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Background: High-flow nasal cannula (HFNC) delivers a continuous,

unidirectional high flow of oxygen (Uniflow) throughout the respiratory

cycle. Despite its positive pressure effects in the nasopharynx, the persistent

high flow during expiration imposes additional work of breathing and disrupts

the patient’s neural respiratory cycle. We devised a bi-level high-flow system

(Biflow) allowing separate flow rate adjustments for inspiration and expiration.

Methods: We conducted a randomized crossover pilot study which we included

healthy volunteer at ASAN Medical Center (April 2021 to June 2021). The data of

12 healthy volunteers (7 male, 5 female, average age 46.3 years) were analyzed.

For Uniflow, flow settings of 30 (U30), 40 (U40), and 50 (U50) L/min were tested.

In the Biflow, inspiratory flow rates were matched to the Uniflow settings, while

expiratory flow rates varied from 10 to 30 L/min. The sequence of each flow

(Uniflow vs. Biflow) was randomized and each flow setting was maintained for

3 min. Physiologic parameters, nasopharyngeal pressure-time product (N-PTP)

as an energy cost proxy, end-expiratory lung impedance (EELI), and participant

comfort were assessed.

Results: Uniflow decreased respiratory rate and elongated expiratory time

compared to natural breathing. However, these effects were less pronounced

during Biflow. Compared with the Uniflow, both expiratory and inspiratory

N-PTP were lower during the Biflow. Transcutaneous CO2 was lower during the

Biflow compared with natural breathing or Uniflow. EELI did not differ between

modes. All participants completed the study protocol without side effects.

Conclusion: In healthy participants, compared with the conventional HFNC

(Uniflow), Biflow showed less interference with the natural respiratory cycle

of the participants. Compared with Uniflow, energy cost occurring in the

nasopharynx was lower during Biflow

Clinical trial registration: http://cris.nih.go.kr/cris/, identifier KCT0006100.
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Introduction

High-flow nasal cannula (HFNC) is widely employed in
patients with hypoxemia and moderate hypercapnia (1–5).
By maintaining a continuous high flow during expiration,
HFNC generates a low-to-moderate level of positive end-
expiratory pressure (PEEP) in the nasopharynx (6–14). This
mechanism enhances lung volume and improves oxygenation
(6, 7, 15, 16). The high inspiratory flow provided by HFNC
reduces inspiratory work of breathing (WOB). However,
during expiration, patients must overcome the resistance
generated by the incoming high flow, potentially leading
to increased WOB and disruption of the neural respiratory
cycle (11, 17). We have therefore developed a bi-level high-
flow system (Biflow), allowing separate adjustment rates for
inspiration and expiration.

In the Biflow system, for instance, the inspiratory flow rate
is set above the needs of the participants (e.g., 40 L/min),
while the expiratory flow rate is set lower than the inspiratory
flow rate (e.g., 20 L/min) to facilitate the participants’ own
expiration. Our study aimed to explore the physiologic effects of
Biflow in healthy individuals and compare them with those of
conventional HFNC (Uniflow).

Materials and methods

This study was conducted at Asan Medical Center in
Seoul, South Korea, a university-affiliated hospital, from
April 2021 to June 2021. The study was approved by the
Institutional Review Board (IRB), and informed consent
was obtained from each participant (IRB No-2020-1901;
approval date: December 23, 2020). The registration of the
clinical trial was made prior to the enrollment of the first
patient. The procedures were followed in accordance with
the ethical standards of the responsible committee of ASAN
Medical Center on human experimentation and the Helsinki
Declaration of 1975.

Eligible individuals

This study was a proof of concept trial for Biflow in healthy
individuals to evaluate the physiologic effects of the Biflow system.
Inclusion criteria encompassed healthy adults aged 18 years or
older with no history of respiratory or cardiovascular disease.
Exclusion criteria included conditions precluding the application of
a nasal respiratory cannula, such as previous facial surgery, trauma,
deformity, or airway obstruction.

Abbreviations: Biflow, Bi-level high-flow system; EELI, End-expoiratory
lung impedance; EIT, Electrical impedance tomography; GI, Global
inhomogeneity; HFNC, High-flow nasal cannula; HR, Heart rate; I:E,
Inspiratory:expiratory; MBS, Modified Borg Scale; N-PTP, Nasopharyngeal
pressure-time product; PEEP, Positive end-expiratory pressure; RR,
Respiratory rates; SpO2, Pulse oxygen saturation; tcCO2, Transcutaneous
carbon dioxide; TIV, Tidal impedance variation; WOB, Work of breathing.

