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Unveiling the molecular
mechanisms of stigmasterol on
diabetic retinopathy: BNM
framework construction and
experimental validation
Hongrong Zhang†, Yufan Li†, Qi Xu*† and Zhaohui Fang*

Anhui University of Chinese Medicine, Hefei, China

Background: Diabetic retinopathy (DR), one of the most common complications

of diabetes, severely impacts patients’ quality of life. The combined use of the

traditional Chinese medicines Astragalus, Fructus ligustris, and Cornus officinalis

has yielded considerable therapeutic effects in clinical DR treatment.

Methods: In this study, a multimodule framework (BNM) encompassing

bioinformatics, network pharmacology, and machine learning (ML) based on

molecular fingerprints was innovatively developed to thoroughly investigate the

molecular mechanisms of this Chinese medicine in treating DR.

Results: A total of 40 active components and 12 core targets were identified.

Enrichment analysis identified key pathways such as VEGF signaling pathway,

TNF signaling pathway and HIF-1 signaling pathway. Prediction models using key

targets, such as PPARG, were constructed from the GEO database and validated

via immune infiltration analysis and molecular docking, revealing that PPARG

may be a potential target for DR treatment. Moreover, the core component

of this Chinese medicine, stigmasterol, was identified using a ML model based

on molecular fingerprints. In vivo experiments demonstrated that stigmasterol

can regulate glucose and lipid metabolism, improve systemic inflammatory

levels, and ameliorate ocular vascular changes in DR by modulating the

expression of PPARG.

Conclusion: The BNM framework suggests that PPARG may be an important

target for stigmasterol in the treatment of DR, with its mechanism potentially

related to the VEGF/VEGFR pathway.

KEYWORDS

herbal medicine, diabetic retinopathy, machine learning, molecular fingerprint,
experimental verification

1 Introduction

Diabetic retinopathy (DR) is one of the most common microvascular complications of
diabetes. Currently, approximately 103 million people with diabetes worldwide are affected
by DR (1). A 2020 study on the causes of blindness and visual impairment revealed that
DR is the fifth most common cause of preventable blindness and moderate to severe visual
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impairment (2). Currently, DR is commonly treated clinically
with intravitreal injections of steroids and anti-vascular endothelial
growth factor. However, these treatments can have unstable
therapeutic effects and considerable side effects (3). Consequently,
it is important to find safe and effective new drugs.

Since traditional Chinese medicines (TCMs) are composed of a
variety of herbs with extensive active ingredients and drug targets,
they have shown outstanding clinical efficacy in the treatment
of DR (4). The triplet medicine composed of Astragalus-Fructus
ligustris-Cornus officinalis, known as HuangQi (HQ)-NvZhenZi
(NZZ)-ShanZhuYv (SZY), has been extensively applied in the
clinic to treat DR and serves as the core medicinal component
in numerous traditional Chinese medicine prescriptions, as it can
effectively ameliorate the clinical symptoms of DR (5). According
to TCM theory, vision is closely related to the liver, as well as
the contents of Qi and blood in humans. HQ supplements Qi
whereas NZZ and SZY supplement the blood in liver, which then
sends blood upwards to the eyes to supplement Qi and the blood
and improve eyesight. Previous laboratory studies have shown that
the astragaloside IV contained in HQ inhibits the expression of
miR-138-5p, thereby increasing the activities of Sirt1/Nrf2 and the
antioxidant capacity of cells to improve ferroptosis and reduce cell
death, ultimately inhibiting the progression of DR (6). Luteolin, an
effective component of NZZ, can reduce the expression of NLRP1,
NOX4, TXNIP, and NLRP3, thereby increasing inflammation and
oxidative stress and inhibiting the retinal cell apoptosis in DR rats
(7). The quercetin and saponins extracted from SZY can lower
blood glucose and blood lipid levels by protecting islet function,
thus improving insulin resistance and regulating glucose and lipid
metabolism (8–11). Moreover, SZY extract can improve diabetes-
related complications (12). However, the specific effects, targets and
mechanisms of the combined use of these three drugs have not been
systematically studied.

Fortunately, the development of artificial intelligence (AI)
technology has brought new opportunities for research in this
field. Owing to its excellent data processing capabilities, AI can
reveal the deep connections between the chemical components
of TCMs, diseases, and targets, providing a new approach to
understand the complex interactions between the components
of TCMs and elucidating the mechanisms of diseases. For
example, Li et al. combined machine learning (ML) and deep
learning models to predict antioxidant activity in gentian (13).
Gu et al. developed a heterogeneous graph neural network model
to predict the compatibility strength and probability among the
herbs within the relevant prescriptions of colorectal adenoma
(14). Zhang et al. applied the deep learning graph embedding
algorithm framework Node2vec, in combination with Danshen and
Chuanxiong, to successfully predict new targets for the treatment
of cardiovascular diseases (15). These studies indicate that the
application of AI technology in TCM research cannot only promote
an understanding of the mechanisms of action of TCMs but also
provide new perspectives for explaining the interactions between
TCMs and diseases.

In this study, an integrated framework (BNM) encompassing
bioinformatics, network pharmacology, and molecular fingerprint
ML to assess the potential of the using the triplet medicine
HQ, NZZ, and SZY for the treatment of DR was successfully
developed and validated. We extracted the active components of
these herbs from TCM databases and the literature and performed

functional enrichment analysis, constructed a diagnostic model,
and carried out immunological analysis and molecular docking
by screening core targets and components. Furthermore, we
developed a ML model using 990 compounds from the LOPAC-
1280 and Prestwick Chemical Library and validated it with the core
components of the triplet medicine. We also applied the Breaking
of Retrosynthetically Interesting Chemical Substructures (BRICS)
and Retrosynthetic Combinatorial Analysis Procedure (RECAP)
algorithms for fragment analysis of the core components to evaluate
the potential of this model to generate lead components. Finally,
these findings were corroborated through animal experiments
(Figure 1). In summary, in our research, we evaluated the efficacy
of combined DR treatment with the triplet medicine from multiple
perspectives, utilized a molecular fingerprint ML model to identify
effective TCM components, and provided a novel perspective for
drug research and repurposing.

2 Materials and methods

2.1 Construction of the DR
drug-associated gene network

All the components in HQ, NZZ, and SZY were collated on the
basis of the Traditional Chinese Medicine Systems Pharmacology
Database and Analysis Platform (TCMSP). Generally, oral
bioavailability (OB) is one of the most crucial absorption,
distribution, metabolism and excretion (ADME) pharmacokinetic
parameters, whereas drug likeness (DL) indicates the similarity
between the physical properties of the component in question
and those of known drugs (16). In this study, the criteria for
identifying effective components were set to OB ≥ 30% and
DL ≥ 0.18. The relevant targets of the bioactive components
were subsequently identified using the SwissTargetPrediction
database and standardized using the UniProt database. DR-
related genes were obtained from the Comparative Toxicogenomics
Database (CTD) and the GeneCards and Disease Gene Network
(DisGeNET) databases. The genes associated with diseases and
drugs were intersected using the UpSetR package in R software to
identify the intersecting genes. Three DR–TCM-related genes were
subsequently added to the gene set after review of the literature.
A protein–protein interaction (PPI) network was constructed
on the basis of the gene sets. The PPI network developed
using the STRING platform, an interactive gene database, gave
a high confidence interaction score (0.7), indicating a targeted
network. All of the database searches were limited the species to
Homo sapiens.

