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Background: Effective biomarkers for the diagnosis of metabolic dysfunction-

associated steatotic liver disease (MASLD) remain limited. This study aims

to evaluate the potential of advanced glycation end products (AGEs) and

their endogenous secretory receptor (esRAGE) as non-invasive biomarkers

for diagnosing MASLD, to explore differences between obese and non-obese

MASLD patients, and to develop a novel diagnostic model based on these

biomarkers.

Methods: This study enrolled 341 participants, including 246 MASLD patients

(118 non-obese, 128 obese) and 95 healthy controls. Serum AGEs and esRAGE

levels were measured by ELISA. Key predictors were identified using the Lasso

algorithm, and a diagnostic model was developed with logistic regression

and visualized as nomograms. Diagnostic accuracy and utility were evaluated

through the area under the curve (AUC), bootstrap validation, calibration curves,

and decision curve analysis (DCA).

Results: Serum AGEs and esRAGE levels were significantly higher in MASLD

patients compared to controls. Moreover, obese MASLD patients had higher

esRAGE levels than non-obese ones, but no significant difference in AGEs

levels was found. A diagnostic model incorporating age, WC, BMI, ALT, TG,

HDL, AGEs, and esRAGE achieved an AUC of 0.963, with 94.3% sensitivity and

85.3% specificity. The AUC for bootstrap internal validation was 0.963 (95% CI:

0.944–0.982). Calibration curves showed strong predictive accuracy, and DCA

demonstrated high net clinical benefit.

Conclusion: Serum AGEs and esRAGE serve as non-invasive biomarkers for

distinguishing MASLD patients. We developed and validated diagnostic models

for MASLD, offering valuable tools to identify at-risk populations and improve

prevention and treatment strategies.

KEYWORDS

MASLD, non-obese, advanced glycation end products, diagnostic model, esRAGE

Frontiers in Medicine 01 frontiersin.org

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1539708
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1539708&domain=pdf&date_stamp=2025-03-28
https://doi.org/10.3389/fmed.2025.1539708
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2025.1539708/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1539708 March 25, 2025 Time: 15:47 # 2

Cao et al. 10.3389/fmed.2025.1539708

1 Introduction

Metabolic dysfunction-associated steatotic liver disease
(MASLD) is the most widespread chronic liver disorder globally,
impacting more than one-third of adults (1). Projections indicate
that by 2040, the prevalence could exceed 50% of the adult
population worldwide (2). Although liver biopsy remains the gold
standard for diagnosing MASLD, enabling the classification of
hepatic steatosis, fibrosis, and inflammation (3), it is invasive,
carries risks of complications, and is limited by sampling variability
and significant interobserver variability in pathology interpretation
(4, 5). In this context, the development of simple, noninvasive tools
for routine clinical use, including various serum-based scoring
systems, has been proposed as viable alternatives, such as the fatty
liver index (FLI) and the hepatic steatosis index (HSI) (6–9). While
models like FLI and HSI are commonly used in MASLD screening,
they have notable limitations, primarily because they rely heavily
on traditional metabolic parameters (e.g., BMI, lipid levels, liver
function indices) and are predominantly based on populations
from Western countries (10, 11). Approximately 40% of the global
MASLD population is categorized as non-obese (12). Patients
with MASLD who are obese and those who are not have notable
variations in their clinical and metabolic characteristics (13). This
presents challenges in diagnosing MASLD using scoring systems
based solely on clinical characteristics and basic serum markers.
Therefore, identifying serum biomarkers with high discriminatory
power for both non-obese and obese MASLD is essential. The
"multiple- hit" hypothesis has recently emerged, proposing
that various factors act simultaneously and synergistically to
induce metabolic and molecular changes, driving the onset and
progression of MASLD (14, 15). Within this framework, several
studies have highlighted the significant role of advanced glycation
end products (AGEs) in the pathogenesis of MASLD (16–18).