Intervention

This prospective, controlled study employed a randomized
block design mixing block sizes of 4 and 6 in healthy volunteers,
initiating either Uniflow or Biflow mode (Figure 1).

For the Uniflow mode, three flow rates were examined:
30 L/min (U30), 40 L/min (U40) and 50 L/min (U50). In the
Biflow mode, inspiratory flow rates were aligned with those
of Uniflow, while expiratory (basal) flow rates varied: 10, 20,
and 30 L/min. The resultant flow settings for Biflow were
(inspiratory/expiratory): 30/10, 30/20, 40/10, 40/20, 40/30, 50/20,
50/30. Biflow 50/40 was excluded as most volunteers exhibited
intolerance during the preliminary test. The phase transition
between expiration and inspiration in the Biflow system relied on a
“patient effort-dependent trigger.” The criteria for the initiation of
inspiration were met when the nasopharyngeal pressure dropped
by ≥ 0.4 cmH2O, accompanied by a simultaneous increase in
flow rate by ≥ 1 L/min. Alternatively, expiration was triggered
if the inspiratory phase exceeded the predefined time limit (6
s). However, the current version of the Biflow system failed to
detect the inspiratory effort of the patient under conditions of
relatively low bias flow (before the start of inspiration) or when
the participant’s respiratory effort was too weak. Owing to this
technical constraint, the proportion of breaths delivered through
the Biflow system ranged between 25 and 63% of all recorded
breaths (Figure 2). The sequence and duration of each flow setting
were randomized and maintained for 3 min. Baseline recordings of
spontaneous breathing were recorded for 5 mins before beginning
the study protocol. Between Uniflow and Biflow, a 5-min washout
period was allowed for the resumption of normal breathing (18).

Measurements

Physiologic parameters, including respiratory rates (RR),
inspiratory:expiratory (I:E) ratio, heart rate (HR), transcutaneous
CO2 (tcCO2) and pulse oxygen saturation (SpO2), were
systematically recorded at each minute of the study. Subjective
comfort levels were evaluated using the modified Borg Scale
(MBS) at the end of each setting. To compare end-expiratory
lung volume, continuous electrical impedance tomography (EIT)
data were collected throughout the study (19–21). EIT generates
cross-sectional images depicting impedance distribution within
electrically conductive objects, allowing for a semi-quantitative
evaluation of static and dynamic lung volumes. Tidal impedance
variation (TIV) and global inhomogeneity (GI) index were
analyzed using EIT Data Analysis Tool version 6.3 and GI
MATLAB Tool ver 3.0. End-expiratory lung impedance (EELI)
data were processed using dedicated software Pulmovista Data
Analysis Software ver 1.3.

To gauge the nasopharyngeal pressure of the participant, a
thin PVC catheter (7 Fr) was inserted 9 cm deep in one of
the nostrils of the participant. The pressure signal was recorded
using LabVIEW (National Instruments Co., TX, United States),
and subsequent numerical analyses were executed using MATLAB
software (Mathworks Inc., MA, United States). 1Pexp (cmH2O)
was defined as (peak pressure – baseline pressure) during
expiration, and 1Pinsp (cmH2O) as (baseline pressure – lowest
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FIGURE 1

Consort flow diagram.

pressure) during inspiration. The nasal pressure-time produced (N-
PTP), a proxy of energy cost (22, 23), was calculated by integrating
Paw with time:

∫
(Paw − PEEP)dt. Inspiratory, expiratory, and

total N-PTP were obtained (Supplementary Figure 1) (24, 25).
Inspiration time and expiration time were also measured.

Statistical analysis

All continuous variables are presented as median and
interquartile range, while categorical variables are expressed
as percentages. Wilcoxon signed-rank test was employed for
continuous data, and Pearson’s chi-squared test or Fisher’s exact
test for categorical data. Comparisons between Uniflow and Biflow
parameters at the same inspiratory flow rate were conducted,
employing pooled and matched analyses. All p-values were two-
tailed, with statistical significance set at p < 0.05. All statistical
analyses were performed using SPSS software (version 22.0; IBM
Corporation, Somers, NY, United States).

Results

We enrolled sixteen healthy participants, of whom all followed
the protocol until completion. Among them, 12 cases acquired
the full measurement data and were included in the analysis. The
participant population comprised 58% males, and the mean age was
46.2 years. The median BMI was 22.1 (19.7–25.5) kg/m2.

