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Background: Patients with obesity-associated Hashimoto’s thyroiditis (HT) have 
been prevalent in clinical practice. Obesity is a risk factor for HT as it promotes 
pro-inflammatory processes and influences the balance of immune cell subsets. 
Traditional Chinese medicine (TCM) is characterized by its multi-component and 
multi-target approach and shows potential in treating HT. Specifically, TCM can 
reduce thyroid antibody levels and alleviate clinical symptoms without impairing 
thyroid function. Moreover, TCM offers significant benefits in regulating lipid 
metabolism and decreasing systemic inflammation.

Methods: Targets of five high-frequency herbs (Hedysarum multijugum Maxim, 
Radix Bupleuri, Prunella vulgaris, Fritillaria thunbergii Bulbus, and Angelicae 
sinensis Radix) were obtained from the TCMSP and Swiss Target Prediction 
databases. Targets associated with obesity-associated HT were collected from 
the GeneCards, OMIM, and DisGeNET databases. Subsequently, we employed 
KEGG signaling pathway enrichment and GO biological process enrichment 
analyses to investigate the potential mechanisms by which the active ingredients 
of these herbs treat obesity-associated HT. Then, STRING database networks 
and Cytoscape software were used to construct the protein-protein interaction 
network and screen for key targets. Finally, molecular docking was performed 
to predict the binding interactions between the targets.

Results: Efferocytosis emerged as the key mechanism in the context of five 
herbs and obesity-associated HT. Quercetin was identified as the primary active 
ingredient responsible for efferocytosis, and it bound well with efferocytosis-
related targets.

Conclusion: This study’s key finding is that five high-frequency prescribed 
herbs may treat obesity-associated HT through efferocytosis. This provides new 
evidence to support the use of TCM in treating obesity-associated HT.
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1 Introduction

Hashimoto’s thyroiditis (HT), also known as chronic lymphocytic 
thyroiditis, is one of the common autoimmune diseases (ADs) in 
clinical treatment. Modern medicine believes that the etiology of HT 
is associated with genes, environment, and epigenetic factors (1). 
Patients with HT and normal thyroid function are mainly treated by 
nutritional therapy and lifestyle intervention (2–5). If patients suffer 
hypothyroidism or subclinical hypothyroidism, doctors usually apply 
levothyroxine alternative therapy (6). TCM has the potential to 
reduce thyroid antibody levels and improve clinical symptoms 
without affecting thyroid function and has been evidenced in clinical 
efficacy and safety (7, 8). To date, antioxidant, immune regulation, 
and anti-inflammatory properties are the main mechanisms of active 
ingredients of herbs for HT (6, 9–13).

Obesity serves as a risk factor for HT (14). Clinical studies have 
shown that it can impact thyroid function and antibody levels in 
patients with HT (15, 16). In addition, obesity promotes 
pro-inflammatory processes and influences the balance of immune 
cell subsets (14). Research on both obesity and HT has largely focused 
on the perspective of inflammation and immune dysfunction (14, 17).

Efferocytosis is a process in which macrophages specifically 
recognize and engulf apoptotic cells (18). The process of efferocytosis is 
divided into three steps: recognition of dying cells, engulfment of dying 
cells, and digestion of dying cells (18–21). At the same time, efferocytosis 
can also produce anti-inflammatory factors (20). Recent studies 
demonstrated that atherosclerosis, aging, cancer, obesity, diabetes, and 
some ADs are related to efferocytosis (20, 22–25). However, HT has not 
been mentioned. There were also targeted clinical trials for efferocytosis 
targets (AXL, MERTK, CD47, Tim4, and Tim3) (20).

Quercetin is a flavonoid compound in many fruits and vegetables 
(26). Studies have found that quercetin has the effect of regulating 
immunity (27), promoting apoptosis (28), and upregulating PPAR-γ 
signaling (29). In addition, quercetin inhibits macrophage M1 
polarization and promotes M2 polarization (30), and M2 macrophages 
are associated with efferocytosis (31).