AGEs form through a non-enzymatic reaction between amine
groups in proteins, lipids, nucleic acids, and carbonyl groups in
reducing sugars (19). The receptor for advanced glycation end
products (RAGE) is a transmembrane receptor that recognizes
products of non-enzymatic glycation and protein oxidation (20).
When AGEs bind to RAGE, it triggers various intracellular
signaling pathways that enhance cytokine production. This cascade
eventually results in lipid buildup in the liver, promoting steatosis
and the development of MASLD (18, 21–23). Several studies
suggest that AGEs may serve as potential plasma biomarkers for
diagnosing MASLD (24, 25). The endogenous secretory receptor
for advanced glycation end products (esRAGE) is a C-truncated
splice variant of RAGE that functions as a decoy receptor for RAGE
ligands, modulating RAGE signaling (26). Levels of circulating
esRAGE can be utilized as a measure of RAGE generation in tissues
(27), as well as a reaction to reduce RAGE-induced tissue damage
(20, 26, 28). Thus, the aim of this study was to investigate the
potential of AGEs and esRAGE as non-invasive biomarkers for
MASLD, and to develop and evaluate a novel diagnostic model
based on these biomarkers.

2 Materials and methods

2.1 Participants

Participants for this cross-sectional research were recruited
from Nanhua Hospital, which is connected with Nanhua
University, between January and September 2024. There were 246
patients with a diagnosis of MASLD (118 with non-obese MASLD
and 128 with obese MASLD) and 95 healthy controls among the
341 people that were included. The MASLD diagnostic criteria
were based on the Multi-Society Delphi Consensus Statement on

FIGURE 1

Participant selection flowchart.
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New Nomenclature for Fatty Liver Disease (29). Inclusion criteria
consisted of participants aged 18–75 years, with an ultrasound-
confirmed diagnosis of fatty liver, exclusion of excessive alcohol
consumption (≥210 g/week for men and ≥ 140 g/week for women),
exclusion of other causes of fatty liver, and the presence of at
least one component of metabolic syndrome. Patients with chronic
inflammatory conditions were excluded. Cases with missing data
were excluded from the analysis. MASLD patients were split into
two groups: those who were non-obesity (BMI < 25 kg/m2)
and those who were obese (BMI ≥ 25 kg/m2). The study was
authorized by the Nanhua Hospital Ethics Committee at Nanhua
University (approval code: 2024-Ky-232), and all participants gave
signed informed consent. The research complied with the 1975
Declaration of Helsinki’s ethical guidelines.

2.2 Clinical and laboratory data
collection

Body Mass Index (BMI), waist circumference (WC), and
systolic blood pressure (SBP) from the right arm were among
the anthropometric measurements that were gathered. Following
a period of fasting lasting 12 h, blood samples were drawn.
Hematological parameters, including white blood cells (WBC),
neutrophils, monocytes, hemoglobin, and platelets, were assessed
using an automatic blood cell analyzer at the Nanhua Hospital
Laboratory, Nanhua University. Biochemical parameters, including
albumin, fasting blood glucose (FPG), direct bilirubin (DB),
bile acids (BA), alanine aminotransferase (ALT), aspartate
aminotransferase (AST), total bilirubin (TB), uric acid (UA), urea
nitrogen (BUN), creatinine, total cholesterol (TC), triglycerides
(TG), high-density lipoprotein (HDL), low-density lipoprotein
(LDL), sodium, and potassium, were measured using an automated
biochemical analyzer.

2.3 Plasma AGEs and esRAGE

Serum samples were separated from fasting patients and kept
at −80◦C before analysis. Mlbio’s ELISA kit measured serum AGE
and esRAGE levels. In these assays, undiluted serum samples
were utilized, and the measurements were conducted following the
manufacturer’s guidelines.

2.4 Statistical analysis

The quantitative data were non-normally distributed, as
determined by the Shapiro-Wilk test. Quantitative data were
presented as medians with interquartile ranges (P25, P75) and
analyzed using the Mann-Whitney U test, whereas qualitative
data were compared using the chi-square test. The correlation
between AGEs, esRAGE, and clinical indicators were looked at
using Spearman’s correlation coefficient. R 4.4.1 and SPSS version
28.0 were used for all statistics studies.