As the flow rate increased, RR decreased significantly during
Uniflow settings compared with natural breathing; however, RR
during the Biflow settings did not differ from the natural breathing.
During the Uniflow settings, both inspiratory and expiratory times
were prolonged compared with natural breathing. As the flow
rate was increased during the Uniflow, the expiratory time was

more elongated. During the Biflow settings, inspiratory time was
prolonged, but expiratory time did not significantly differ from
natural breathing. Expiratory time was shorter with the Biflow
compared with Uniflow. The I:E ratio remained unchanged during
Uniflow but increased during Biflow as the flow rate increased
(Table 1).

No significant differences were observed in HR and SpO2
between the Unflow and the Biflow at the same inspiratory flow
rate. The levels of tcCO2 at B30/10, B40/10, and B40/20 were
notably lower compared with natural breathing or the Uniflow
settings (Table 2). The participants reported light dyspnea during
both modes.

Nasal pressure-time product

Expiratory time was shorter during the Biflow than during the
Uniflow (Table 1 and Figure 3a). Changes in the nasopharyngeal
pressures during the Biflow as compared with the Uniflow are
presented in Supplementary Table 1. Inspiratory N-PTP (Figure 3b)
and expiratory N-PTP (Figure 3c) were lower during Biflow
compared with Uniflow. Total N-PTP was also lower during
Biflow than Uniflow (Figure 3d). The decrease in N-PTP was most
prominent at B40/20 (inspiratory flow 40 L/min and expiratory
flow 20 L/min).

Electrical impedance tomography
measurements

TIV, EELI and V/D ratio increased in both Uniflow and Biflow
modes compared with natural breathing. However, there were no
significant differences observed between the two modes (Figure 4).
GI index exhibited a decrease in B40/10, B40/20, and B50/20
compared with natural breathing.

Frontiers in Medicine 03 frontiersin.org

https://doi.org/10.3389/fmed.2025.1538832
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1538832 May 5, 2025 Time: 18:12 # 4

Huh et al. 10.3389/fmed.2025.1538832

FIGURE 2

Airway pressure tracing (upper) and Bi-flow operating signal (lower). During Biflow, breath a was a failed operation, and breaths b and c were
successful.

TABLE 1 Change of synchronized respiratory parameters according to the flow setting.

Setting RR (/min) Inspiratory time
(sec)

Expiratory time
(sec)

I:E ratio

Baseline Natural breathing 15.6 (13.5–17.4) 1.3 (1.1–1.4) 2.3 (1.8–2.7) 0.5 (0.5–0.6)

Flow 30 U30 13.5 (10.0–15.8)∗ 1.7 (1.5–2.2)∗ 2.9 (2.1–4.0)∗ 0.7 (0.5–0.8)∗

B30/10 13.3 (12.0–18.0) 1.9 (1.6–2.2)∗ 2.4 (1.9–2.6) 0.8 (0.7–1.0)∗,∗∗

B30/20 13.9 (13.1–17.9)∗∗ 1.6 (1.3–1.8)∗ 2.3 (1.9–2.8)∗∗ 0.7 (0.6–0.9)∗

Flow 40 U40 12.7 (9.1–13.8)∗ 1.7 (1.5–2.1)∗ 3.1 (2.7–4.8)∗ 0.5 (0.5–0.6)

B40/10 13.0 (12.3–14.7)∗∗ 1.9 (1.7–2.5)∗ 2.5 (2.2–3.0)∗∗ 0.7 (0.7–0.9)∗,∗∗

B40/20 16.4 (12.7–18.2)∗∗ 1.5 (1.1–2.1)† 2.2 (1.9–2.9)∗∗ 0.6 (0.5–0.8)

B40/30 13.7 (10.5–14.2)∗∗,‡ 1.6 (1.5–1.9)∗,† 3.0 (2.7–4.5)∗∗,‡ 0.6 (0.5–0.6)∗∗,†

Flow 50 U50 10.0 (9.4–13.2)∗ 1.8 (1.6–2.0)∗ 3.8 (2.7–4.5)∗ 0.5(0.4–0.6)

B50/20 15.0 (12.9–19.8)∗∗ 1.7 (1.3–2.2)∗ 2.4 (1.9–3.1)∗∗ 0.7 (0.6–0.8)∗,∗∗

B50/30 14.2 (11.0–16.6)∗∗,‡ 1.7 (1.5–2.2)∗,‡ 2.5 (2.0–2.9)∗∗ 0.7 (0.6–0.9)∗,∗∗

Data are expressed as median and IQR. *P-value of < 0.05 compared with natural breathing, **P-value of < 0.05 compared with Uniflow. †P-value of < 0.05 compared with Biflow 40/10,
‡P-value of < 0.05 compared with Biflow 40/20 or 50/20.

