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Atopic dermatitis (AD) is a chronic inflammatory skin disorder that affects a

significant portion of the global population, severely impacting the quality of

life and causing physical and psychological distress of patients. Oxidative stress,

resulting from an imbalance between oxidation and antioxidation activities, plays

a pivotal role in the pathogenesis of AD. Monitoring oxidative stress products

can offer valuable insights into the development of AD and highlight essential

clinical and therapeutic effects. Additionally, evidence suggests that antioxidant

strategies can alleviate or avert oxidative damage induced by free radicals and

offer significant promise in the treatment of AD. In addition to directly utilizing

natural products and nanomaterials for antioxidant interventions, these can also

be incorporated into hydrogels, which help repair the skin barrier and support

the sustained release of therapeutic agents. Furthermore, microneedles provide

a minimally invasive method for delivering antioxidants to the deeper layers of

the skin, enhancing treatment efficacy. This review aims to summarize the role

of the oxidative stress in the pathogenesis of AD, focusing in the main oxidative

products (DNA, protein, and lipid oxidation products), as well as antioxidant

therapeutic approaches involving natural products, nanomaterials, hydrogels,

and microneedles. Understanding these biomarkers and antioxidant therapy

approaches provides important insights into the management of AD.
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1 Introduction

Atopic dermatitis (AD), also recognized as atopic eczema (AE), presents as a chronic,
recurrent, and inflammatory skin disorder (1). Affecting approximately 20% of children
and up to 10% of adults worldwide (2), AD often manifests at birth or within the first
years of life (3), with the majority of cases presenting before the age of two. In the
past four decades, the global prevalence of AD has sharply risen, especially in developed
countries (4). Predominant symptoms include skin dryness and intense pruritus, often
accompanied by erythema, rash, which significantly impact mental health and quality of
life (5). Otherwise, AD is associated with various comorbidities, such as food allergies (6),
asthma (7), and allergic rhinitis (8).
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GRAPHICAL ABSTRACT

Generation of oxidative stress products and antioxidant therapy in atopic dermatitis (AD). External stimuli trigger the production of reactive oxygen
species (ROS), leading to oxidative stress and the oxidation of DNA, proteins, and lipids. This process subsequently induces skin inflammation, the
release of proinflammatory cytokines, and disruption of the skin barrier. Antioxidant therapies involving natural products, nanomaterials, hydrogels,
microneedles, and antioxidant enzymes help alleviate these effects and improve the condition of AD.

The pathogenesis of AD is complex and not completely
understood. Its multifactorial origins include genetic
predisposition (9), environmental factors (10), Staphylococcus
aureus colonization (11), and neurogenic inflammation (12), all
contributing to the AD development. Deficiencies in epidermal
barrier function and immune imbalance are intricately linked, with
mutations in structural epidermal barrier proteins and immune
regulatory factors playing pivotal roles in the pathogenesis of
AD (13). Reduced expression of filaggrin is often associated with
S. aureus colonization. S. aureus aggravates AD skin lesions (14)
and induces pruritus and skin damage through the V8-PAR1 axis
(15). One study has reported that filaggrin mutations are linked
to infantile eczema and AD. Individuals carrying filaggrin gene
mutations are not only at a higher risk of developing skin dryness
on the trunk and extensor surfaces of the limbs in infants aged
3–6 months, but they also face an increased risk of developing
eczema and AD (16). During the onset of AD, particularly in
the acute phase, changes in the skin barrier activate a Th2-
mediated immune response. Chronic skin inflammation in AD
patients is caused by persistent Th2 inflammation and skin barrier
disruption, accompanied by significant reactive oxygen species
(ROS) production (17).

Reactive oxygen species are generated in response to different
triggers such as allergens, cutaneous dysbiosis, exogenous irritants,
pollutants and UV light (18). In particular, ROS are primarily
derived from activated immune cells, including neutrophils and
macrophages, as well as keratinocytes under oxidative stress
conditions. The accumulation of ROS disrupts the balance
between ROS generation and the antioxidant defense mechanisms.

Eventually, the excessive oxidative stress is related to the
progression of AD (19, 20). In the pathogenesis of AD, ROS derived
from activated keratinocytes act in an autocrine and paracrine
manner; being important mediators in the main functions of the
keratinocyte: maintenance of the skin barrier function, interaction
with the skin microbiome and triggering the immune response,
including the recruitment of inflammatory cells from the dermis.
However, elevated levels of ROS cause excessive oxidative stress
and damage cellular components. Additionally, excessive ROS
leads to oxidative damage to DNA and proteins, as well as
lipid peroxidation of cell membranes, ultimately resulting in cell
death (21). Research has indicated that biomarkers linked to
oxidative stress, such as urinary 8-hydroxy-2′-deoxyguanosine (8-
OHdG), malondialdehyde (MDA), nitrite (NO2

−), nitrate (NO3
−),

and biopyrrin, are significantly increased in AD patients (22–
24). Furthermore, oxidative stress and inflammation mutually
reinforce each other (25), with inflammatory cells producing
ROS exacerbating oxidative stress, while ROS and oxidative stress
products promote inflammatory responses.

To mitigate or avert oxidative damage induced by free
radicals, the body has developed an intricate antioxidant defense
mechanism. The skin, in particular, has its own antioxidant
defense system that eliminates excess ROS through both enzymatic
and non-enzymatic pathways, thereby maintaining redox balance
and prevent the damage of ROS to cellular tissues (26).
Supplementation with external antioxidants is a crucial strategy
to combat oxidative stress, especially in AD patients, enhancing
their ability to manage oxidative stress (27). The use of exogenous
antioxidants is thus a significant component of antioxidant
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therapy for AD. Currently, various antioxidant methods have
been formulated for the management of AD, including the use
of natural product like pterostilbene (28), nanomaterial such
as HC-HT-CSNPs (29), SINH-liposome-hydrogel (30), and lipid
microparticles loaded with quercetin on microneedles (31), among
other antioxidants.