The objective of this study was to explore the potential 
mechanisms of five herbs in treating obesity-associated HT by using 
network pharmacology and molecular docking.

2 Materials and methods

2.1 Collection of herb and disease targets

The targets of Hedysarum multijugum Maxim (HMM), Radix 
Bupleuri (RB), Prunella vulgaris (PV), Fritillaria thunbergii Bulbus 
(FTB), and Angelicae Sinensis Radix (ASR) were identified by 
searching the Traditional Chinese Medicine Systems Pharmacology 
(TCMSP) database, PubChem database, and Swiss Target Prediction 
database. Obesity-related targets were searched from the GeneCards 

database, OMIM database, and DisGeNET database using “Obesity” 
as the search term. The GeneCards and OMIM databases were used 
to search for targets using “Hashimoto thyroiditis” as the search 
term. Finally, three obesity disease datasets and two HT disease 
datasets were merged to obtain the obesity-associated HT 
disease genes.

2.2 GO and KEGG pathway enrichment 
analyses

KEGG pathway enrichment and GO biological process 
enrichment (including biological processes, molecular functions, and 
cellular components) were performed on five single herbs and four 
herb pairs (PV-HMM, PV-FTB, PV-RB, and HMM-ASR) by the 
Medscape database (p < 0.05). Venn diagrams were employed through 
the Venn mapping website to analyze the similarities and differences 
in mechanisms of the enrichment analysis (32).

2.3 Analysis of efferocytosis-related active 
ingredients

We matched targets of the herb’s active ingredient and herb-
related efferocytosis to obtain the most active component. To further 
verify that the active ingredients are related to efferocytosis, the 
intersection targets of the compound and disease were matched using 
the Venn mapping website and then imported into the 
Metascape database.

2.4 Protein–protein interaction network 
construction and target protein screening

A total of 38 efferocytosis targets obtained from five herbs 
were imported into the STRING database to obtain the PPI 
network of efferocytosis. CytoHubba was used to screen the top 15 
key targets. Cytoscape software was used to construct the 
target network.

2.5 Molecular docking

Molecular docking was performed between the active ingredient 
and key targets. AXL and MERTK were also included as key targets 
because they are present in 38 efferocytosis targets and have been 
clinically validated. The potential proteins were entered into the PDB 
database to obtain the associated protein structure, downloaded in 
PDB format, and saved. The AutoDock Vina software was used for 
molecular docking. The targets were treated by removing water 
molecules and performing hydrogenation. Receptor was then selected 
and then exported as a PDBQT file. Quercetin was treated by 
hydrogenation and selected as the ligand. It was then exported as a 
PDBQT file. Finally, the interaction strength was obtained by 
molecular docking of the target protein and quercetin. A molecular 
docking process is deemed valid when the calculated binding free 
energy is less than 5.0 kcal/mol, indicating a stable interaction 
between the ligand and the receptor.

Abbreviations: HT, Hashimoto’s thyroiditis; TCM, Traditional Chinese medicine; 

ADs, Autoimmune diseases; HMM, Hedysarum multijugum Maxim; RB, Radix 

Bupleuri; PV, Prunella vulgaris; FTB, Fritillaria thunbergii Bulbus; ASR, Angelicae 

sinensis Radix; TCMSP, Traditional Chinese Medicine Systems Pharmacology; BP, 

Biological process; MF, Molecular function; CC, Cellular component.
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3 Results

3.1 Intersections between five 
high-frequency herb targets and 
obesity-associated HT targets

A total of 531 HMM targets, 234 FTB targets, 449 RB targets, 
334 PV targets, and 94 ASR targets were predicted. A total of 2,296 
HT targets were retrieved, with 1,832 from GeneCards and 537 
from OMIM. A total of 5,671 obesity targets were acquired, with 
5,271 targets from GeneCards, 521 targets from OMIM, and 300 
targets from DisGeNET. The targets of obesity and HT were merged, 
resulting in 6,711 obesity-associated HT targets 
(Supplementary Table S1).