2.2 Core network cluster mining and
functional analysis

To further explore the core network, we employed Cytoscape
software (version 3.82) to visualize the target network. Network
analysis tools were employed to calculate the key network metrics,
including the network diameter, the clustering coefficient, and
multiedge node pairs. The MCODE plugin, which employs
molecular complex detection, was used for core network mining on
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FIGURE 1

Workflow of this study. Different colors denote different modules. The pink color represents the network pharmacology module, the green color
represents the bioinformatics module, the purple color represents the molecular fingerprint-based ML module, and the blue color represents the
animal experimental validation module.

the target network. The core network group was obtained with the
following parameters: degree cut-off = 2, node score cut-off = 0.2,
K-core = 2, and max depth = 100.

The clusterProfiler package in R was employed for gene
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analyses of both the target and core networks, and the
results were filtered at the level of p-value ≤ 0.05. GO analysis
encompasses three domains: biological process (BP), molecular
function (MF), and cellular component (CC). The GO results were
filtered to exclude the terms significantly unrelated to DR. KEGG
analysis revealed the top 40 target networks and the top 30 core
networks, as the latter results were weakly correlated with DR.

The results were plotted using the R packages ComplexHeatmap,
ggplot2, and circlize.

2.3 Identification of differentially
expressed genes (DEGs)

Mining of the core network group and functional analysis
revealed that 12 core targets were strongly correlated with DR.
To further investigate and confirm the biological functions of the
core targets in DR, we randomly selected PPARG for subsequent
analysis. The Gene Expression Omnibus (GEO) database includes
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high-throughput gene expression data, DNA microarray data, and
hybridization array data (17). The GSE146615 microarray dataset,
including 42 control samples and 52 samples from individuals
with DR, was downloaded from the GEO database. Differential
expression analysis was performed using the limma package in R.
The limma package is renowned for its capabilities in terms of data
normalization and precise gene expression data interpretation, and
has therefore become the preferred choice for high-throughput and
microarray differential analysis (18). The screening criteria were
|log (FC)| > 1 and p-value < 0.001. The ggplot2 package was
employed to generate a volcano plot, which was used to visualize
the top 30 DEGs. A focused analysis of PPARG was subsequently
conducted to explore its expression in the normal and DR groups,
and the data were plotted with the ggpubr package.

2.4 Diagnostic prediction model
establishment and immune analysis

To evaluate the diagnostic and predictive utility of PPARG for
DR, a predictive model was developed using microarray datasets.
Analysis was conducted using the pROC package in R software.
Binary classification models are commonly evaluated using receiver
operating characteristic (ROC) curves (19). The position of the
ROC curve in relation to the upper left quadrant is indicative
of the classification performance of the method in question.
The bootstrap algorithm was employed for statistical analysis.
Bootstrap, proposed by Efron, is a simulation-based sampling
statistical inference algorithm that does not require assumption of
a specific theoretical distribution (20). The area under the curve
(AUC) can then be used to assess the predictive accuracy of PPARG.
A larger AUC indicates greater accuracy of using PPARG for DR
diagnosis. The abscissa False Positive Rate (FPR) and ordinate True
Positive Rate (TPR) of the ROC curve can be calculated via the
following formula.

FPR =
FP

FP+TN
(1)

TPR =
TP

TP+FN
(2)

Here, TP, TN, FP, and FN represent the numbers of true positive,
true negative, false positive, and false negative results, respectively
(Equations 1 and 2). TP represents the number of samples correctly
predicted as positive by the model. TN represents the number of
samples correctly predicted as negative by the model. FP represents
the number of samples predicted as positive by the model but
that were actually negative. FN represents the number of samples
predicted as negative by the model but that were actually positive.
FPR is calculated as the proportion of actual negative samples
that were incorrectly predicted as positive by the model. TPR is
calculated as the proportion of actual positive samples that were
correctly predicted as positive by the model.

An investigation was subsequently conducted to determine
whether PPARG disrupts normal homeostasis by mediating
immune dysregulation, thereby leading to DR. To this end, the
CIBERSORT algorithm was employed to assess the correlation
between PPARG and 22 immune cell types within the dataset. The

CIBERSORT algorithm is a canonical computational method for
analyzing immune outcomes. It employs the principles of linear
SVM regression to deconvolve the expression profiles of immune
cell subtypes and calculate their abundance (21). The statistical
threshold was set to p < 0.05, and the results were visualized using
the ggpubr package in R.

2.5 Binding free energy calculations

To evaluate the functional effects of the active components
present in HQ, NZZ, and SZY on PPARG, we employed AutoDock
software (version 1.5.6) to compute the binding free energies
between PPARG and these components. The structure of PPARG
was retrieved from the RCSB Protein Data Bank (PDB) database,
and the water molecules present were subsequently removed.
The structures of the active components of these three medicinal
preparations were sourced from the PubChem database. After
processing, a Lamarckian genetic algorithm was used to predict
the molecular conformations of the protein receptor and small
molecules, and the binding energies of the active ingredients were
computed separately. These binding energies indicate the affinity of
the small molecule for the protein. The binding energies were also
calculated via the following formula:

1GBIND = 1GVDW +1GHBOND +1GELECT +1GTOR +

1GDESOLVA (3)

In Equation 3, 1GBIND represents the binding free energy,
1GVDW denotes the van der Waals potential, 1GHBOND
represents the hydrogen bonding potential, 1GELECT denotes
the electrostatic potential, 1GTOR represents the dihedral angle
torsional energy, and 1GDESOLVA indicates the free energy
of solvation; the units are kcal·mol−1. The coordinates of the
active cavity center of PPARG were defined as x_center = 3.812,
y_center = 49.518, and z_center = 67.059, and the search
space box was set to 126∗126∗126. The time of conformational
searches was set to 50. 1GBIND <−5 kcal·mol−1 indicates good
binding capacity, while 1GBIND <−7 kcal·mol−1indicates strong
binding capacity.

Additionally, the three highest binding energies of the active
components with PPARG were selected. The pyplot module
in Python was used to construct a bar chart. Finally, the
conformations were visualized with PyMOL software (version 2.1)
according to the calculated binding free energies.

2.6 Drug composition model validation

2.6.1 Data assembly and feature determination
To validate the therapeutic efficacy of the aforementioned nine

compounds in DR, a diverse array of compounds was gathered
to train a ML model. We collected 394 negative compounds from
LOPAC-1280, and defined the 9 components of HQ, NZZ, and SZY
as positive compounds. Significantly more negative compounds
than positive compounds were included to ensure that the model
would be able to identify positive compounds with greater accuracy.
Although the majority of the compounds were deemed negative, it
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is possible that a small proportion of these molecules may have been
mislabelled, as there may be undiscovered compounds that could be
used to treat DR.

These 403 compounds were converted to SMILES format,
and the RDKit package in Python was employed to compute
a range of physical and chemical descriptors from 200 unique
aspects, including Hybrid Estate-VSA descriptors, topochemical
descriptors, and the QED and Lipinski parameters. RDKit is
a computational chemistry toolkit that can process molecules,
analyze different chemical input formats, filter out unwanted
compounds, standardize molecules, and calculate various
molecular characteristics (22). The results were plotted using
the matplotlib package in Python.

2.6.2 Model training
To increase the computational accuracy and stability of the

model, three distinct ML algorithms were employed: XGBoost
2.0.3, random forest (RF), and SVM. Both RF and SVM utilized
scikit-learn 1.3.0. The Gini index was used to assess the feature
importance of the 200 physicochemical descriptors in the dataset.
Feature importance helps to indicate the significance of the
physicochemical descriptors, which are believed to be closely linked
to classification. When each feature node pertains to the same
class, the Gini index is minimal, leading to the highest purity and
minimal uncertainty (23).