Although ROS contribute to oxidative stress and inflammation,
they are also essential for normal physiological functions. Besides
direct microbial killing, ROS are also involved in immune
responses and emerging as central signaling molecules in the
inflammatory response (32). Excessive reduction of ROS may
impair these fundamental physiological functions, potentially
weakening host defense mechanisms and disrupting normal skin
repair processes. Additionally, it introduces the role of antioxidants
in the treatment of AD from four therapeutic approaches:
natural products, nanomaterials, hydrogels, and microneedles.
This review primarily analyzes oxidative stress products in
AD at three levels: DNA, protein, and lipid. Additionally,
it introduces the role of antioxidants in the treatment of
AD from four perspectives: natural products, nanomaterials,
hydrogels, and microneedles. Our study aims to explore oxidative
stress markers and antioxidant treatment strategies in AD,
thereby providing additional therapeutic opportunities for AD
management in the future.

2 Role of oxidative stress in AD

Atopic dermatitis is a chronic inflammatory skin disease that
commonly occurs in children (33). It is characterized by immune
activation, epidermal hyperplasia, and defects in barrier function,
reflecting potential changes in keratinocyte differentiation (34).
The relationship between skin barrier changes and AD has been
confirmed in the pathogenesis of the disease (35). Keratinocytes
are key contributors to skin barrier function, playing a central
role in the formation of the lipid bilayer and the production of
filaggrin. Filaggrin is subsequently degraded into urocanic acid,
an essential component of natural moisturizing factors that helps
maintain skin hydration. Due to the reaction of reactive substances
produced in keratinocytes to the environment and endogenous
pro-oxidants, the skin has become the main target of response to
oxidative stress. As the largest organ and a vital barrier separating
the body’s internal environment from the external milieu, the
skin is constantly exposed to a variety of external substances,
leading to the generation of oxidative and inflammatory mediators
(36). Uncontrolled production of ROS and cytokines results in
oxidative stress and inflammation. While ROS production is a
natural response to environmental changes, prolonged exposure to
elevated ROS levels or oxidative stress facilitates the occurrence and
exacerbation of skin diseases (37).

Oxidants encompass free radicals or any species containing
unpaired electrons, including ROS. Oxidative stress assumes a
critical role in AD and other dermatological conditions, evidenced
by increased oxidative stress marker levels and diminished
antioxidant levels in affected individuals (38). The pathogenesis
of AD involves heightened ROS production, as evidenced
by elevated ROS levels in skin biopsy specimens from AD
patients, assessed using chemiluminescence techniques (39). The

colonization of S. aureus frequently observed on the skin of
AD patients, is associated with the generation of ROS through
bacterial enzymes binding to the aryl hydrocarbon receptor
(AHR) (40). AHR contributes to skin homeostasis by upregulating
barrier-related proteins, including filaggrin (FLG), loricrin (LOR),
and involucrin (IVL). However, the protective effects of AHR
activation must be balanced against the antagonistic IL-13/IL-
4–JAK–STAT6/STAT3 signaling pathway, which disrupts barrier
integrity and promotes oxidative stress in AD. Moreover, ROS-
induced high-mobility-group-protein B1 (HMGB1) secretion from
keratinocytes facilitates S. aureus colonization and persistence
by disrupting skin barrier integrity through the downregulation
of epidermal barrier genes (41). Protein and lipid peroxidation
products generated by oxidative stress in keratinocytes contribute
to skin barrier dysfunction and exacerbate the progression of AD
(42). Inflammatory responses and ROS production are closely
intertwined (43). Inflammatory responses enhance the production
of ROS, which further amplify inflammation in turn.

Beyond keratinocytes, oxidative stress also influences various
immune cells. Dendritic cells exposed to ROS undergo activation,
leading to the secretion of pro-inflammatory cytokines that amplify
the immune response in AD (44). In the acute phase of AD,
Th2-mediated immune reactions initiate the release of pro-
inflammatory cytokines, further perpetuating the inflammatory
cascade (45). Additionally, keratinocyte-derived cytokines can also
activate Th2-mediated responses under oxidative stress conditions,
contributing to skin inflammation in AD (46). In addition,
oxidative stress promotes the polarization of macrophages toward
a pro-inflammatory M1 phenotype, contributing to sustained
inflammation (47). Oxidative stress disrupts the balance between
regulatory T cells and effector T cells, leading to immune
dysregulation and sustained inflammation in AD (48). Oxidative
stress also plays a critical role in modulating cellular signaling
events in multiple cell types involved in AD pathogenesis. ROS
influence signaling pathways such as NF-κB, JAK-STAT, and
MAPK, which are involved in keratinocyte function, immune cell
activation, and cytokine production (49). The activation of these
pathways by oxidative stress exacerbates inflammation and skin
barrier dysfunction, further promoting AD progression.

3 Marker of oxidative stress in AD

Oxidative stress affects DNA, proteins, and lipids, leading to the
formation of various oxidative products in AD. The major oxidative
stress markers in AD are summarized in Table 1.

3.1 DNA oxidation
products-8-hydroxy-2’-deoxyguanosine

Oxidative stress-induced DNA damage can be assessed using
nucleoside derivatives, which act as indicators of oxidative damage.
One of the biomarkers is 8-hydroxy-2′-deoxyguanosine (8-OHdG),
generated by the oxidation of the deoxyguanosine at the C-8
position (Figure 1). This biomarker is characterized with sensitive,
stable and holistic biomarker of oxidative stress in vivo (67, 68). 8-
OHdG, a product of damaged DNA is released into the bloodstream
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TABLE 1 Oxidative stress markers in atopic dermatitis.