3.2 The GO enrichment results of five 
high-frequency herbs and four herb pairs

Through GO analysis, we identified that all five herbs were enriched 
in response to hormone (GO: 0009725). HMM, RB, PV, and ASR were 
enriched in the positive regulation of programmed cell death (GO: 
0043068) (Figure 1F; Table 1; Supplementary Table S2). Furthermore, 
HMM, RB, and PV were enriched in six identical biological processes, 
one of which was the response to oxidative stress (GO: 0006979) 
(Figure 1F; Supplementary Table S2). The MF results revealed that all 
five herbs were enriched in transcription factor binding (GO: 0008134), 
protein domain-specific binding (GO: 0019904), and neurotransmitter 
receptor activity (GO: 0003707). HMM, RB, PV, and ASR were enriched 
in oxidoreductase activity (GO: 0016491) (Figure  1G; Table  1; 
Supplementary Table S2). The cellular component (CC) analysis 
indicated that these five herbs showed significant enrichment in GO 
terms related to the receptor complex (GO: 0043235) and organelle outer 
membrane (GO: 0031968) (Figure 1H; Table 1; Supplementary Table S2). 
In the biological process (BP) enrichment analysis, HMM and RB were 
both enriched in response to oxidative stress (GO: 0006979), with a 
GeneRatio value of 0.91 (Figures 1A,E; Supplementary Table S3). The 
entry for the positive regulation of programmed cell death (GO: 
0043068) was also significantly enriched in PV, with a GeneRatio value 
of 0.84 (Figure 1D; Supplementary Table S3). In the MF enrichment 
analysis of the five herbs, HMM, RB, PV, and ASR were all enriched in 
oxidoreductase activity (GO: 0016491), with a GeneRatio value of 1 
(Figures 1A,B,D,E; Supplementary Table S3). The Venn diagram results 
of the BP enrichment analysis showed that the four herb pairs and their 
related individual herbs were all enriched in response to hormone (GO: 
0009725) (Figure 1I; Supplementary Table S3). In addition, the PV-RB 
and PV-HMM pairs intersected with their related single herb in response 
to oxidative stress (GO: 0006979) (Figure 1J; Supplementary Table S3). 
MF enrichment analysis showed that the HMM-ASR pairs intersected 
with their related herbs on oxidoreductase activity (GO: 0016491) and 
hormone binding (GO: 0042562) (Figure 1J; Supplementary Table S3).

3.3 The KEGG enrichment analysis of five 
high-frequency herbs and four herb pairs

KEGG enrichment analysis results showed that all of the herbs were 
enriched in the pathways of cancer (hsa04270) and efferocytosis 
(hsa04148) (Figure 2). In addition to efferocytosis, pathways related to 

inflammation, immunity, hormones, and lipid metabolism were screened 
for bubble figures. IL-17 signaling pathway (hsa04657) was the most 
significantly enriched item in KEGG of HMM, with a GeneRatio value of 
0.32 (Figure 3C; Table 2). PV was enriched in lipid and atherosclerosis 
(hsa05417), with a GeneRatio value of 0.208 (Figure 3D; Table 2). The first 
two enriched pathways of FTB were Th17 cell differentiation (hsa04659) 
and apoptosis—multiple species (hsa04215), with GeneRatio values of 
0.14 and 0.25 (Figure 3B; Table 2). The first item enriched in RB was 
cellular senescence (hsa04218), with a GeneRatio value of 0.23 (Figure 3E; 
Table 2). ASR was enriched in the estrogen signaling pathway (hsa04915) 
(Figure 3A; Supplementary Table S4). The significance of gene ratio is the 
ratio of active ingredients and pathway intersection genes to total pathway 
genes. Efferocytosis pathways for HMM, RB, and PV were among the 
top 20 significantly enriched pathways, and the GeneRatio values of 
HMM and RB were both 0.18 (Table 2). Venn diagrams and bubble 
figures indicated that the four herb pairs and five herbs were all 
significantly enriched in efferocytosis (hsa04148) (Figure 2). In addition, 
the thyroid hormone signaling pathway (hsa04919) is unique to the 
PV-HMM herb pair compared to the PV and HMM (Figure  3H; 
Supplementary Table S4). The AMPK signaling pathway (hsa04152) 
appeared only in PV-RB and PV-FTB herb pair (Figures  3G,I; 
Supplementary Table S4). The GO enrichment results of FTB and the CC 
analysis results of the four drug pairs did not show significant rules 
(Figures 1C,K).