The acquired feature dataset was subsequently reconstructed
and assembled using various models. The dataset containing 403
compounds was split into training and testing sets via stratified
random sampling (70% for training and 30% for testing). To ensure
fair comparison among the models and robust model performance,
the positive samples were fully utilized. Following cross-validation
to check for overfitting, model comparisons were assessed via three
performance metrics: precision, recall, and F1 score, as follows.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 score =
2

1
Precision +

1
Recall

(6)

Precision represents the proportion of samples predicted to be
positive by the model that are actually positive, emphasizing the
accuracy of the prediction [Equation (4)]. Recall represents the
proportion of actual positive samples that were correctly predicted
by the model, which emphasizes the coverage of positive samples
(Equation 5). F1 score is the harmonic mean of Precision and
Recall, which is used to assess the model’s performance in a
combined manner (Equation 6). F1 score is designed to balance
Precision and Recall, thereby mitigating the extremes that may
occur when these metrics are used individually. Precision, recall,
and F1 score take values between 0 and 1, with higher values
indicating better predictive performance of the model.

Moreover, we considered the possibility of optimizing the three
models in accordance with the existing predictions. Encouragingly,
the class weight parameters for the SVM and RF models
were adjusted to the balanced and default values, respectively.
Additionally, the maximum depth of the XGBoost model was 10

and the colsample_bytree was 0.5, which were suggested to be the
optimal choices. The optimized model was subsequently retrained,
and the results of each prediction were evaluated in detail by
plotting the mean AUC, which can eliminate the instances of a
single prediction being either poor or overly high, facilitating an
objective assessment of the performance of the three models on the
dataset (24). Three ML models were compared using the Python
package numpy, sklearn, and matplotlib for visualization.

2.6.3 Model evaluation
Upon evaluation, the SVM model exhibited the least predictive

power, and the XGBoost model was marginally superior to the
RF model in terms of predictive ability. XGBoost was selected for
evaluation to ascertain its performance in practical applications,
and the dataset was augmented by incorporating 596 compounds
from LOPAC-1280 and the Prestwick Chemical Library for a total
of 999 distinct compounds. The compounds were subsequently no
longer categorized as either negative or positive, enabling the model
to autonomously interpret and make decisions on the sole basis
of the physical and chemical descriptions, thereby completing the
identification task. The data were normalized using XGBoost, and z
scores and probabilities were calculated. A z_score greater than 1.83
was considered indicative. The z scores were calculated as follows:

X̃ =
1
n

n∑
i = 1

Xi (7)

Z score =
X̃ − E[X]
σ X /

√
n

(8)

In Equation (7), X̃ denotes the average value, n represents the
number of samples, and Xi represents the observed value of the
i-th sample. X̃ is calculated by summing the observed values of
all samples and dividing by the number of samples n, thereby
reflecting the center of the data set. In Equation (8), E[X] denotes
the overall mean. σ X denotes the standard deviation. The z_score
indicates whether the sample mean deviates significantly from the
overall mean, which can serve as one indicator among others for
assessing the model’s performance. The results were plotted using
the matplotlib package in Python.

2.6.4 Exploring the possibility of identifying lead
compounds

Decomposing drug molecules into fragments and constructing
chemically feasible fragment libraries are pivotal stages in the
drug discovery process. To explore the nine drug components
of HQ, NZZ and SZY for lead compound development on
the basis of fragments, the RECAP and BRICS algorithms were
employed to extract commonalities from the drug molecular
fragments. The RECAP algorithm, which is based on retrosynthetic
analysis, manipulates a series of cleavage sites to yield a set of
plausible drug molecular fragments that adhere to the fundamental
principles of practical cleavage tools (25). In contrast, the BRICS
algorithm segments molecules on the basis of bond formation (26).
Consequently, fragments similar to those generated by BRICS can
be used to reassemble new drug molecules, thereby increasing the
probability that these fragments can be used to synthesize new
drugs (27). Finally, molecular structures were drawn using the
rdkit.Chem.Draw package in Python.
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2.7 Experimental verification in an animal
model

2.7.1 Animal grouping, modeling, and treatment
The number of experimental animals per group was calculated

using the resource-equation method with the following formula:

E = K(n− 1) (9)

In Equation (9), K is the number of treatment groups, n is the
number of animals per group, and E is the error degrees of freedom.
Setting E = 20, the equation yielded n = 6 animals per group. To
accommodate potential attrition, 10 animals were allocated to each
group (28).

Forty 8-week-old SPF male db/db mice and 10 8-week-old
SPF male C57BL/6 mice were reared at 22.5◦C with 40–50%
humidity on a 12/12 h light/dark cycle. The C57BL/6 mice were
fed ordinary feed, while the db/db mice were fed a high-fat diet.
This study was approved by the Animal Ethics Committee of Anhui
University of Chinese Medicine (ethics number: AHUCM-mouse-
2024116) and was conducted in strict accordance with the animal
experiment guidelines.

After 1 week of adaptive feeding, the db/db mice were
randomly divided into a model group (M; 0.2 mL·kg−1

·d−1 0.9%
NaCl), a positive control group (P; 10 mg·kg−1

·d−1 pioglitazone
+ 230 mg·kg−1

·d−1 calcium oxybenzoate), a Chinese medicine
intervention group (D; 910 mg·kg−1

·d−1), and a single drug
intervention group (S; 100 mg·kg−1

·d−1 stigmasterol), with
10 animals in each group. Once a day for 12 weeks, the
C57BL/6 mice in the blank control group (C) were given an
equal volume of 0.9% NaCl solution. The general conditions
of the mice, such as activity, hair color, and water intake,
were observed. Body mass was measured every 3 weeks, and
blood glucose level, determined from a sample taken from
the tip of the tail, was measured before and 12 weeks
after treatment.

2.7.2 Haematoxylin and eosin staining
The retinal tissue of the mice was fixed with 4%

paraformaldehyde solution for 24 h, dehydrated, embedded
in paraffin and made into 5 µm slices. The slices were
treated with xylene, anhydrous ethanol and 75% ethanol
in sequence, washed, and stained with haematoxylin for
5 min. Following dehydration with gradient ethanol and
staining with eosin solution for 20 min, the pathological
morphologies of the retinal tissue slices were observed
via optical microscopy after dehydration with anhydrous
ethanol and sealing and making transparent with xylene
and neutral gum.

2.7.3 Detection of biochemical indices
Fasting blood glucose (FBG), total cholesterol (TC), and

triglyceride (TG) levels were assessed using a fully automated
biochemical analyser. The levels of glycated hemoglobin A1c
(HbA1c), low-density lipoprotein cholesterol (LDL-C), high-
density lipoprotein cholesterol (HDL-C), PPARG, tumor necrosis
factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6),
and interleukin-10 (IL-10) were determined via enzyme-linked
immunosorbent assays (ELISAs).

2.7.4 Western blotting (WB)
The tissue blocks were washed with precooled phosphate-

buffered saline (PBS) 2–3 times, cut into small pieces and placed
in a homogenization tube, and 10 volumes of lysis solution was
added. Homogenization was performed on ice for 30 min with
shaking every 5 min to ensure complete tissue lysis. Then, the
mixture was centrifuged at 12,000 rpm and 4◦C for 10 min, and
the supernatant, which contained the total protein, was collected.
The protein concentration was determined via the BCA method.
After performing gel electrophoresis, transferring to a PVDF
membrane, and sealing, the PVDF membrane was immersed in
1:1,000 dilutions of the following monoclonal antibody solutions at
4◦C with shaking on a bed overnight: vascular endothelial growth
factor (VEGF), VEGFR2, PEPCK, G6PASE, SREGBP-1C, Fas, and
PPARG. Then, sheep anti-rat HRP-labeled secondary antibody
(diluted 1:5,000) was added for incubation at 37◦C for 2 h. The
samples were washed with Tris-buffered saline containing Tween-
20 (TBST) 3 times for 5 min each time. Finally, the samples were
analyzed with an enhanced chemiluminescence (ECL) system.