Study population Type Oxidative stress markers References

Children, adult DNA oxidation 8-hydroxy-2′-deoxyguanosine (8-OHdG) (22, 50, 51)

Children, adult Protein oxidation Advanced oxidation protein products (AOPPs) (52)

Children, adult Advanced glycation end- products (AGEs) (53, 54)

Children, adult Protein carbonylation (PC) (55, 56)

Children, adult Lipid peroxidation Malondialdehyde (MDA) (57- 59)

Children, adult 4-hydroxy-2-nonenal (4-HNE) (52, 60)

Infant, children Others Nitric oxide (NO), nitrite and nitrate (61, 62)

Infant, children Thiol/disulfide balance (63, 64)

Children, adult Biopyrrin (24, 65, 66)

FIGURE 1

Generation of DNA oxidation products. The C-8 position of guanine in DNA is susceptible to reactive oxygen species (ROS) attack and hydroxylation,
generating the adduct 8-hydroxy-2′- deoxyguanosine (8-OHdG).

as a result of the action of the repair enzyme DNA glycosylase, and
it is subsequently eliminated in urine (69).

Detecting levels of 8-OHdG in urine can serve as a means to
evaluate oxidative damage to DNA in the evaluation of AD (50, 70).
Studies comparing 8-OHdG levels in the urine of AD patients and
healthy controls have demonstrated positive correlations between
8-OHdG levels and dermatitis scores, indicating disease severity.
Additionally, urinary 8-OHdG levels are markedly elevated in
children with AD compared to controls, further supporting its
utility as a biomarker for AD. A large-scale study involving 200
children diagnosed with AD found that urinary levels of 8-OHdG
were considerably increased in the AD group relative to healthy
controls (p < 0.001) (22). Children with chronic AD exhibited
urinary 8-OHdG levels that were 1.6 times higher compared to
in healthy controls, with a trend toward decreasing levels as the
patients began to heal (51). However, these observations may not
be exclusive to acute exacerbations of AD but could instead reflect
general changes seen in inflammatory or infectious disorders (65).
Moreover, investigations into psoriasis, another chronic refractory
skin disease, have also detected 8-OHdG in the urine of affected
individuals (71). The results showed that DNA oxidative damage
also existed in psoriasis, and 8-OHdG could also be used to monitor

the incidence of psoriasis, with expression levels comparable to
those observed in AD.

3.2 Protein oxidation products

3.2.1 Advanced oxidation protein products
Advanced oxidation protein products (AOPPs) constitute

a class of complex protein compounds composed of
dimethyltyrosine, pentosidine, and carbonyl residues. AOPPs
originate from oxidative stress reactions involving plasma proteins
and chlorinated oxidants. The principal mechanism driving AOPPs
generation involves the activated myeloperoxidase-H2O2-chloride
system in neutrophils, with myeloperoxidase serving as the sole
enzyme capable of generating chlorinated oxidants (Figure 2)
(72, 73). Hypochlorous acid (HOCl) produced by this system
is indicative of AOPPs production. In hemodialysis patients,
elevated levels of AOPPs have exhibited a positive correlation
with plasma myeloperoxidase activity (74) and oxidized fibrinogen
was identified as a principal molecule contributing to the positive
chemical reaction to AOPPs (75, 76). In 1996, the first detection
of this biomarker of oxidative stress was proposed for plasma
in patients with chronic uremia (77). Compared to healthy
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FIGURE 2

Generation of protein oxidation products. The principal mechanism driving advanced oxidation protein products (AOPPs) generation involves the
activated myeloperoxidase-H2O2-chloride system in neutrophils. AGFs are primarily generated through Maillard reaction, which is roughly divided
into initial stage, intermediate stage and final stage. Protein carbonylation (PC) may occur due to direct oxidation of amino acid residues by reactive
oxygen species (ROS) or non-oxidative reaction with carbonyl containing oxidized lipids.

FIGURE 3

Generation of lipid oxidation products. 4-hydroxy-2-nonenal (4-HNE) and Malondialdehyde (MDA) are prevalent lipid oxidation products in atopic
dermatitis (AD). Lipid oxidation is closely related to polyunsaturated fatty acids (PUFAs), typically progresses through three stages: initiation,
propagation, and termination.

individuals, AOPPs levels in patients with advanced chronic kidney
failure who had not yet undergone dialysis were nearly threefold
higher.

As markers of oxygen-mediated protein damage, AOPPs have
been identified as indicators of oxidative protein damage and
proinflammatory mediators (78, 79). Elevated AOPPs levels have

been associated with the advancement of various human diseases
and their associated complications, thus serving as markers of
oxidative stress across diverse pathologies. Monitoring AOPPs can
help predict the development of diseases associated with oxidative
stress. In addition to significantly elevated plasma AOPPs levels
observed in patients with chronic uremia, similar findings have
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been demonstrated in other conditions such as cutaneous burns
(80). In both groups of second and third degree thermal burns,
AOPPs levels were reduced following treatment as a result of
decreased levels of oxidative stress. Notably, ROS may contribute
to oxidized protein damage within the stratum corneum, thereby
disrupting barrier function and exacerbating AD (55). Currently,
studies have shown that compared to healthy individuals, patients
with AD and chronic urticaria exhibit elevated levels of AOPPs
(52). Moreover, an association between AOPPs levels and age
has been documented in patients with AD, underscoring the
potential utility of AOPPs as biomarkers for disease severity and
progression (52).

