1-score 0.90 ± 0.03 0.74 ± 0.04

Macro AUC 0.90 ± 0.05 0.78 ± 0.05

AE-based and 

radiomic 

features

Balanced accuracy 0.88 ± 0.04 0.73 ± 0.03

Macro sensitivity 0.88 ± 0.05 0.77 ± 0.07

Macro specificity 0.88 ± 0.03 0.73 ± 0.03

Macro F1-score 0.92 ± 0.02 0.76 ± 0.04

Macro AUC 0.92 ± 0.03 0.79 ± 0.06

Values are expressed as mean ± standard deviation. AE, autoencoder.

https://doi.org/10.3389/fmed.2025.1536239
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Lo Iacono et al. 10.3389/fmed.2025.1536239

Frontiers in Medicine 10 frontiersin.org

steps toward potential clinical implementation of the 
proposed methodology.

5 Conclusion

In the current study, for the first time in literature, CCTA-based 
MPR images of coronary arteries were used to develop a machine 
learning model combining radiomic and AE-based features. In 
particular, a cascade pipeline stratified the three patient classes via 
two sub-tasks: no CAD vs. CAD, and nonobstructive vs. obstructive 
CAD. The combined approach showed evident improvements with 
respect to the single radiomic and AE-based models: a higher overall 
balanced accuracy was achieved and the prediction accuracy for both 
nonobstructive and obstructive CAD improved, with only 4 
misclassifications, compared to 10 and 7 obtained with the AE-based 
and radiomics-based models, respectively. Also, it is important to 
highlight that these results were achieved using a simple AE having a 
bottleneck size of 64 able to reconstruct 95% of MPR images with an 
SSIM higher than 0.80. The automated patient stratification in the 
three stenosis grade classes (no stenosis, nonobstructive, and 
obstructive coronary stenosis) hold high clinical significance, 
particularly for therapeutic decision-making.
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