2.7.5 Quantitative polymerase chain reaction
(qPCR)

The tissue blocks were ground completely, and an appropriate
amount of TRIzol reagent was added to extract total RNA. Reverse
transcription was performed according to the kit instructions,
followed by gentle mixing and centrifugation The reverse
transcription program was as follows: 25◦C for 5 min, 42◦C
for 30 min, and 85◦C for 5 min. After reverse transcription,
amplification was performed as follows: predenaturation at 95◦C
for 5 min; followed by 40 thermal cycles of denaturation at 95◦C
for 10 s, annealing at 60◦C for 20 s, and extension at 72◦C for 20
s. β-Actin was selected as the internal reference to determine the
Ct value of each target. The relative mRNA expression levels were
calculated via the 2-11Ct method. The primers used are shown in
Table 1.

2.7.8 Statistical analysis
The BNM framework was developed using R (version 4.3.0)

and Python (version 3.8). Data were analyzed using SPSS version
26.0. The Shapiro-Wilk test was employed to assess the normality
of the experimental data. Results are presented as mean± standard
deviation. Homogeneity of variances across groups was evaluated
using Bartlett’s test. Differences among groups were analyzed
using one-way ANOVA, followed by Tukey’s post hoc analysis for
multiple comparisons. For comparisons between two groups, an
independent samples t-test was conducted. A significance level
of α = 0.05 was set, and p < 0.05 was considered statistically
significant. The results of the animal experiments described above
were visualized using GraphPad Prism version 9.0.0.

3 Results

3.1 TCM component mining and target
acquisition

TCMSP database screening yielded a total of 40 chemical
components, of which 17 were from HQ, 9 were from NZZ,

Frontiers in Medicine 06 frontiersin.org

https://doi.org/10.3389/fmed.2025.1537139
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1537139 May 5, 2025 Time: 16:41 # 7

Zhang et al. 10.3389/fmed.2025.1537139

TABLE 1 Primer sequences used for qPCR.

Gene Primer Sequence (5′-3′)

VEGF F
R

TCTTCCAGGAGTACCCCGAC
GGGATTTCTTGCGCTTTCGT

VEGFR2 F
R

TCCACATGGGCGAATCACTC
GCAATTCTGTCACCCAGGGA

PEPCK F
R

TGCGGATCATGACTCGGATG
AGGCCCAGTTGTTGACCAAA

G6PASE F
R

GGGCATCAATCTCCTCTGGG
GTCCAGGACCCACCAATACG

SREBP-1c F
R

ACTGGACACAGCGGTTTTGA
CTCAGGAGAGTTGGCACCTG

Fas F
R

GTGGATCTGGGCTGTCCTG
AGCAAAATGGGCCTCCTTGA

PPARG F
R

ATTGAGTGCCGAGTCTGTGG
GGCATTGTGAGACATCCCCA

β-actin F
R

GATATCGCTGCGCTGGTCG
AGGTGTGGTGCCAGATCTTC

and 14 were from SZY. Mining using Swiss Target Prediction
yielded a total of 1071 targets, of which 475 were from HQ,
226 were from NZZ, and 370 were from SZY. A total of
4,560 targets, 648 targets, and 13,901 targets related to DR
were subsequently identified from the GeneCards, DisGeNET,
and CTD databases, respectively. The UpSetR package was used
for intersection of the six different target classes, as shown in
Figure 2A, and 30 target intersecting genes were obtained. After
literature mining, MAPK14, ICAM1, and IL6 were added to
the list intersecting genes to form a gene set. High-confidence
interaction scores were subsequently generated using the STRING
database to obtain target network clusters, which helped us
to better understand the interactions between the therapeutic
targets.

3.2 Core network construction and
functional enrichment analysis

To further explore the interactions in the core network,
we analyzed the target network cluster. The target network
cluster results were further analyzed using the MCODE plugin
in Cytoscape software, and a network cluster consisting of
12 core genes was obtained (Figure 2D), wherein red nodes
represent the core network genes and blue nodes represent
the noncore network genes. Moreover, we aimed to assess
which relevant DR biological processes and pathways might
be affected by HQ, NZZ, and SZY. We conducted GO and
KEGG analyses on the gene set and the core network cluster.
The GO analysis of 33 genes yielded 1,262 entries. After
removing the terms clearly unrelated to DR, we found associations
with positive regulation of fat cell differentiation, response to
insulin, and response to lipopolysaccharide amongst the BPs.
The MFs were focused on steroid binding and transmembrane
receptor protein tyrosine kinase activity. The CCs were centered
on the membrane raft and blood microparticles (Figure 2B).
The 12 core network clusters contained a total of 1226 GO

entries. Upon comparison, we discovered that the main enriched
terms were associated with muscle cell proliferation, the cellular
response to reactive oxygen species, and the response to
lipopolysaccharide (Figure 2E). Interestingly, both GO analyses
included the regulation of fat cell differentiation and the response
to lipopolysaccharide, indicating that these two biological processes
may be important. Moreover, the KEGG enrichment results for
the 33 genes and 12 core network clusters together indicated
that the VEGF signaling pathway, TNF signaling pathway and
HIF-1 signaling pathway may play key roles in DR therapy, as
their degree of enrichment and pathway importance were higher
(Figures 2C,F).

3.3 Validation of PPARG in clinical
samples

To explore the functions of the core network genes in
DR, we selected PPARG from the GSE146615 microarray
dataset as the target for further investigation. After filtering
and screening, 331 genes were differentially expressed, amongst
which 162 were upregulated and 169 were downregulated. The
volcano plot displaying the top 30 DEGs (Figure 3A) revealed
a significant difference in the expression of PPARG, which
was consistent with our previous analysis. Additionally, after
performing a separate analysis of the PPARG gene, we found
that the expression of PPARG in the DR group was very
significantly lower than that in normal tissue (p < 0.001)
(Figure 3B).

3.4 Analysis of the diagnostic prediction
model performance and immune
microenvironment analysis

To evaluate the diagnostic value of PPARG for DR, we
established a PPARG diagnostic prediction model on the basis
of the GSE146615 dataset. The TPR and FPR of PPARG were
evaluated via ROC curve analysis, and the results revealed that the
AUC value of PPARG was 0.720 (95% CI: 0.615–0.821) (Figure 3C).
These findings indicate that PPARG has high diagnostic value for
DR. To further explore whether PPARG affects the development of
DR through immune cells, we evaluated the relationship between
PPARG expression and immune cells in DR using the CIBERSORT
algorithm. Considering p < 0.05 as a correlation, PPARG was
negatively correlated with four immune cells (Figure 3D), namely,
plasma cells (p < 0.001), gamma delta T cells (p < 0.001),
M1 macrophages (p = 0.001) and naive B cells (p = 0.018).
PPARG was positively correlated with the infiltration of 9 types of
immune cells, namely, M2 macrophages (p < 0.001), eosinophils
(p < 0.001), CD8 T cells (p < 0. 001), activated dendritic cells
(p < 0.001), monocytes (p < 0.001), follicular helper T cells
(p = 0.001), activated NK cells (p = 0.002), regulatory T cells
(Tregs) (p = 0.007) and memory B cells (p = 0.02). Taken
together, these findings suggest that PPARG may play a key role
in the progression of DR by regulating immune cells in the
body.
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FIGURE 2

Drug–disease network mining and functional analysis. (A) The drug targets of HQ, NZZ, and SZY were intersected with the acquired DR disease
targets. (B) GO analysis of target network targets; blue represents BPs, yellow represents MFs, and green represents CCs. The closer the dots are to
the periphery, the greater the significance of the GO entry. (C) KEGG enrichment analysis of the target network. A larger number of genes is
associated with a more significant KEGG enrichment result. (D) Core network target mining. (E,F) GO and KEGG analyses of the core network targets.