3.2.2 Advanced glycation end- products
Advanced glycation end-products (AGEs) and AOPPs share

structural similarities and exert comparable biological effects. Their
accumulation in biological systems results in analogous clinical
outcomes. In the context of protein oxidation, the relationship
between AGEs and the generation of AOPPs is noteworthy (75).
Both AOPPs and AGEs possess similar structures that induce
comparable biological effects, and their accumulation in biological
systems leads to similar clinical consequences. AGEs, a diverse
group of biologically active compounds, were initially identified by
French researchers. They are produced through a non-enzymatic
glycation process called the Maillard reaction, which uses the
carbonyl groups of reducing sugars and the free amino groups of
proteins as substrates (Figure 2) (81). AGEs are categorized into
endogenous and exogenous sources (82). Endogenous AGEs are
generated during normal physiological processes and aging, while
exogenous AGEs primarily originate from dietary sources, with
their content varying across different foods.

AGEs are produced in a slow and controlled process,
accumulating in the body, including the skin (83). The skin is
particularly reactive to changes in AGE levels. Their accumulation
increases free radical production, stimulates the release of pro-
inflammatory factors, and exacerbates inflammatory reactions.
AGEs disrupt the dynamic balance of the skin (84), alter the
normal substance composition and structure of different skin
layers, impair the skin barrier function, and trigger skin issues.
The skin barrier function is essential in the onset and progression
of AD. Research has documented that AGEs levels are elevated in
the keratinocytes of AD patients compared to healthy individuals,
with severe AD patients exhibiting significantly higher levels than
those with mild AD. However, no significant difference in serum
AGE levels was found between typical AD patients and healthy
controls (53). Pentosidine, a specific AGE, is closely associated
with oxidative stress, with accelerated production observed in
oxidative stress-related diseases (85). Pentosidine can serve as
a marker for detecting AD (54). Urine tests in AD patients
have shown significantly higher levels of pentosidine compared
to the healthy controls. Pentosidine levels were significantly
higher in AD patients in the acute phase, but reduced during
the recovery process, mirroring trends observed for another
AD biomarker, 8-OHdG. The consumption of exogenous AGEs
increases the risk of developing AD (86), with pregnant women
consuming high-AGEs foods potentially exposing their fetus to
a higher AGEs environment, thereby increasing the likelihood
of AD development.

3.2.3 Protein carbonylation
In addition to AOPPs and AGEs, protein carbonylation (PC)

serves as another marker of protein oxidation in patients with
AD. From a medical perspective, protein carbonylation has been
emphasized as markers of protein oxidation, oxidative stress,
and disease progression (52). The oxidative modification of
proteins, characterized by the formation and/or introduction of
carbonyl groups into proteins, represents a primary indicator of
oxidative damage to proteins (87–89). PC, an irreversible oxidative
modification (88), is classified into two types based on the origin
of the carbonylated product (Figure 2). Consequently, changes in
protein conformation following modification typically result in the
loss of protein function (90). Proteins undergoing carbonylation
exhibit diverse biological significance within biological systems,
leading to varied biological effects (88, 91–93). PC is reflected in
various diseases, including brain diseases, inflammatory diseases,
autoimmune diseases, and aging (94–96), showing important
connections between carbonyls in oxidized proteins, oxidative
stress, and disease.

Oxidative stress plays an important role in the pathogenesis
of AD, with studies demonstrating elevated levels of PC in dry
skin and AD skin lesions (56). Levels of PC in the skin of AD
patients are elevated and positively correlated with the severity
of the disease (55). Sampling from AD patients utilizing the tape
stripping method has revealed increased levels of PC in the stratum
corneum, a phenomenon similarly observed in patients with
psoriasis (97). The accumulation of PC in the skin contributes to
transepidermal water loss and altered dermal matrix accumulation
(98). ROS are implicated in inducing damage to cuticular oxidation
proteins, disrupting skin barrier function, and exacerbating the
development of AD.

3.3 Lipid peroxidation products

3.3.1 Malondialdehyde

Lipids are the most impacted biomolecules in oxidative
stress-induced damage, and the identification of these end-
products in inflammatory diseases suggest that lipid peroxidation
is crucial in such diseases (99). Malondialdehyde (MDA), an
important metabolite of arachidonic acid and unsaturated fatty
acids possessing multiple unsaturated C-C double bonds in lipids,
was the main and most widely studied compound (100) derived
from lipid peroxidation following oxidative damage from oxygen
radical attack (Figure 3) (101, 102). Upon exposure to oxidative
stress, excessive accumulation of ROS disrupts the structure and
function of the cell membrane, alters its permeability, and causes
lipid peroxidation, inducing the production of MDA.

Malondialdehyde is produced in vivo through both enzymatic
and non-enzymatic oxidation, making it a widely monitored
biomarker for oxidative stress across various diseases and
particularly favored for characterizing oxidative stress in AD
patients (57). A likely correlation exists between serum antioxidant
levels and MDA in individuals with eczema (58), with an
inverse correlation between antioxidant levels and MDA levels
and decreased serum levels of antioxidant vitamins in patients
than in healthy persons. In children with AD, serum levels of
MDA were found to be on average 0.055 units higher, while
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melatonin (a hormone with antioxidant activity) levels were
approximately 3.05 units higher compared to controls. The increase
in serum melatonin in AD might represent a compensatory
mechanism to reduce skin inflammation by attempting to
alleviate excessive oxidant production (59). For the antioxidant
properties of quercetin, liposomes incorporating quercetin gel
have demonstrated both protective and therapeutic effects on skin
eczema (103). Treatment with quercetin-loaded liposomes resulted
in significantly reduced skin pathological symptoms compared to
untreated counterparts, accompanied by reduced levels of MDA in
both liver and skin tissues.