Discussion

This study was designed as an exploratory trial to evaluate the
Biflow system in healthy individuals. Compared with conventional
HFNC (Uniflow), Biflow demonstrated a less substantial decrease
in respiratory rate. During Uniflow, as the flow rate increased,
the respiratory rate exhibited a stepwise decrease compared with
natural breathing, while both inspiratory and expiratory time were

elongated. However, during Biflow, the decrease in respiratory
rate was less pronounced, and the expiratory time was preserved,
resembling the pattern observed in the natural breathing of
the participants. Compared with Uniflow, the N-PTP during
both inspiration and expiration was lower with Biflow. These
findings suggest that the energy dissipated in the nasopharynx
during breathing was reduced with the Biflow compared with
Uniflow. Interestingly, the lower expiratory N-PTP during Biflow
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TABLE 2 Change in physiological variables according to the flow setting.

Setting HR (/min) tcCO2 (mmHg) SpO2 (%) MBS

Baseline Natural breathing 72.0 (68.6–85.8) 38.8 (35.6–41.2) 97.8 (96.9–98.7) 0

Flow 30 U30 67.8 (65.9–84.8)∗ 39.5 (36.1–41.9) 97.7 (97.2–98.8) 0 (0–0.5)∗

B30/10 68.9 (65.9–87.0) 37.4 (34.2–41.0)∗∗ 98.0 (97.2–99.0) 0.4 (0–0.9)∗

B30/20 68.2 (66.6–86.6) 38.3 (35.0–41.2)† 98.0 (97.2–99.) 0.5 (0–0.5)∗

Flow 40 U40 70.9 (66.6–86.4) 38.2 (36.1–40.2) 98.0 (97.4–98.8) 0.5 (0–0.5)∗

B40/10 69.7 (66.3–86.0) 37.0 (34.2–40.5)∗,∗∗ 98.0 (97.0–99.0) 0.5 (0–2.0)∗

B40/20 69.5 (67.0–84.7)∗ 37.7 (33.2–40.6)∗,∗∗ 98.0 (97.2–99.0) 0.3 (0–1.8)∗

B40/30 69.7 (67.1–82.3)∗ 39.2 (35.9–40.8)† 98.2 (97.0–99.3) 0.3 (0–1.6)∗

Flow 50 U50 71.0 (68.0–87.7) 37.9 (36.0–40.2) 98.0 (96.9–98.7) 0.8 (0.5–1.8)∗

B50/20 68.8 (66.1–82.2)∗ 37.1 (33.6–39.9)∗ 98.0 (96.9–98.7) 0.5 (0.1–2.0)∗

B50/30 71.7 (67.7–82.2) 36.6 (33.9–39.8)∗ 98.0 (96.9–98.7) 0.3 (0–1.6)∗

Data are expressed as median and IQR. *P-value of < 0.05 compared with natural breathing, **P-value of < 0.05 compared with Uniflow. †P-value of < 0.05 compared with Biflow
(30/10 or 40/10).

was attributed to the decreased expiratory time compared with
Uniflow, per the N-PTP formula (integration of pressure change
and time). Conversely, the lower inspiratory N-PTP during
Biflow was attributed to an attenuated pressure change during
the inspiratory phase compared with Uniflow. Physiologic data
such as HR, BP, SpO2 and EELI, were similar between the
two HFNC systems in the participants. The tcCO2 levels during
Biflow at flow trials 30 and 40 were lower compared with
natural breathing or Uniflow. We observed a slight decrease
in heart rate during both Uniflow and Biflow compared to
natural breathing. This finding likely reflects reduced work of
breathing due to high-flow oxygen support (26) or changes in
vagal tone resulting from comfortable breathing pattern (27).
The changes in the heart rate during both Uniflow and Biflow
were modest (approximately 2-3 beats/min) and were similar
between the two modes.

The use of HFNC, referred to as Uniflow in our study,
has increased exponentially over the past few years, particularly
during the COVID-19 pandemic (1). The adoption of HFNC
helped reduce intubation rates for patients with acute hypoxic
respiratory failure and prevent post-extubation respiratory failure
(2, 3). Improved patient outcomes associated with HFNC are due
to physiological effects, such as improvement in oxygenation (15,
28), efficient ventilation (15, 29), avoidance of patient self-inflicted
lung injury, and improvement in patient comfort and tolerance
(30). For maximal dead space washout and PEEP-like effect, clinical
use of the flow rate during HFNC ranges up to 40–50 L/min.
Dysart et al. suggested that matching HFNC with inspiratory
demand may attenuate nasopharyngeal resistance and lead to a
reduction of WOB. Despite these benefits, this excessive range of
gas flow may impose additional WOB to overcome the greater
jet flow for expiration (31) and disrupt patients’ own respiratory
cycle. HFNC has been widely reported to affect respiratory rate,
tidal volume, and I:E ratio (11, 32, 33). Our study also showed
that HFNC led to a decrease in respiratory rate and an increase
in inspiratory time and expiratory time compared with natural
breathing. However, the Biflow system, characterized by alternating
flow rates synchronized with the respiratory cycle—specifically,
a reduction of flow during the expiratory phase—mitigated the