3.5 Analysis of the binding free energies

To identify the ability of the identified components to bind to
the target, we calculated the binding free energies between PPARG
and selected components. The structures of 40 components were
obtained from PubChem, of which 17 were from HQ, 9 were from
NZZ and 14 were from SZY. The protein structure of PPARG
was obtained from the RCSB PDB database (ID: 8aty). The 40
drugs were docked to PPARG, and the three drugs with the highest
binding free energies were selected for visualization (Figure 4A).
The results indicated that the three most active components of HQ
and their binding free energies with PPARG were−6.01 kcal·mol−1

(betulinic acid), −5.17 kcal·mol−1 (hederagenin), and −5.12
kcal·mol−1 (calycosin). The three most active components of NZZ
and their binding free energies with PPARG were−4.54 kcal·mol−1

(β-sitosterol),−4.9 kcal·mol−1 (eriodictyol), and−5.33 kcal·mol−1

(lucidusculine). Finally, the three most active components of SZY
and their binding energies with PPARG were −5.18 kcal·mol−1

(telocinobufagin), −5.94 kcal·mol−1 (stigmasterol), and −5.64
kcal·mol−1 (tetrahydroalstonine). Figures 4B–J show that the
components adopted different binding modes at the PPARG
site, forming hydrogen bonding, H-π bonding and π-π bonding
interactions. The above results indicate that these components have
good, stable binding to PPARG in terms of binding free energy,
verifying the therapeutic effects of HQ, NZZ, and SZY in DR.

3.6 Assessment of feature importance in
the ML models

We initially assembled a dataset of 9 DR (positive) and
nonDR (negative) compounds identified via TCM mining. The
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FIGURE 3

Evaluation of the DEGs, diagnostic modeling, and immunoassays. (A) Volcano map of the DEGs from the GSE146615 dataset (Significance increases
from blue to red, with deeper red indicating higher significance of DEGs). (B) Differential expression of PPARG in DR and normal tissues in the
GSE146615 dataset. (C) ROC curve and AUC of PPARG for DR diagnosis. The ROC curve is depicted as a red line. (D) PPARG and immune cells:
plasma cells, gamma delta T cells, M1 macrophages, naive B cells, M2 macrophages, eosinophils, CD8 T cells, activated dendritic cells, monocytes,
follicular helper T cells, activated NK cells, regulatory T cells (Tregs), and memory B cells. The green shading represents the confidence interval of
the fitted curve.
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FIGURE 4

Binding free energy calculations. (A) Binding free energies of nine herbal components to PPARG. (B–J) Betulinic acid, hederagenin, calycosin,
β-sitosterol, eriodictyol, lucidusculine, telocinobufagin, stigmasterol, and tetrahydroalstonine bind to PPARG with different binding modes. The
green compound structure represents the small-molecule drug, the white indicates the protein, and the red highlights distinct protein residues.

nonDR data include a wide range of FDA-approved or clinical-
stage compounds from LOPAC-1280, and 394 compounds were
identified as clearly not associated with DR, such as adaphostin,
trimipramine maleate, and propionylpromazine hydrochloride,
upon analysis of both the LOPAC-1280 database and literature
mining. The chemical structures of the compounds in the dataset
were then converted into numerical format for model training, with
0 (negative) and 1 (positive), and 200 physicochemical descriptors
were calculated using the RDKit package. We subsequently used RF
to determine the feature values for model validation on the basis
of physicochemical descriptors, performed feature selection on the
entire dataset, and filtered out feature-irrelevant physicochemical
descriptors to intervene in the impurity metric via the Gini index.
After normalization, we obtained 120 feature values (Figure 5A
and Supplementary Table 1), which were used in conjunction with
a dataset of 403 compounds to train the different models for DR
analysis.

3.7 Model validation

We then attempted to train the dataset using three different ML
models: SVM, RF and XGBoost. Although the SVM algorithm is
usually applied to linearly divisible datasets, the clever feature of
SVM is that it can use kernels for classification and is therefore
equally balanced when the data are not divisible. The dataset was
randomly divided into a training set (split = 0.7) and a test set, with
the training set containing 282 samples and the test set containing
the remaining 121 samples. A fair comparison of performance
between the models was made on the basis of cross-validation
of the datasets and full use of the positive samples. After testing
(Figure 5B), we found that the TN, TP, FN, and FP values were 114,
2,4 and 1 for the SVM model; 117, 1, 2, and 1 for the RF model;
and 118, 2, 1, and 0 for the XGBoost model, respectively. We also
used three performance metrics, precision, recall and F1 score, to
evaluate the performance of the three models (Figures 5C–E). We
believe that false positives are more detrimental than false negatives
in early drug development, as they can lead to the mistaken

assumption that compounds are effective, thereby increasing the
cost of downstream drug development.

We also considered that the precision, recall and F1 scores
could be effectively improved by adjusting the SVM and RF class
weights as well as increasing the maximum depth of XGBoost.
Through cross-validation, we found that the mean AUCs for the
SVM, RF and XGBoost models were 0.63 ± 0.28, 0.65 ± 0.16, and
0.68 ± 0.12, respectively (Figures 5F–H). On the basis of the mean
AUCs and considering the heterogeneity of the data, we believe that
all three models have excellent performance.

3.8 Model prediction

Although all three models all had excellent performance,
we focus mainly on the XGBoost model because of its lack
of false positives and higher mean AUC, indicating higher
accuracy. After adding the compounds from LOPAC-1280 and the
Prestwick Chemical Library, we composed a dataset containing
a more compounds (999). The abilities of these compounds to
treat DR were predicted on the basis of their physicochemical
characteristics using the XGBoost model. Figure 5I shows that
most of the nine compounds derived from herbs had high z
scores, among which stigmasterol ranked the highest, indicating
that stigmasterol might be the best drug from HQ, NZZ, and SZY
for DR treatment. Interestingly, three compounds, allylestrenol,
exifone, and naltrindole hydrochloride, had higher z scores than
some of the other compounds. Nevertheless, we believe that this
finding is reasonable because there may be some compounds with
undiscovered therapeutic effects on DR.