3.3.2 4-hydroxy-2-nonenal
4-hydroxy-2-nonenal (4-HNE) is a lipid peroxide produced

by polyunsaturated fatty acids (PUFAs) in response to oxidative
stress (Figure 3). It belongs to the same class of lipid peroxidation
products as MDA. Both 4-HNE and MDA are extensively
studied markers of lipid peroxidation, with MDA recognized as a
mutagenic product of lipid peroxidation and 4-HNE recognized
as the most toxic product of lipid oxidation (104), worsening
the damage resulting from oxidative stress (105, 106). 4-HNE
is classified as an α, β-unsaturated aldehyde and possesses three
functional groups: carbon-carbon double bonds, carbonyl groups
and hydroxyl groups. Due to the existence of the conjugated
system of C = C bonds and carbonyl groups, 4-HNE can provide
partial positive charge to the carbon at position three and become
efficient electrophiles, allowing it to react with essential biological
molecules, including proteins and DNA (107–109). 4-HNE can also
be generated through both enzymatic and non-enzymatic reactions
from the breakdown of ω-6 PUFAs. However, the chemical
reaction mechanism of 4-HNE formation remains unclear. Several
mechanisms have been proposed over the years. The earliest
suggestion was that 4-HNE was formed from PUFAs catalyzed
by transition metal ions (102, 110). The formation mechanism of
4-HNE is attributed to the observation of hydroperoxides as an
intermediate product.

As a secondary messenger of free radicals and growth
regulators, 4-HNE participates in various pathophysiological
processes and act as a bioactive marker, especially in oxidative
stress related to diseases (111). Skin homeostasis plays an important
role in the development of AD. Studies have found that cigarette
smoke can trigger the generation of ROS (112). Exposure to
cigarette smoke can affect skin homeostasis due to oxidative and
inflammatory reactions, as well as inducing lipid peroxidation,
leading to increased levels of 4-HNE (113). In a study examining
oxidative stress markers in exhaled breath condensates of children
with AD, 4-HNE levels were elevated in AD patients but did not
differ significantly from those in healthy children (60). Another
study found a similar phenomenon by measuring serum 4-HNE
levels in AD patients, with 4-HNE concentrations comparable to
those in healthy subjects.

3.4 Others

3.4.1 Nitric oxide, nitrite and nitrate
Nitric oxide (NO), a free radical gas containing unpaired

electrons, is the smallest biologically active molecule produced

by mammalian cells. It exhibits lipophilicity and possesses a
high degree of diffusivity in tissues and cells (114). NO is
primarily synthesized in organisms by nitric oxide synthase
(NOS), an enzyme divided into three subtypes: inducible iNOS,
endothelial eNOS, and neurogenic nNOS (115). Additionally, NO
can be produced via non-canonical pathways, either through the
reduction of nitrite to NO or by the sequential conversion of
nitrate to nitrite and then to NO (116). With diverse biological
functions, NO is essential for regulating the body in both healthy
and disease states (117). In dermatology, NO is implicated
in mechanisms underlying inflammatory or immune-mediated
dermatoses, skin infections, skin cancers, and wound healing
(118). Skin inflammation is significantly affected by NO (119).
Keratinocytes, fibroblasts, and immune cells synthesize NO, and
each contributing to the occurrence of inflammatory responses.
The importance of NO as a mediator of skin inflammation is
underscored by the delicate balance between its production and
degradation, which is closely related to the onset and development
of inflammatory skin diseases. Overproduction of NO has been
linked to conditions such as AD and psoriasis (120–122).

Direct measurement of nitric oxide (NO) presents challenges
due to its extremely short half-life in the bloodstream, typically
disappearing within seconds, and its involvement in various
biochemical reactions within living organisms (123, 124). NO is
highly reactive owing to its unpaired electrons, capable of engaging
in oxidative stress by reacting with free radicals, with the primary
oxidative metabolites being nitrite and nitrate (125). A study found
elevated levels of IgE, nitrite, and nitrate in the plasma of AD
patients (61). Furthermore, a study involving 88 cases of AD and 12
cases of non-AD founded that serum nitrate levels not only showed
a significant increase in children with AD, but also associated with
the severity of the disease (62).

3.4.2 Thiol/disulfide balance
Thiols have emerged as a novel marker of oxidative stress,

representing a class of organic compounds containing sulfhydryl
groups. These sulfhydryl groups, commonly known as thiols,
consist of sulfur and hydrogen atoms bonded to carbon atoms
(126). The sulfhydryl groups within thiols provide protection
against oxidative stress by scavenging ROS through enzymatic or
non-enzymatic mechanisms. Thiols serve as physiological agents
for neutralizing free radicals and other ROS (127). Through a series
of reactions, thiols undergo modifications and react with oxidants
to form disulfide bonds (128). The oxidation of thiols to disulfides
is facilitated by through various processes, crucially involving
three distinct mechanisms (129). Disulfide compounds formed
as a result of these reactions can undergo reversible conversion
to a thiol structure, thereby maintaining the dynamic balance of
thiol/disulfide equilibrium (130).

Disruption of this balance has associated with the development
of certain inflammatory diseases. In infants diagnosed with AD,
thiols have been found to be significantly reduced compared to
in comparison to healthy controls, while disulfide levels were
markedly elevated, indicative of dysregulation in the thiol/disulfide
balance favoring peroxidation (63). However, contrasting findings
were observed in another study (64), which serum disulfide levels
were observed to decrease in AD children in comparison to healthy
children, leading to a reduction in the disulfide/natural thiol and
disulfide/total thiol ratios.
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3.4.3 Biopyrrin
Biopyrrin is a metabolite derived from the oxidation of

bilirubin. Bilirubin, acting as a potent ROS scavenger, reacts
with ROS, thereby exerting a robust antioxidant effect (131).
Upon oxidation, bilirubin is converted into various forms of
bilirubin oxidation metabolites (BOMs), comprising at least seven
hydrophilic metabolites that are promptly excreted into urine
because of their hydrophilic nature (132). These metabolites,
including biopyrrin, can be detected by anti-bilirubin monoclonal
antibody 24G7 (133, 134). A key advantage of using biopyrrin
as an oxidative stress marker is its ability to provide real-time
insights into the dynamic changes of oxidative stress through urine
detection, thereby reflecting the oxidative stress status associated
with various disease states.