The predictors selected through the Lasso method for clinical
modeling were first subjected to univariate logistic regression
analysis to identify clinically significant variables. Construction

of the final model using multiple logistic regression analysis.
The area under the receiver operating characteristic (ROC) curve
(AUC) was used to measure performance. With the help of
the "caret" R package, internal validation was carried out using
the 1,000-iteration Bootstrap resampling approach. ROC curves
were constructed with the help of the "pROC" R package, and
a nomogram was made with the help of the "rms" R package.
The "rms" and "ResourceSelection" R packages were used to plot
calibration curves. The "rmda" R packages was used to perform
decision curve analysis (DCA), which evaluated the diagnostic

TABLE 1 Characteristics of participants.

Characteristics Non-MASLD
(n = 95)

MASLD
(n = 246)

P-value

Sex (male) 23(24.2%) 136(55.3%) <0.001

Age 47(40–54) 55(49–60) <0.001

WC 78(75–83) 92(87–97) <0.001

BMI 21.64(19.22–23.31) 25.25(23.44–28.03) <0.001

SBP 119(107–127) 130(121–138) <0.001

WBC 5.41(4.61–5.99) 6.19(5.19–7.64) <0.001

Neutrophils 3.32(2.65–4.14) 3.9(3.21–5.21) <0.001

Monocytes 0.35(0.27–0.45) 0.44(0.35–0.54) <0.001

Hemoglobin 127(119–136) 138(126–149) 0.001

Platelets 215(164–251) 220.5(180–263.25) 0.691

Albumin 45.2(43.5–47.2) 44.65(42.68–47.3) 0.357

ALT 14.1(11.1–17.3) 21.7(16–32.63) <0.001

AST 19.2(16.5–21.4) 20.85(16.5–26.3) 0.018

TB 12.6(9.2–16.69) 11.9(8.28–16.43) 0.55

DB 3.2(2.5–4.3) 3.1(2.3–4.13) 0.289

BA 3.3(2.0–5.7) 3.8(2.4–6.83) 0.115

UA 250(217–295) 340.5(284.75–
417.25)

<0.001

Creatinine 65(56–76) 73.45(61.0–89.0) 0.074

BUN 4.3(3.4–5.17) 5.18(4.0–6.0) <0.001

TC 4.35(3.76–4.73) 4.73(3.91–5.46) <0.001

TG 0.99(0.79–1.36) 2.07(1.37–2.82) <0.001

HDL 1.39(1.2–1.62) 1.03(0.88–1.27) <0.001

LDL 2.64(2.11–3.07) 3.03(2.32–3.64) 0.001

FBG 5.07(4.79–6.1) 5.77(4.92–7.7) 0.002

Sodium 140.3(138.7–142.4) 140.2(138.6–142.0) 0.398

Potassium 3.95(3.74–4.18) 3.97(3.73–4.26) 0.706

AGEs 9.84(5.94–12.91) 13.53(7.96–18.69) <0.001

esRAGE 1.9(1.49–2.23) 2.21(1.71–2.74) <0.001

The data are expressed as either number (percentage) or median (P25–P75). To compare
the characteristics between the two groups, the Mann-Whitney U test was used for
continuous variables, while the Chi-squared test was employed for categorical variables. WC,
Waist Circumference; BMI, Body Mass Index; SBP, Systolic Blood Pressure; WBC, White
Blood Cells; FPG, Fasting Plasma Glucose; ALT, Alanine Aminotransferase; AST, Aspartate
Aminotransferase; TB, Total Bilirubin; DB, Direct Bilirubin; BA, Bile Acids; UA, Uric
Acid; BUN, Urea Nitrogen; TC, Total Cholesterol; TG, Triglycerides; HDL, High-Density
Lipoprotein; LDL, Low-Density Lipoprotein; AGEs, Advanced Glycation End Products;
esRAGE, Endogenous Secretory Receptor for Advanced Glycation End Products.
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FIGURE 2