3.4 KEGG enrichment analysis of quercetin 
in efferocytosis

Quercetin was found to be one of the active ingredients by matching 
the targets of herbs and efferocytosis (Supplementary Table S5). The 
enrichment results indicated that efferocytosis was one of the pathways for 
quercetin and obesity-associated HT (Figure 4A). We further performed 
KEGG enrichment of the intersection of quercetin-HT targets and 
quercetin-obesity targets (Figures  4B,C). As shown in Figure  4, 
we observed that in addition to efferocytosis, the IL-17 signaling pathway 
and NF-κB signaling pathway were also the interaction pathways for the 
three conditions.

3.5 Protein–protein interaction network 
construction and screening of key targets

A total of 38 proteins and 267 edges were obtained after the 38 
efferocytosis targets were imported into the STRING database 
(Figure 5A), and then, the data were imported into Cytoscape to obtain 
the PPI network diagram (Figure 5B). The top 15 key nodes screened 
were CASP3, PPARG, HIF1A, MAPK3, JUN, PTGS2, TGFB1, IL10, 
CD36, SIRT1, JAK2, MAPK1, PPARA, MAPK14, and PTPN11 
(Figure 5C). Reducing PPARG signaling results in defective efferocytosis 
(20). Other targets do not have direct evidence of relevance to 
efferocytosis, and even if they bind well with quercetin, further 
experiments are needed to verify their relationship with efferocytosis.

3.6 Molecular docking results

The docking results showed that 17 targets were well bound to 
quercetin. MERTK and AXL; the results showed that all proteins 

https://doi.org/10.3389/fmed.2025.1538867
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhou and Gao 10.3389/fmed.2025.1538867

Frontiers in Medicine 04 frontiersin.org

bound well with quercetin. The docking scores of the 17 targets are 
shown in Table 3. Lower docking values indicate stronger binding 
affinities, with values less than −5.0 kcal/mol indicating potential 

binding and values less than −7.0 kcal/mol indicating strong binding 
affinities (33). MERTK, AXL, and PPARG are involved in the process 
of efferocytosis (20). Other proteins have not been reported to 

FIGURE 1

(A) GO enrichment analysis of HMM. (B) GO enrichment analysis of ASR. (C) GO enrichment analysis of FTB. (D) GO enrichment analysis of PV. (E) GO 
enrichment analysis of RB. (F) Venn diagram of five-herb BP analysis. (G) Venn diagram of five-herb MF analysis. (H) Venn diagram of five-herb CC 
analysis. (I) Venn diagram of four-herb pair BP analysis. (J) Venn diagram of four-herb pair MF analysis. (K) Venn diagram of four-herb pair CC analysis. 
Bubble figure of five high-frequency herbs and four herb pair KEGG enrichment analysis.
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be  directly involved in efferocytosis and require further 
experimental evidence.