Biopyrrin holds promise as a novel biomarker for AD
(66). Urinary excretion of biopyrrin was markedly increased in
pediatric patients experiencing acute exacerbations of AD, with
levels averaging 1.8 times higher than those observed in healthy
individuals (65). Bilirubin oxidation was enhanced in the diseased
skin of patients with AD and levels of the oxidized metabolite
biopyrrin detected in urine correlated with the severity of AD (24).
Moreover, urinary biopyrrin levels were positively correlated with
serum IgE and TARC/CCL17 expression. Biopyrrin expression was
higher in AD lesions compared to normal skin, as detected by
the 24G7 antibody. These findings highlight the potential utility of
biopyrrin as a valuable biomarker for assessing oxidative stress and
the severity of AD.

4 Manage oxidative stress in AD

Immunity and inflammation are pivotal in the pathogenesis of
AD. Current therapeutic strategies predominantly focus on anti-
inflammatory or immune-modulating agents. While the majority
of patients respond favorably to topical corticosteroids (135),
calcineurin inhibitors (136), and immunosuppressants (137),
these treatments are often associated with significant adverse
effects during long-term use (138). Oxidative stress is positively
correlated with factors influencing the onset and advancement
of AD. Moreover, prolonged exposure to oxidative stress impacts
the condition of keratinocytes, leading to alterations in skin
barrier function and cell death. Therefore, considering the use
of antioxidants to mitigate AD is an essential strategy in the
management of AD.

4.1 Natural products

Plants are the primary source of natural antioxidants (139),
with antioxidant compounds primarily synthesized as secondary
metabolites. Numerous plants and their derivatives exhibit
antioxidant properties and frequently possess other significant
biological activities. Due to their low toxicity, these natural
antioxidants have been extensively utilized in the prevention and
management of diseases related to oxidative stress (140). Plant-
derived antioxidant compounds can be categorized into several
groups: phenolic acids, phenolic diterpenes, flavonoids, volatile oils,
carotenoids, and anthocyanins (141, 142). These compounds are

abundant in herbs, spices, seeds, essential oils, fruits, and vegetables
(143). Additionally, plants and foods containing vitamins and
certain trace minerals contribute to the antioxidant process and
constitute essential components of natural antioxidants (144, 145).

4.1.1 Natural extracts
Plants typically contain several highly active antioxidant

compounds that can be extracted using various technical methods
(146). The antioxidant effects of plant extracts are related to
the chemical and physical properties of these compounds and
operate through multiple mechanisms (147–149). The therapeutic
potential of natural extracts for treating AD has been thoroughly
explored through both in vivo and in vitro studies. A study
involving 20 patients with mild to moderate AD demonstrated that
a cream containing 100,000 IU of superoxide dismutase (SOD)
and 4% plant extracts significantly alleviated AD symptoms and
was effective across all phases of the disease (150). The therapeutic
efficacy of this cream is attributed to the synergistic actions of SOD
and the plant extracts, including antioxidant, anti-inflammatory,
and additional beneficial properties. Resveratrol, a naturally
occurring polyphenol abundant in grapes and berries, has shown
positive therapeutic effects on skin disorders (151), potentially
affecting inflammation through its antioxidant activity and free
radical scavenging properties (152). Intragastric administration of
resveratrol has been shown to ameliorate AD in mice induced
by dinitrochlorobenzene (DNCB), by downregulating chemokine
and proinflammatory factor levels and upregulating the expression
of skin barrier proteins (153). Another study also demonstrated
that topical formulations based on the antioxidant properties of
resveratrol can reduce ROS, inhibit inflammatory responses, and
improve skin barrier function (154). Analysis of the chemical
composition of Lentinula edodes ethanolic extract revealed that
polyphenols are the main antioxidant components, along with
flavonoids, β-carotene, and lycopene. This ethanolic extract has
shown to decrease serum IgE levels, downregulate the expression
of inflammatory cytokines, and alleviate AD symptoms (155).
Additionally, some natural extracts can exert antioxidant and
anti-inflammatory effects and regulate the Nrf2/HO-1/NQO1 and
NF-κB/MAPK signaling pathways to treat AD (156, 157).

4.1.2 Vitamins
Vitamins are a group of organic compounds crucial for

maintaining normal physiological functions in the body and can
be categorized into fat-soluble and water-soluble groups (158).
Most vitamins are obtained through the daily diet. The primary
sources of vitamins A, C, and E are fresh vegetables and fruits,
while vitamin D is primarily biosynthesized through the skin
under sunlight. These four vitamins inherently possess antioxidant
properties, allowing them to function as antioxidants (159, 160).