Comparative analysis of AGEs and esRAGE levels in normal controls versus patients with MASLD. (A) Patients with MASLD had considerably higher
levels of AGEs (P < 0.001). (B) MASLD patients had considerably higher levels of esRAGE (P < 0.001). (C) A heatmap depicting the correlation analysis
among all candidate predictors showed statistical significance, indicated by asterisks (*) and double asterisks (**), in the correlations between
variables. (D) Scatterplot of AGEs versus esRAGE, with a positive correlation (P = 0.0164).

model’s clinical usefulness. Common MASLD indices, including his
(30), Korea National Health and Nutrition Examination Survey-
derived nonalcoholic fatty liver disease score (K-NAFLD) (31), the
NAFL Screening Score (NSS) (32), and the NAFLD Ridge Score
(33), were calculated according to the methods described in the
original publications.

3 Results

3.1 Association between AGEs and
esRAGE and MASLD

Following stringent screening and exclusion standards, 341
people in all were included in the study: 246 patients with
MASLD, of whom 118 were categorized as non-obese MASLD and
128 as obese MASLD, and 95 normal controls (Figure 1). The
anthropometric and laboratory parameters of these participants
are summarized in Table 1. The cohort included 159 men
(46.6%) and 182 females (53.4%). The MASLD group had a
considerably larger proportion of males than the normal control
group (P < 0.001). The cohort’s median age was 54 years,
and patients with MASLD were notably older than the normal
controls (P < 0.001). Anthropometric measures showed that the
MASLD group had substantially greater WC, BMI, and SBP
than the controls (P < 0.001). Similarly, laboratory findings
showed significantly higher levels of WBC, neutrophils, monocytes,
hemoglobin, ALT, AST, UA, BUN, TC, TG, LDL, and FBG in
MASLD patients (P < 0.05). Conversely, there was a substantial
decrease in HDL values in the MASLD group (P < 0.05). The
groups’ levels of platelets, albumin, TB, DB, BA, creatinine, sodium,
and potassium did not differ much.

The distribution of AGEs and esRAGE in normal controls
and MASLD patients is illustrated in Figure 2. MASLD patients
had considerably greater levels of both AGEs and esRAGE than
healthy controls (P < 0.001) (Figures 2a,b). To visualize the
relationships among the predictor variables, a correlation heatmap
was generated, incorporating all continuous predictor variables
with the degree of correlation between them indicated on the plot
(Figure 2C). The colors in the heatmap indicate the direction of

the correlations, with the intensity of the color representing the
strength of the correlation. AGEs showed positive correlations with
age, WC, BMI, WBC, monocytes, TB, BA, UA, creatinine, sodium,
and esRAGE (P < 0.05), but showed negative correlations with
HDL and potassium (P < 0.05). Similarly, esRAGE was positively
correlated with WC, BMI, SBP, WBC, monocytes, hemoglobin,
platelets, ALT, UA, creatinine, TC, LDL, and AGEs (P < 0.05),
but negatively correlated with BA. The association between AGEs
and esRAGE was analyzed using Spearman’s correlation test,
and the resulting scatter plot demonstrated a substantial positive
correlation (r = 0.1299, P = 0.0164) (Figure 2D).

3.2 Comparative analysis of AGEs and
esRAGE in non-obese and obese MASLD

The anthropometric and laboratory parameters of non-obese
and obese MASLD patients are presented in Table 2. The
proportion of males among those with obese MASLD (68.7%) was
significantly greater than that of males with non-obese MASLD
(40.7%) (P < 0.001). Additionally, non-obese MASLD patients
were substantially older than their obese counterparts (P < 0.001).
Non-obese MASLD patients had considerably lower BMI and WC
levels (P < 0.001). Regarding laboratory parameters, serum levels
of monocytes, hemoglobin, UA, creatinine, and potassium were
significantly elevated in obese MASLD patients (P < 0.05). There
were no significant differences in WBC, neutrophils, platelets,
albumin, ALT, AST, TB, DB, BA, BUN, TC, TG, HDL, LDL, FBG,
or sodium levels across groups.