bradypnea effect associated with high flow and increased the I:E
ratio. Notably, inspiratory pressure changes in the nasopharynx
during the Bioflow were attenuated and inspiratory N-PTP was
consequently lower compared with the Uniflow. The combination
of reduced pressure changes and increased I:E ratio, particularly
with a reduced expiration time with the Biflow mode, suggests a
potential reduction in the energy cost per breathing cycle.

As the PEEP-like effect during HFNC is known to be
proportional to flow rate (18), the lower flow rate during expiration
with the Biflow may be disadvantageous in terms of the PEEP-like
effect or end-expiratrory lung volume. In our study, the expiratory
nasopharyngeal pressure during the Biflow was lower than Uniflow
by 27.2-83.7 % (Supplementary Table 1). Whereas, the EELI
(surrogate for volume) as assessed by EIT was not different between
Uniflow and Biflow (Figure 4). It seems, therefore, premature to
predict the overall effect of the reduced expiratory nasopharyngeal
pressure during Biflow in diverse respiratory patients.

Besides oxygenation aid, the HFNC is used as a ventilation
support for mild-moderate hypercapnia (4, 5). In the Biflow system,
the augmentation of gas flow during inspiration is analogous to
the pressure augmentation occurring with BiPAP, a noninvasive
ventilation method. BiPAP necessitates a mask or helmet to create
a closed circuit, which is often the culprit of treatment failure.
Unlike BiPAP, Biflow operates without the need for these artificial
interfaces. In this context, Biflow may be regarded as an ‘open’
system for noninvasive ventilation support, although the level of
support may be lower than with BiPAP.

Our study has a few limitations. First, this is a single-center
study with a small number (twelve) of participants. However, as this
was the first study examining the physiological effects of the Biflow,
we determined the sample size based on existing studies of HFNC.
Studies by Ritchie et al. (34), Parke et al. (18), and Groves and
Tobin (35) used 10-15 subjects to examine various physiological
parameters of HFNC. Second, breath synchronization during the
Biflow system was not technically perfect. For the operation of the
Biflow, both inspiratory and expiratory efforts of the participant
should be detected. The current Biflow system failed to detect the
inspiration of the participant when the bias flow rate (before the
start of inspiration) was relatively low (e.g., 10 L/min) or when
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FIGURE 3

Changes in expiratory time and N-PTP (a) Change of expiration time of Biflow compared to Uniflow (b) Change of inspiratory PTP of Biflow
compared to Uniflow (c) Change of expiratory PTP of Biflow compared to Uniflow (d) Change of total PTP of Biflow compared to Uniflow P-value of
<0.05 compared with Uniflow, *P-value of <0.05 between Biflow settings. PTPinsp, inspiratory nasal pressure time product; PTPexp, expiratory
nasal pressure time product; PTPtotal, total nasal pressure time product; U, Uniflow; B, Biflow.

FIGURE 4

Changes in TIV, GI index, EELI, and V/D ratio of EELI (a) Comparison of TIV among natural breathing, Uniflow and Biflow settings (b) Comparison of
GI Index among natural breathing, Uniflow and Biflow settings (c) Comparison of EELI among natural breathing, Uniflow and Biflow settings
(d) Comparison of V/D ratio among natural breathing, Uniflow and Biflow settings P-value of <0.05 compared with natural breathing, *P-value of
<0.05 between Biflow settings. TIV, tidal impedance variation; GI, global inhomogeneity; EELI, end-expiratory lung impedance; V/D ratio,
ventral/dorsal ratio; U, Uniflow; B, Biflow.

the breathing effort was too weak. This technical limitation is
inherently associated with the open nature of the Biflow system
and requires improvement before clinical application. Finally, we

did not investigate the long-term effects of the Biflow. Prior
to establishing any clinical benefit, the Biflow needs long-term
application in patients with various respiratory pathophysiologies.
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Conclusion

Compared with the current HFNC (singular flow throughout
the respiratory cycle), the Biflow HFNC in healthy individuals
showed less disturbance of participants’ respiratory cycle and
resulted in a lower energy cost occurring in the nasopharynx.
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