There is a significant connection between vitamins and skin
diseases. Maintaining a reasonable and stable vitamin level is crucial
for preserving normal skin health (161). β-carotene (provitamin
A) exhibits antioxidant and immunomodulatory effects, enhancing
skin barrier function and reducing inflammation levels in hairless
mice with oxazolone-induced AD (162). Vitamin C contributes
to the formation of skin structure and skin antioxidation (163),
ameliorating chronic inflammation and positively impacting AD.
In groups supplemented with vitamin E, levels of oxidative
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stress markers were decreased, and a reduction in vitamin E
concentration contributed to the progressing of AD in dogs (164).
Another study supports that vitamin E supplementation can lower
IgE levels in AD patients and improve AD symptoms (165).
Vitamin D supplementation is beneficial for AD treatment and can
be used to treat AD in children and dogs (166, 167). Furthermore,
these vitamins can work synergistically to enhance AD treatment.
For instance, the dermatitis score was lower in the group receiving
both vitamin D and vitamin E compared to groups receiving either
vitamin alone (168). However, there are differing views on the
efficacy of vitamins in improving AD. Diets rich in antioxidant
compounds can reduce the risk of AD. Taking in β-carotene and
vitamin E is negatively correlated with AD, whereas vitamin C
intake does not show a consistent correlation (169). Additionally,
higher concentrations of vitamin C in breast milk are linked to
a lower risk of atopy in infants, whereas vitamin E shows no
consistent relationship with AD (170).

4.1.3 Minerals
Trace minerals, also known as trace elements, play an

important role in maintaining overall nutrition and health
(171), playing vital roles in the metabolism and physiological
processes of the body. Several trace elements are involved
in the redox reaction process. Selenium (Se) is an essential
trace mineral that forms a key part of selenoproteins, which
primarily exert their nutritional functions through a family of
25 selenoproteins. Se is an enzymatic antioxidant that has no
antioxidant effect by itself but participates in selenoproteins as
redox-active selenoenzymes to safeguard against oxidative damage
(172, 173). Inhibiting iron death by regulating selenoprotein
GPx4 plays a significant role in improving skin inflammation
(174). Keratinocytes, which are integral to the skin barrier
function, are also implicated in skin disorders such as AD. The
supplementation of Se and selenoprotein SEPP1 can alleviate
the oxidative stress and toxicity of 4-ClBQ-induced keratinocytes
(175). Nevertheless, a 12 weeks study revealed that selenium-
enriched yeast supplementation did not result in significant
improvements in AD severity, indicating no substantial difference
before and after supplementation (176).

Zinc, another essential nutrient for skin health, is abundantly
present in the epidermis (177). Although zinc itself is not an
antioxidant and is redox-inert, it contributes to oxidative defense
through several mechanisms (178, 179). Decreased zinc levels have
been observed in AD patients, taking zinc supplements orally may
help those who are zinc deficient to manage AD (180). Zinc is
commonly used as a nutritional supplement for cosmetic purposes
and in the management of AD. However, caution is warranted
regarding zinc concentration, as excessive intake can lead to zinc
toxicity (181). The efficacy of zinc supplementation in treating AD
remains controversial, with some studies suggesting no significant
benefit, while others indicate potential therapeutic effects (182).

4.2 Nanomaterials

Nanotechnology has seen extensive development across various
disciplines and facilitates the synthesis of nanoparticles via bottom-
up and top-down strategies (183). Conventional antioxidants
frequently encounter challenges, including limited permeability,

poor aqueous solubility, instability, and low bioavailability (184).
Consequently, nanomaterials have become a pivotal area of
research dedicated to improving the efficacy of antioxidants.
The utilization of nanotechnology presents a promising avenue
for overcoming the limitations associated with conventional
antioxidants, thereby exhibiting significant potential in the
realm of antioxidant therapy. Antioxidant nanomaterials can
be broadly categorized into two types: those with inherent
antioxidant properties and antioxidant delivery nanomaterials.
The first type includes nanomaterials that possess antioxidant
properties independently, without the need for functionalization
with antioxidants. The second type comprises nanomaterials that
do not inherently have antioxidant properties but can be used to
load and deliver antioxidants, thereby exerting antioxidant effects.

4.2.1 Nanomaterials with intrinsic antioxidant
activity

Among antioxidant nanomaterials, several types possess
inherent antioxidant properties, most of which are metal
nanoparticles. These nanomaterials can mimic the efficacy of
antioxidant enzymes like catalase (CAT), superoxide dismutase
(SOD), and glutathione peroxidase (GPx). The antioxidant enzyme
activity of nanomaterials is influenced by factors including
size, morphology, surface modification, and composition (185).
Catalase-like nanoenzymes, a category of nanomaterials with
intrinsic CAT activity, operate by decomposing H2O2 into H2O
and O2 (186). Superoxide radicals (O2•

−), a type of ROS generated
during metabolic processes, are converted into H2O2 and O2 by
SOD, using metal as a cofactor (187). GPx, the final antioxidant
enzyme, catalyzes the reduction of H2O2 or organic hydrogen
peroxide to H2O or alcohol in the presence of reduced glutathione
(188). Cerium oxide nanoparticles (189) exhibit SOD-like activity,
and their PEGylation can enhance the survival rate of keratinocytes
while significantly reducing intracellular ROS levels. Cobalt oxide
nanoparticles, synthesized via a one-pot method, demonstrate
three enzymatic catalytic activities. These nanoparticles can protect
keratinocytes from hydrogen peroxide-induced ROS and toxicity,
alleviating the symptoms of AD (190). Furthermore, hematoxylin
and eosin and toluidine blue staining indicated a decrease in
epidermal thickness and a reduction in the number of mast cells
in the treated group.

4.2.2 Antioxidant delivery nanomaterials
Most antioxidants have low bioavailability due to their inherent

properties (191, 192). However, nanotechnology can enhance
the antioxidant effect by preparing nanoparticles as carriers for
these antioxidants, allowing for targeted and controlled release
(193). Currently, a variety of antioxidant delivery systems have
been developed to transport natural and synthetic antioxidants,
antioxidant gases, genes, and other antioxidant compounds,
thereby significantly expanding the scope of antioxidant delivery
nanomaterials (194). Nanoparticles prepared with the natural
polyphenol antioxidant hydroxytyrosol, hydrocortisone, and
chitosan have shown significant improvement in the pathological
characteristics of AD in mice. Compared to the AD group,
the treatment group exhibited decreased expression levels of
IgE, histamine, PGE2, VEGF-α, and AD-related Th1 and Th2
cytokines. Histological examination also demonstrated that
HC-HT-CS-NPs exerted a therapeutic effect on AD (195).
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Additionally, HC-HT-CS-NPs demonstrated favorable safety in
healthy individuals (196).