4 Discussion

KEGG enrichment analysis showed that efferocytosis is the key 
pathway in obesity-associated HT. We also found that quercetin is the 
potential ingredient of efferocytosis. However, Cesidio et al. found that 
quercetin can inhibit the growth and function of normal thyroid cells 
(34). This toxic result is derived from in vitro cell experiments and 

animal experiments. In addition, although it has been reported that 
quercetin has an inhibitory effect on thyroid peroxidase, this conclusion 
was drawn from in vitro experiments on pig thyroids (35). It is well 
known that quercetin has a low oral bioavailability (36). It has also been 
mentioned that at flavonoid concentrations above 20 μM, the effects 
observed in vitro are hardly applicable to human intake of flavonoids 
through diet or dietary supplements (37). Plasma concentrations of 
flavonoids can reach 0.7 to 2.5 μM in subjects who consume large 
amounts of vegetables, such as onions, or who take dietary supplements 
(37). The toxic dose of quercetin based on animal experiments was 
equivalent to approximately 8 mg/kg in the human body (37). Therefore, 

TABLE 1 Venn diagram interaction between five high-frequency herbs.

BP MF CC

Five herbs Response to hormone Transcription factor binding Receptor complex

Response to xenobiotic stimulus Protein domain-specific binding Organelle outer membrane

Regulation of body fluid levels Neurotransmitter receptor activity

HMM, RB, PV, and ASR Positive regulation of programmed cell death Oxidoreductase activity

HMM, RB, PV, and FTB Phosphatase binding

HMM, RB, and PV Response to oxidative stress

FIGURE 2

KEGG enrichment intersections between five herbs and four herb pairs.
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TABLE 2 Top 20 KEGG enrichment analysis terms for HMM, FTB, RB, PV, 
and ASR.

Herb ID GeneRatio Description

RB hsa04215 0.34375 Apoptosis—multiple species

HMM hsa04657 0.31578947 IL-17 signaling pathway

HMM hsa00140 0.30645161 Steroid hormone biosynthesis

HMM hsa04115 0.28 p53 signaling pathway

FTB hsa04215 0.25 Apoptosis—multiple species

RB hsa04218 0.22929936 Cellular senescence

HMM hsa04914 0.22522523 Progesterone-mediated oocyte 

maturation

RB hsa04913 0.21568627 Ovarian steroidogenesis

RB hsa00140 0.20967742 Steroid hormone biosynthesis

PV hsa00140 0.20967742 Steroid hormone biosynthesis

PV hsa05417 0.20833333 Lipid and atherosclerosis

RB hsa04064 0.2 NF-kappa B signaling pathway

HMM hsa04064 0.19047619 NF-kappa B signaling pathway

PV hsa04923 0.18644068 Regulation of lipolysis in adipocytes

RB hsa05323 0.18085106 Rheumatoid arthritis

HMM hsa04148 0.17948718 Efferocytosis

RB hsa04148 0.17948718 Efferocytosis

HMM hsa04630 0.16666667 JAK–STAT signaling pathway

PV hsa04148 0.1474359 Efferocytosis

FTB hsa04659 0.13888889 Th17 cell differentiation

whether it can reach toxic levels in the human body at normal doses of 
TCM applications requires further in vivo experiments to confirm. A 
relevant study has indicated that a daily intake of 1 g of quercetin, when 

used as a dietary supplement, is considered safe (38). Another study 
reported that the recommended dose of quercetin was 100–1,200 mg/d, 
with an intake of up to 2 g/d (37, 39). In addition, a clinical study 
mentioned that supplementation with quercetin at 500 mg/day and 
1,000 mg/day for 12 weeks significantly increased plasma quercetin 
levels but did not affect innate immune function or inflammatory 
markers in adult women in the community (40). Therefore, compared 
with its toxicity, the ability of anti-inflammatory and regulate immunity 
should be more concerned (36).