3.9 Fragmentation analysis of nine
components

To explore the contributions of the functional groups of
the nine components in the triplet medicine and assess whether
these components can be modified to become lead components,

Frontiers in Medicine 10 frontiersin.org

https://doi.org/10.3389/fmed.2025.1537139
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1537139 May 5, 2025 Time: 16:41 # 11

Zhang et al. 10.3389/fmed.2025.1537139

FIGURE 5

Drug composition ML data feature screening and model training, testing and evaluation. (A) Feature importance of 200 physicochemical descriptors
in the data model using the RDKIT ML model. (B) Three ML algorithm models, SVM, RF and XGBoost, were evaluated on the test set to obtain
confusion matrices. (C–E) The SVM, RF, and XGBoost algorithms were trained for cross-validation to compute three metrics: precision, recall and F1
score. The bar graph represents the average performance, and the error bars represent the standard deviation. (F–H) The SVM, RF and XGBoost
algorithms were cross-validated 4 times to obtain precision-recall results and mean precision-recall values. (I) A dataset of 999 unclassified
compounds was subsequently evaluated using the XGBoost ML algorithm and assigned a z score to indicate their potential as a drug to treat DR,
with a higher z score representing a greater probability of treating DR.

we performed fragment segmentation of nine components using
the RECAP and the BRICS algorithms. Fragment-based drug
discovery (FBDD) is a common lead discovery approach that
differs from high-throughput screening (HTS) in that early FBDD
results may have more applicable physicochemical properties.
Upon segmentation by both algorithms, we found that the
BRICS algorithm, which is based on bond synthesis, separated
β-sitosterol, telocinobufagin, eriodictyol, tetrahydroalstonine, and
betulinic acid into two fragments each; stigmasterol, calycosin,
and hederagenin into three fragments each; and lucidusculine

into four fragments. However, the RECAP algorithm, which
differs in that it is based on retrosynthesis, split stigmasterol,
calycosin, tetrahydroalstonine, betulinic acid, and hederagenin into
2 fragments each; lucidusculine into 3 fragments; and was unable to
fragment β-sitosterol, telocinobufagin or eriodictyol. Interestingly,
the segmentation results for tetrahydroalstonine were consistent
for both algorithms (Figures 6A–I). In conclusion, these nine
components can be further developed into lead components and
thus new drugs on the basis of their fragments through the
contributions of their respective functional groups.
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FIGURE 6

Generation of drug molecular fragments. (A–I) Molecular fragments of stigmasterol, β-sitosterol, telocinobufagin, calycosin, eriodictyol,
tetrahydroalstonine, lucidusculine, betulinic acid, and hederagenin obtained using the RECAP and BRICS algorithms. Different molecular fragments
are represented using distinct color codes, with red dotted lines indicating the broken bonds.

3.10 The effects of drug intervention on
the general condition of DR model mice

Before drug intervention, the mice in group C had neat and
shiny fur, were responsive, were agile, and had normal food and
water intake as well as body weight. Compared with those in
group C, the mice in groups M, D, S, and P had greasy fur, were
less responsive, and presented distinct symptoms of diabetes, with
increased food and water intake, a significant increase in body
weight (p < 0.05) (Figures 7A,B), and a marked increase in FBG
levels (p < 0.05) (Figure 7C). After 12 weeks of drug intervention,
compared with the mice in group M, the greasiness of the fur
in groups D, S, and P improved, their responsiveness gradually
increased, food and water intake decreased (p < 0.05), and body
weight gradually decreased, although there was no significant
difference compared with that in the group M (Figures 7A,B).
Compared with group C mice, group M mice had significantly
greater FBG, HbA1c, TC, TG, and LDL-C levels after 12 weeks
of intervention (p < 0.05) and a significantly lower HDL-C level

(p < 0.05). Compared with the group M mice, the mice in groups
D, S, and P had significantly lower FBG, HbA1c, TC, TG, and LDL-
C levels (p < 0.05) and a significantly higher HDL-C level (p < 0.05)
(Figures 7C–E).

3.11 The effect of drug intervention on
the pathological morphology of the
retina in DR model mice

In group C mice, the retinal structure was clear and intact,
had neatly arranged cells in each distinct layer, and a complete
and continuous inner retinal membrane. Compared with the mice
in group C, the mice in group M had obvious vascular dilatation
of the retina, visible neovascularisation, unclear hierarchies, loose
and irregularly arranged cells in each layer, an obvious reduction
in the number of cells, vacuole-like changes in some intercellular
spaces, swelling of the inner retinal borders, uneven surfaces, and
the local detachment of retinal ganglion cells (RGCs). Compared
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FIGURE 7

The general condition of the mice in each group. (A) Consumption of water (left) and food (right). (B) Changes in body weight over 12 weeks.
(C) FBG levels at 0 w and 12 w. (D) HbA1c levels at 12 w. (E) The levels of lipid-related indices (from left to right: TC, TGs, LDL-C, and HDL-C).
(F) HE-stained images of retinal tissue. Compared with the C group, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Compared with the M group, #p < 0.05,
##p < 0.01, ###p < 0.001. ns, no significance.

with the mice in group M, the mice in groups D, S, and P
showed different degrees of improvement in retinal morphology,
with reduced vasodilatation, less neovascularisation, clear layers,
significantly more cells in all layers that were more neatly arranged,
fewer vacuole-like changes, and less RGC detachment. Among the
groups, groups D and P showed more obvious improvements in DR
symptoms and more normal retinal morphologies (Figure 7F).

3.12 Effects of drug intervention on the
expression of PPARG and inflammatory
factors in DR model mice

Determination of the levels of inflammatory factors in different
groups of mice via ELISA revealed that serum TNF-α, IL-1β, and
IL-6 levels were significantly greater in group M mice than in group
C mice (p < 0.05). Compared with those of the mice in group
M, the serum TNF-α, IL-1β, and IL-6 levels of the mice in groups
D, S, and P significantly decreased to different degrees (p < 0.05)
(Figure 8A). Since PPARG is an important inflammatory regulator
(29), we detected the protein and mRNA levels of PPARG in retinal
tissues via WB and qPCR and in serum via ELISA and found that
the intraretinal expression of PPARG was lower in the mice in
group M than in the mice in group C. Moreover, compared with
that in the mice in group M, the intraretinal expression levels of
PPARG in the mice in groups D, S, and P were significantly elevated
(Figures 8A–C).

3.13 Effects of drug intervention on the
expression of VEGF and VEGFR2 in the
retinal tissue of DR model mice

Angiogenesis is the main pathogenic mechanism of DR, and
VEGF is an important marker of angiogenesis. Upon detection of
VEGF and VEGFR2 expression in the retinas of the experimental

mice via WB and qPCR, we found that VEGF and VEGFR2 were
upregulated in the retinas of the mice in group M compared with
those of the mice in group C. Compared with those of the mice in
group M, the expression levels of VEGF and VEGFR2 in the retinas
of the mice in groups D, S, and P were reduced to different degrees
(Figures 8B,C).

3.14 Effects of drug intervention on the
expression of PPARG and markers of
glucose and lipid metabolism in the livers
of DR model mice

Since PPARG plays important roles in fatty acid storage and
glucose metabolism, on the basis of its upregulation in the retina,
we examined the levels of PPARG and glycolipid metabolism-
related indices in the liver. The results revealed that PPARG was
downregulated in the livers of group M mice compared with those
of group C mice and was upregulated in the livers of group D, S,
and P mice compared with those of group M mice (Figures 8F,G).
The expression levels of PEPCK, G6PASE, SREBP-1c, and Fas were
increased in the livers of the mice in group M compared with
those in group C but decreased to varying degrees in the livers
of the mice in groups D, S, and P compared with those in group
M (Figures 8F,G). Similarly, we examined VEGF and VEGFR2
expression in the liver, and the results revealed that VEGF and
VEGFR2 were upregulated in the livers of the mice in group M
compared with that of the mice in group C and downregulated in
the livers of the mice in groups D, S, and P compared with that of
the mice in group M (Figures 8D,E).

4 Discussion

DR is a common microvascular complication of diabetes
caused by sustained hyperglycaemia that leads to tissue, nerve,
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TABLE 2 Research comparison.

Target Our research Previous
research

PPARG BNM: Computational
analysis shows that PPARG
exhibits higher expression
levels in the normal group
and lower expression levels in
the DR group.
Experiment: The intraretinal
expression of PPARG was
lower in mice of group M
compared to those in group
C, and was significantly
elevated in groups D, S, and
P.

In STZ-induced SD rat
models, PPARG
expression is significantly
downregulated, while
inflammatory factors
IL-1β, IL-6, and TNF-α
are markedly
upregulated (30).