4.3 Hydrogels

Hydrogel is polymer material with a three-dimensional porous
structure formed by physical or chemical crosslinking of polymer
chains. Hydrogels exhibit notable hydrophilicity, enabling them
to absorb water and biological fluids, and they possess excellent
moisturizing and air permeability properties (197). Due to their
high water content, structural similarity to natural tissues, and
favorable biocompatibility, hydrogels are widely used in biomedical
fields, particularly for drug delivery, facilitating controlled release
and enhancing efficacy (198–200). Additionally, the physical
and chemical properties of hydrogels can be easily modified to
impart various functions, including antioxidant properties (201).
Antioxidant hydrogels can be categorized into self-antioxidant
hydrogels and those combined with antioxidant components (202).

These hydrogels have been applied in skin diseases and have
shown promise as carriers for the local treatment of AD. Lignin,
a polyphenol-containing substance extracted from lignocellulosic
biomass, has the capability to scavenge ROS. Hydrogels prepared
by crosslinking lignin with polyethylene glycol exhibit CAT
and superoxide SOD enzyme-mimicking properties and possess
antioxidant capacity (203). These hydrogels can treat AD by
reducing skin oxidative stress. They protect HaCaT cells from
oxidative stress damage caused by H2O2. In DNCB-induced AD
mice, treatment with these hydrogels reduced dermatitis scores
and epidermal thickness, inhibited inflammation, alleviated DNA
oxidative damage, and decreased Th2 cytokine levels.

Furthermore, cerium oxide nanoparticles known for their high
ROS scavenging ability, have been incorporated into hydrogels.
By adjusting pH and crosslinking sodium alginate polymer with
Ca2+, a CENP-sodium alginate hydrogel was prepared. This
hydrogel effectively mimics CAT and SOD activity, protecting
cells from oxidative stress damage. In AD mice, treatment with
this hydrogel reduced epidermal thickness, decreased 8-OHdG
accumulation, lowered Th2 cytokine and IgE levels, and reduced
mast cell infiltration, showing its therapeutic potential for AD
management (204).

4.4 Microneedles

The skin is composed of three primary layers: the epidermis,
dermis, and subcutaneous tissue (205). The stratum corneum,
an integral part of the skin barrier, is formed through the
differentiation of keratinocytes and serves as the primary protective
layer against external injury and stimulation (206). However, this
physiological structure presents a challenge for transdermal drug
delivery, limiting the bioavailability of drugs administered through
the skin. Microneedles, ranging in length from 25 to 2,000 µm
(207), offer a promising transdermal technology by piercing the
stratum corneum and crossing the skin barrier to reach all layers
of the skin. This technology has been widely used in the treatment
of skin diseases, enabling the delivery of antioxidants into the skin
or using the inherent antioxidant properties of the microneedles to
address oxidative stress-related skin conditions (208–210).

In the treatment of AD, microneedles loaded with
epigallocatechin gallate, a potent antioxidant, and L-ascorbic
acid as a stabilizing reductant, prepared from poly-γ-glutamic
acid, exhibit multiple beneficial functions. These microneedles
improve DNCB-induced AD in mice through antioxidant, anti-
inflammatory, and immunomodulatory effects (211). Treatment
outcomes include reduced epidermal thickness, decreased mast
cell infiltration, and lower levels of serum IgE and histamine.
Microneedles incorporating natural polyphenols such as curcumin
and gallic acid, prepared from PLGA/HA in a double-layer
configuration, enable rapid treatment and long-term management
of AD (212). The curcumin and gallic acid -loaded microneedles
provide immediate antioxidant and anti-inflammatory effects,
alleviating AD symptoms in the short term, while the embedded
PLGA needle mediates the sustained release of curcumin for
long-term improvement. Post-treatment, AD mice exhibited
reduced dermatitis scores and improved pathological conditions,
with a significant decrease in ROS levels in the lesional skin after
56 days. Additionally, a novel polydopamine nanozyme integrated
with near-infrared-responsive microneedles was developed using
natural dopamine. Hyaluronic acid was used for the backing
layer, and hyaluronic acid methacrylate was employed for the tip,
enabling antioxidant treatment of AD (213). PDA MNs + NIR
treatment alleviated AD symptoms and inhibited Th2 immune-
related reactions. Measurement of the DNA oxidative stress marker
8-OHdG revealed that the PDA MNs + NIR group significantly
downregulated its levels.

5 Conclusion

Atopic dermatitis is a chronic inflammatory skin disorder
characterized by disruptions in skin barrier integrity and immune
dysregulation. The complex pathogenesis of AD involves oxidative
stress, which induces several cellular damages in keratinocytes,
impairs skin barrier function, and exacerbates the inflammatory
response. This oxidative damage results to modifications of DNA,
proteins, and lipids, culminating in the formation of various
oxidation products. While several antioxidant strategies, such
as the use of natural products, nanomaterials, hydrogels, and
microneedles have shown promise in mitigating oxidative stress
and alleviating AD symptoms, there remain knowledge gaps.
Further research is required to fully elucidate the specific oxidative
modifications underlying AD pathology, the precise mechanisms
of action of antioxidant therapies, and the strategies for optimizing
these treatments for clinical application. Addressing these gaps will
be essential for developing more effective therapeutic strategies and
monitoring tools to improve the management of AD.
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