Recent studies have shown that quercetin can regulate obesity and 
obesity-related complications (41–43). Quercetin has anti-inflammatory 
and anti-oxidative effects (44, 45); it also has been shown to have anti-
obesity effects in adipocyte cultures and animal models (46). Jazyra Zynat 
et al. discovered that quercetin could significantly influence adipose tissue 
in obese conditions. It achieves this by mitigating intracellular oxidative 
stress, diminishing chronic low-grade inflammation, and suppressing 
adipogenesis and lipogenesis (44, 47). Mie Nishimura et al. have shown 
that quercetin-rich onion powder can reduce HDL cholesterol in obese 
people (48). In addition, it has been reported that quercetin can prevent 
obesity by regulating intestinal flora (49–51). It has also been reported that 
quercetin can intervene in obesity by regulating the expression of liver 
lipid metabolism-related genes and pro-inflammatory genes (50, 52).

Therefore, it is suggested that quercetin may have a potential 
intervention effect on efferocytosis. Quercetin has been experimentally 
demonstrated to treat obesity, and enrichment analysis showed that 
the efferocytosis was significantly enriched in the intersection genes 
of quercetin associated with HT. However, the intervention of 
quercetin on HT still needs further clinical studies.

The regulatory effects of quercetin on some ADs have been 
demonstrated by in vivo animal experiments, such as experimental 
osteoarthritis (53). The five herbs mentioned in this study are also 
frequently found in clinical compound experiments (6, 8), such as 
Shugan Sanjie Prescription (8), which includes five herbs. Buzhong 

FIGURE 3

(A) KEGG enrichment analysis of ASR. (B) KEGG enrichment analysis of FTB. (C) KEGG enrichment analysis of HMM. (D) KEGG enrichment analysis of 
PV. (E) KEGG enrichment analysis of RB. (F) KEGG enrichment analysis of HMM-ASR. (G) KEGG enrichment analysis of PV-FTB. (H) KEGG enrichment 
analysis of PV-HMM. (I) KEGG enrichment analysis of PV-RB.
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Yiqi decoction is a traditional formula that contains RB, HMM, and 
ASR. In a study of the rat model of experimental autoimmune 
thyroiditis, Buzhong Yiqi granules significantly reduced antibody 
levels and improved thyroid function in the model group (54). A 
clinical study has also claimed that BuzhongYiqi decoction can 
enhance the immunity of the elderly (55). In addition, clinical studies 
have shown that PV can reduce thyroid antibody levels, improve 
thyroid function, and reduce thyroid volume (6, 56). HMM can 
reduce the levels of TPOAb and TgAb and promote the apoptosis of 
HT mice (6). Saikosaponin D, the active component of RB, could treat 
HT by regulating macrophage polarization (12).

Obesity is a risk factor for HT (14). Song et al. found that obesity 
increases the risk of overt and subclinical hypothyroidism, thyroid 

peroxidase antibody (TPOAb) positivity, but not thyroglobulin 
antibody (TgAb) positivity (16). Yan et al. found that obesity with HT 
had a higher incidence of subclinical hypothyroidism and TgAb 
positivity than HT subjects (57). In addition, obese children and 
adolescents with autoimmune thyroid diseases showed higher thyroid-
stimulating hormone (TSH), lower thyroid hormone levels, a higher 
risk of hypothyroidism, and no association with antibody levels (58). 
Maria et al. found that overweight or obese women with HT have 
higher oxidative stress levels compared with women with normal BMI 
with HT (59). All these research studies suggest that treating obesity 
may be a valuable therapy for treating HT (Figure 6).

Obesity is also related to efferocytosis. Li et  al. found that 
efferocytosis was defective in obese mice (60). The mechanism of 

FIGURE 4

Bubble figure of quercetin KEGG enrichment analysis. (A) Bubble figure of quercetin and obesity-HT. (B) Bubble figure of quercetin and obesity. 
(C) Bubble figure of quercetin and HT.

FIGURE 5

PPI network of intersecting targets and top 15 intersecting targets. (A) PPI network of the 38 efferocytosis targets. (B) Visualization of 38 efferocytosis 
targets by Cytoscape software. (C) The top 15 core targets for efferocytosis.
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TABLE 3 Binding energy of efferocytosis-related proteins.