IL-6 BNM: Computational
analysis suggests that IL-6
may be a core gene.
Experiment: Serum IL-6
levels were significantly
higher in group M mice than
in group C mice and were
significantly reduced in
groups D, S, and P compared
with those in group M.

The researchers
discovered that, in LM
rats, retinal damage
became evident at 30
weeks, which coincided
with a significant
elevation in serum IL-6
expression levels (31).

VEGF and
VEGFR2

BNM: Computational
analysis identifies VEGF
signaling pathway as a
potential core regulatory
pathway.
Experiment: VEGF and
VEGFR2 were upregulated in
the retinas of mice in group
M compared with those in
group C, and the expression
levels of VEGF and VEGFR2
in the retinas of mice in
groups D, S, and P were
reduced to varying degrees.

The expression levels of
VEGF and VEGFR2 were
significantly upregulated
in the retinal tissue of
STZ-induced Lewis mice,
whereas anti-VEGF
treatment markedly
downregulated their
expression levels (32).

and microcirculation disorders in the eye, ultimately resulting in
damage to or the loss of visual function. HQ, NZZ, and SZY are
commonly used Chinese herbs for treating DR. Together, these
herbs nourish liver blood to brighten the eyes and have shown
significant therapeutic effects in the clinical treatment of DR. The
complexity of the diverse components and vast data have led to
significant limitations in elucidating the material basis of Chinese
herbal components and their specific mechanisms of action in
disease treatment. AI technology, with its powerful data processing
and pattern recognition capabilities, has shown great potential
in analyzing the complex chemical component TCM datasets. In
this study, we applied AI technology to explore the therapeutic
mechanisms of the herbal trio HQ–NZZ–SZY in detail, aiming to
provide more substantial scientific evidence for clinical application.

In this study, the core components of HQ, NZZ, and SZY were
mined on the basis of OB ≥ 30% and DL ≥ 0.18. A comprehensive
analysis of their predicted target genes was also conducted. The
targets of the TCM were merged with genes related to DR from
the CTD, GeneCards, and DisGeNET databases to construct a
core target network, which led to the identification of 12 core
genes, including PPARG (Figure 2D). The differential expression

of PPARG in DR and its significant diagnostic and predictive
capabilities were validated on public databases (Figures 3A–C).
Animal experiments confirmed that the level of PPARG in the
retinal tissue of DR model mice was significantly lower than that
in the mice in the blank control group (Figures 8B,C). The liver
is an important site for glucose and lipid metabolism and can
store glucose by synthesizing glycogen and regenerate glucose
via gluconeogenesis under fasting conditions. Therefore, the
expression of PPARG in the livers of DR model mice was evaluated
and it was revealed that, compared with that in the blank control
group, the expression of PPARG in the livers of DR model mice
also tended to decrease (Figures 8F,G). Some other core genes also
play important roles in the development and progression of DR.
Studies have shown that increased MAPK14 levels inhibit IGFBP-3
expression, and intravitreal injection of IGFBP-3 can reduce TNF-
α levels in the retinal tissue of diabetic rats, thereby potentially
mitigating retinal damage caused by inflammatory responses.
Elevated proinflammatory factors increase ICAM1 expression,
which contributes significantly to microcirculation disorders in
diabetic patients, leading to leukocyte adhesion and aggregation
in retinal vessel walls, which disrupts the blood-retina barrier and
damages retinal nerve cells (33–35).

To study the potential therapeutic effects of the TCM herbal
trio HQ, NZZ and SZY on DR, the interactions of their main
components with PPARG were explored via molecular docking. It
was revealed that the nine components betulinic acid, hederagenin,
calycosin, β-sitosterol, eriodictyol, lucidusculine, telocinobufagin,
stigmasterol, and tetrahydroalstonine strongly bind to PPARG
(Figures 4A–J). This implies that this herbal trio may play an
important role in the treatment of DR by regulating the expression
levels of PPARG. To further explore the therapeutic effects of these
nine components on DR, three ML models integrating molecular
fingerprint techniques, SVM, RF, and XGBoost, were constructed
for their systematic evaluation. Among the evaluated models, the
XGBoost model achieved the highest mean AUC and showed better
performance in terms of precision, recall, and F1 score, along
with improved confusion matrix metrics (TP, TN, FP, and FN),
compared with the other two models (Figures 5A–H). Therefore,
further data mining was performed using the XGBoost model. The
results showed that stigmasterol had the greatest z score, suggesting
that stigmasterol may exhibit significant efficacy in the treatment of
DR (Figure 5I).

FBDD plays a significant role in drug discovery and
development. Structure-based fragmentation is a methodology
used in drug design and compound synthesis to decompose
compounds into small molecular fragments, thereby identifying
and optimizing key structural features and conformational
relationships (36). The algorithms used for fragmentation analysis
in this study are the BRICS algorithm and the RECAP algorithm.
Both algorithms are mainly based on the principle of trans-
synthesis, where a set of rules controls the cleavage of chemical
bonds, usually emphasizing the selective cleavage of acyclic bonds
(37). It was found that stigmasterol yielded different fragmentation
patterns when analyzed with the two algorithms; specifically, the
BRICS algorithm identified an additional set of carbon chain
breaks compared to the RECAP algorithm, suggesting that it
may be necessary to evaluate the chemical units synthesized
(Figure 6A). The remaining eight drug components are also
somewhat amenable to molecular fragmentation segmentation
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FIGURE 8

Expression of related factors in the liver and retina of each group of mice. (A) Detection of serum PPARG and inflammatory factors via ELISA (from
left to right: PPARG, TNF-α, IL-1β, IL-6, and IL-10). (B,C) Results of WB and qPCR analysis of VEGF, VEGFR2, and PPARG in the retina. (D,E) Results of
WB and qPCR analysis of VEGF and VEGFR2 in the liver. (F,G) Liver glucolipid metabolism-related indices determined via WB and qPCR (from left to
right: PPARG, PEPCK, G6PASE, SREBP-1C and Fas). Compared with the C group, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Compared with the M group,
#p < 0.05, ##p < 0.01, ###p < 0.001. ns, no significance.

using algorithms, suggesting that they also have potential as lead
components (Figures 6B–I).

Stigmasterol is a plant-derived sterol widely present in
various plants and foods, such as vegetable oils, nuts, and
grains, that has a tricyclic chemical structure similar to that of
cholesterol (38, 39). Stigmasterol also has good anti-inflammatory,
immunomodulatory, antioxidant, and hypoglycaemic effects (40).
Studies have shown that stigmasterol can improve insulin
deficiency in patients with diabetes by inhibiting pancreatic cell
apoptosis and, in some studies, exhibits activity as an α-glucosidase
inhibitor, which is considered to play an important role in
lowering blood sugar (41, 42). Furthermore, the efficacy of the
TCM herbal trio and stigmasterol were validated in a DR mouse
model. Compared with those of the control group mice, the
retinal cells of the model group mice presented unclear boundaries,
dilated blood vessels, newly formed blood vessels (Figure 7F).
Moreover, the FBG, HbA1c, TC, TG, and LDL-C levels significantly
increased (p < 0.001), whereas the level of HDL-C decreased
(p < 0.001). Intervention with the TCM herbal trio or stigmasterol
significantly reduced the FBG, HbA1c, TC, TG, and LDL-C levels
(p < 0.05) while increasing the HDL-C level (p < 0.05) (Figures 7C–
E). Furthermore, in the retinal tissue, blood vessel dilation was
alleviated, there were fewer new blood vessels, the cell layers were
distinguishable, there were significantly more cells in each layer, the
arrangement was more orderly, vacuolar changes were diminished,
and there was less shedding of RGCs, collecting approaching
normal retinal morphology (Figure 7F). Previous experimental

evidence has suggest that stigmasterol can enhance the expression
levels of PPARG in vivo (43). In the course of our research,
intervention with the TCM herbal trio or stigmasterol increased
the expression of PPARG (p < 0.05) (Table 2), indicating that both
the herbal trio and stigmasterol may play a role in lowering blood
sugar, regulating lipids, and improving ocular fundus lesions in DR
by regulating the expression of PPARG.