The distribution of AGEs and esRAGE levels in non-obese and
obese MASLD patients is illustrated in Figure 3. Although levels
of AGEs elevated in obese MASLD patients compared with non-
obese individuals, the difference was not statistically significant
(Figure 3A). In contrast, obese MASLD patients had substantially
elevated esRAGE levels compared to non-obese patients (P < 0.05)
(Figure 3B). To illustrate the correlations among all candidate
predictor variables in MASLD patients, a correlation heatmap was
generated (Figure 3C). The correlation between AGEs and esRAGE
was further examined using Spearman’s test, and the resulting
scatter plot indicated no significant correlation between AGEs and
esRAGE in MASLD patients (Figure 3D).
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TABLE 2 Characteristics of patients with non-obese and obese MASLD.

Characteristics Non-obese
MASLD

(n = 118)

Obese MASLD
(n = 128)

P-value

Sex (male) 48(40.7%) 88(68.8%) <0.001

Age 56.5(52–61) 54(45–58) <0.001

WC 87(82–90) 96(92–100) <0.001

BMI 23.44(22.12–24.33) 27.76(26.56–29.76) <0.001

SBP 127(118–139) 131(124–138) 0.098

WBC 6.0(4.89–7.76) 6.36(5.41–7.53) 0.223

Neutrophils 3.84(3.12–5.58) 3.91(3.25–4.93) 0.912

Monocytes 0.41(0.32–0.51) 0.46(0.36–0.57) 0.028

Hemoglobin 135(124–143) 141(128.25–154) 0.001

Platelets 214.5(175.5–257) 225(183.25–265) 0.321

Albumin 45.1(42.9–47.3) 44.3(42.3–47.18) 0.306

ALT 21(15.38–31.1) 22.65(16.7–36.2) 0.073

AST 21.25(16.08–26.93) 10.35(16.78–25.93) 0.922

TB 11.93(8.18–17.23) 11.85(8.31–15.53) 0.368

DB 2.99(2.15–3.95) 3.2(2.34–4.3) 0.155

BA 4.1(2.38–6.73) 3.6(2.43–7.3) 0.977

UA 318(260.75–399) 363.5(304–431.75) <0.001

Creatinine 68.3(58.9–83.03) 79.7(65.25–95) <0.001

BUN 5.09(4.08–5.86) 5.18(4.0–6.17) 0.473

TC 4.77(4.06–5.63) 4.66(3.88–5.38) 0.263

TG 2.11(1.31–2.89) 2.01(1.38–2.8) 0.928

HDL 1.08(0.89–1.29) 1.01(0.87–1.25) 0.199

LDL 3.04(2.32–3.75) 3.01(2.32–3.62) 0.749

FBG 5.78(4.94–8.27) 5.78(4.82–7.09) 0.237

Sodium 140.4(138.6–142.0) 139.9(138.53–
141.98)

0.72

Potassium 3.95(3.66–4.15) 4.01(3.81–4.3) 0.033

AGEs 13.38(8.91–17.01) 17.9(7.33–20.7) 0.363

esRAGE 2.09(1.64–2.58) 2.28(1.84–2.94) 0.023

The data are expressed as either number (percentage) or median (P25–P75). To compare
the characteristics between the two groups, the Mann-Whitney U test was used for
continuous variables, while the Chi-squared test was employed for categorical variables. WC,
Waist Circumference; BMI, Body Mass Index; SBP, Systolic Blood Pressure; WBC, White
Blood Cells; FPG, Fasting Plasma Glucose; ALT, Alanine Aminotransferase; AST, Aspartate
Aminotransferase; TB, Total Bilirubin; DB, Direct Bilirubin;, BA, Bile Acids; UA, Uric
Acid; BUN, Urea Nitrogen; TC, Total Cholesterol; TG, Triglycerides; HDL, High-Density
Lipoprotein; LDL, Low-Density Lipoprotein; AGEs, Advanced Glycation End Products;
esRAGE, Endogenous Secretory Receptor for Advanced Glycation End Products.