Proteins PDBID Binding energy

CASP3 5IBP 7.2

PPARG 9F7W 7.6

HIF1A 2ILM 8

MAPK3 4QTB 7.7

JUN 6Y3V 6.4

PTGS2 5F19 8.7

TGFB1 4KV5 7.4

IL10 1INR 6.6

CD36 5LGD 8.5

SIRT1 8ANB 9.2

JAK2 3UGC 7.9

MAPK1 5WP1 7.5

PPARA 6KAX 8.2

MAPK14 3LFF 8.3

PTPN11 3ZM0 7.4

MERTK 7AB0 6.5

AXL 4RA0 7.4

defective efferocytosis in obesity has also been widely studied. 
Reduced PPARG signaling has been reported as one of the factors 
contributing to defective efferocytosis (20). Luo et al. mentioned that 
PPARG expression levels were reduced in obese mice, which were 
further found to be  associated with defective macrophage 
erythropoietin signaling (61). Suresh Babu et  al. showed that 
efferocytosis was altered in macrophages due to the shedding of 

MERTK by ADAM17, which functions as the main protease, using 
obese and diabetic mice (62, 63). A clinical study on centripetal 
obesity further confirmed that obesity, particularly when fat is 
predominantly deposited around the abdominal area, is associated 
with the cleavage of MERTK by ADAM17 to produce soluble MERTK 
(64) (Figure 6).

Impaired efferocytosis has been implicated as a pathogenic 
mechanism in several ADs, and enhancing efferocytosis has emerged 
as a potential therapeutic strategy for these conditions (65–70). In 
systemic lupus erythematosus, defective efferocytosis is closely 
associated with aberrations in PPAR signaling, LXR signaling, ABCA1 
expression, and C1q membrane protein deficiency (71, 72). Similarly, 
macrophages derived from non-obese diabetic (NOD) mice, an 
established animal model of type 1 diabetes, exhibit defective 
efferocytosis both in  vivo and in  vitro (70). In systemic sclerosis, 
efferocytosis is frequently impaired due to the presence of inhibitory 
IgG anti-apoptotic cell antibodies and phagocyte dysfunction (69). In 
osteoarthritis, impaired efferocytosis and elevated levels of apoptotic 
cells have been observed in synovial tissues, which have been linked 
to the deficiency of membrane-bound TAM receptors (Tyro3, AXL, 
and MERTK) (73). In recent years, efferocytosis-informed 
nanomimetics have demonstrated therapeutic efficacy in murine 
models of rheumatoid arthritis (74, 75). Regulating macrophage 
polarization is an effective means to treat inflammatory bowel disease 
(67), and efferocytosis will promote macrophage M2 polarization (68). 
In brief, efferocytosis plays a crucial role in several ADs. HT is also a 
form of AD and is likely to be  similarly affected by efferocytosis 
dysfunction. Therefore, it is reasonable to infer that the promotion of 
efferocytosis may be one of the effective ways of treating HT (Figure 6).

Since this study relies solely on network pharmacology methods, 
it inevitably possesses certain limitations. The relationship between 
efferocytosis and obesity-associated HT has not been supported by 

FIGURE 6

Relationship between HT, obesity, autoimmunity, and efferocytosis.
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experimental and clinical studies. Currently, there is a scarcity of 
studies on HT as a risk factor for obesity; it still needs further 
experimental and clinical research. The treatment of quercetin for HT 
also needs to be confirmed by further clinical studies.

5 Conclusion

The therapeutic effect of five frequently prescribed herbs in 
treating obesity-associated HT may be  achieved through the 
regulation of efferocytosis. Most of the results from network 
pharmacology and molecular docking techniques have pointed to 
efferocytosis as a potential pathway to treat obesity-associated 
HT. Quercetin is one of the potential ingredients related to the 
efferocytosis pathway, and it binds well with most of the key 
efferocytosis-related proteins.
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