Moreover, PPARG is an important regulatory factor in glucose
and lipid metabolism that can improve insulin resistance and
enhance the sensitivity of target organs to insulin; thus, PPARG
has a role in lowering blood sugar (44–48). PEPCK, G6Pase,
SREBP-1c and Fas are important indicators reflecting the status
of glycolipid metabolism in the liver: PEPCK and G6Pase are the
rate-limiting enzymes in glycogenolysis and gluconeogenesis in
the liver (49). SREBP-1c regulates the conversion of glucose to
lipids in the liver. Inhibiting SREBP-1c expression can effectively
reduce fat production and lipid accumulation (50, 51). Fas is a
key enzyme in the conversion of glucose to fatty acids (52–54).
Fas inhibitors can effectively increase insulin sensitivity and play
an important role in maintaining glucose homeostasis in the body
(55). Therefore, in this study, the levels of the abovementioned
glucose and lipid metabolism-related indicators in the liver were
evaluated. Compared with those in group C, the expression levels of
PEPCK, G6Pase, SREBP-1c, and Fas were increased in the livers in
group M (p < 0.001). Furthermore, compared with those in group
M, the expression levels of PEPCK, G6Pase, SREBP-1c, and Fas
in the livers in groups D, S, and P decreased to varying degrees
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(p < 0.05) (Figures 8F,G). A cohort study shows that improved
glucose and lipid metabolism and controlling blood sugar and
lipid levels in T2DM can reduce microvascular complications like
DR (56). These findings indicate that the TCM herbal trio and
stigmasterol can regulate glucose and lipid metabolism possibly
through promoting the activity of PPARG, thereby playing a
therapeutic role in DR.

On the other hand, PPARG is an important immunomodulator
that is closely associated with the expression levels of inflammatory
mediators and the inflammasome activation (57). Analysis
of the interactions between PPARG and the immunological
microenvironment revealed significant correlations between
PPARG and 13 different types of immune cells. Specifically,
PPARG is negatively correlated with plasma cells, gamma delta
T cells, M1 macrophages, and naive B cells, which may suggest
that these cells are more active in environments with low PPARG
expression or are related to the suppressive effects of PPARG.
Conversely, PPARG is positively correlated with nine types of
immune cells, including M2 macrophages, which may indicate
that these cells play a positive role in microenvironments where
PPARG expression is active (Figure 3D). Persistent hyperglycaemia
can lead to chronic inflammation within the body, and as the
inflammatory response intensifies, inflammatory cells infiltrate and
damage retinal tissues, exacerbating retinal vascular permeability,
vascular dilation, and retinal thickening (58). The upregulation of
PPARG cannot only redirect sugar metabolism but also alleviate
the inflammatory response within the body, thereby reducing
the damage caused by hyperglycaemia (30). Studies have shown
that stigmasterol reduces the expression levels of serum IL-1β,
IL-6, TNF-α, and other inflammatory mediators, which may be
due to its ability to activate PPARG. This activation can improve
the balance between Treg and Th cells and reduce systemic
inflammation (59). Moreover, in the serum of the DR model
mice, it was found that compared with those in group C, the
levels of the proinflammatory factors TNF-α, IL-1β, and IL-6
were significantly increased (p < 0.001) and the level of the
anti-inflammatory factor IL-10 was decreased (p < 0.001) in group
M (Table 2). Additionally, compared with group M, the levels
of TNF-α, IL-1β and IL-6 were reduced (p < 0.05) while IL-10
was increased (p < 0.05) in the groups D, S, and P (Figure 8A).
These findings indicate that the TCM herbal trio and stigmasterol
can reduce the levels of proinflammatory factors and increase the
levels of anti-inflammatory factors in the body, thereby improving
inflammation in DR.

In this study, in-depth GO and KEGG enrichment analyses
of the 12 core targets of the TCM herbal trio were conducted.
The analyses revealed that three signaling pathways, including the
VEGF signaling pathway, were significantly enriched (Figure 2F).
VEGF is an important factor that regulates angiogenesis. In DR,
VEGF can bind to its receptor (VEGFR2), which promotes the
formation of new blood vessels at the fundus and increases
vascular permeability. Compared with normal blood vessels, these
pathological new blood vessels lack stable endothelial cells and
peripheral supporting cells, making them structurally immature
and prone to rupture, which can cause damage to and bleeding
in the retina and lead to manifestations such as cystoid macular
oedema and optic disc oedema, which are characteristic of DR
(32, 58). Studies have shown that increased VEGF expression can
activate PPARG phosphorylation, inducing lipid synthesis that

promotes T-cell activation, thereby maintaining the activated state
of T cells and promoting the occurrence of inflammatory responses
(60). Therefore, changes in the expression of the factors in VEGF
pathway may initiate the induction of fundus lesions in DR.
Consequently, the expression of VEGF and VEGFR2 in retinal and
liver tissues was detected. Compared with those in group C, the
expression levels of VEGF and VEGFR2 in the retina and liver in
group M were increased (p < 0.001) (Table 2), but compared with
those in group M, the expression levels of VEGF and VEGFR2 in
the retina and liver in groups D, S, and P decreased (p < 0.05)
(Figures 8B–E), indicating that the VEGF/VEGFR2 pathway may
be the mechanism by which the TCM herbal trio and stigmasterol
exert their therapeutic effects on vascular lesions in the fundus of
DR patients.

In summary, in this study, a multimodule framework (BNM)
that integrates bioinformatics, network pharmacology, and ML
based on molecular fingerprints was developed to thoroughly
investigate the potential mechanisms of action of the TCM
formula consisting of HQ, NZZ, and SZY on DR, and the
mechanisms were validated with animal experiments. This study
elucidates the specific molecular mechanisms by which these TCM
components treat DR from both theoretical computational and
biological experimental perspectives, offering a new perspective
for medical research. In vivo experiments have demonstrated
that the combined HQ-NZZ-SZY formula, along with their key
component stigmasterol, can modulate the expression of PPARG.
This modulation helps regulate glucose and lipid metabolism
while reducing systemic inflammation, thereby inhibiting retinal
neovascularization and attenuating the progression of DR. Given
that insulin resistance constitutes a critical pathophysiological
mechanism in diabetes, based on the aforementioned experimental
findings, we tentatively propose that stigmasterol may serve as
a potential PPARG modulator for diabetic patients exhibiting
significant insulin resistance. This could not only delay DR
progression but also ameliorate hyperglycemia and dyslipidemia
induced by insulin resistance. However, this study still has
some limitations. First, although the molecular mechanism of
DR regulation by stigmasterol in this study was investigated
by the multimodal BNM framework and verified by animal
experiments, the computational results may be biased due to the
limited generalization ability of machine learning algorithms and
the complexity and diversity of biological systems, and further
experiments with human samples are still needed to verify our
findings. Secondly, the FBDD-based drug research design in
this study is still at a preliminary theoretical stage, necessitating
further investigations. Finally, this study shows that upregulation of
PPARG inhibits the VEGF/VEGFR2 pathway, thereby attenuating
key pathological features of DR. Future in-depth studies are
planned to elucidate the precise underlying molecular mechanisms.
Therefore, future work will focus on collecting more clinical trial
data and animal experimental models for more in-depth research.
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