3.3 Diagnostic models based on AGEs
and esRAGE

3.3.1 Construction of the model
To mitigate the risk of overfitting, we conducted LASSO

regression analysis on all candidate predictor variables, generating
LASSO coefficient path diagrams (Figure 4A) and LASSO
regularized path diagrams (Figure 4B). Based on the optimal λ-
value, we retained 18 characteristic variables: age, WC, BMI, SBP,

neutrophils, monocytes, ALT, TB, UA, TC, TG, HDL, LDL, FBG,
sodium, potassium, AGEs, esRAGE.

Univariate regression analysis of the 18 retained characteristic
variables revealed that 15 were significantly associated with
MASLD (P < 0.05) (Table 3). The results indicated that the
odds ratios (ORs) were as follows: age, 1.089 (1.061–1.117);
waist circumference, 1.265 (1.201–1.332); Body Mass Index,
1.769 (1.545–2.025); systolic blood pressure, 1.076 (1.053–1.100);
neutrophils, 1.381 (1.146–1.665); monocytes, 50.064 (7.378–
339.706); alanine aminotransferase, 1.140 (1.093–1.189); uric
acid, 1.015 (1.011–1.020); total cholesterol, 1.583 (1.227–2.042);
triglycerides, 4.464 (2.852–6.989); high-density lipoprotein, 0.038
(0.016–0.092); low-density lipoprotein, 1.709 (1.280–2.283); fasting
blood glucose, 1.321 (1.127–1.549); AGEs, 1.106 (1.061–1.153); and
esRAGE, 1.979 (1.408–2.781). These variables were included in
the multivariate regression analysis, which employed a stepwise
backward selection method to establish the final model. This
resulted in eight characteristic variables retained in the final model:
age, 1.146 (1.079–1.218); waist circumference, 1.139 (1.032–1.258);
Body Mass Index, 1.381 (1.073–1.777); alanine transaminase, 1.103
(1.042–1.168); triglycerides, 1.522 (1.088–2.129); high-density
lipoprotein, 0.201 (0.052–0.773); AGEs, 1.113 (1.027–1.206); and
esRAGE, 2.259 (1.154–4.422) (Table 3). The score can be calculated
using the following equation:

MASLD Score = 0.136 × Age (years) + 0.130 × WC (cm)
+ 0.323 × BMI (kg/m2) + 0.098 × ALT (U/L) + 0.420 × TG
(mmol/L) − 0.603 × HDL (mmol/L) + 0.107 × AGEs (µg/mL) +
0.815 × esRAGE (µg/mL) − 28.240

3.3.2 Validation of the model
Following logistic regression analysis, eight variables were

determined to be independent predictors (Table 3). ROC analyses
were conducted on these predictors to assess their capability in
differentiating MASLD, with results displayed in Figures 5A–
H. The area under the curve (AUC) values indicated strong
discriminatory performance, demonstrating their accuracy in
diagnosing MASLD. The predictive power of the MASLD
diagnostic model was significantly higher than that of the univariate
clinical model, with an AUC of 0.963 (Figure 5I). In the MASLD
model, the sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), positive likelihood ratio (PLR),
and negative likelihood ratio (NLR) were 94.3, 85.3, 94.6, 84.7, 6.41,
and 0.07%, respectively (Table 4). For internal validation, the model
was assessed using 1,000 Bootstrap resamplings, and it yielded
an AUC of 0.963 (95% CI: 0.944–0.982) (Figure 6A). To enhance
diagnostic efficiency, we developed a nomogram incorporating
the final variables to estimate the risk of MASLD (Figure 6B).
Meanwhile, calibration curves indicated good alignment between
predicted and observed probabilities (Figure 6C). Additionally, a
decision curve analysis evaluated the model’s utility in clinical
decision-making. The model curve, as illustrated in Figure 6D,
diverged from the extreme “none” and “all” curves, showing
that patients with MASLD could benefit significantly from the
diagnostic model in terms of net clinical outcomes. These findings
demonstrate that the diagnostic model, which incorporates AGEs
and esRAGE, has strong diagnostic efficacy and practical utility.

The diagnostic performance of five MASLD diagnostic scores
(i.e., MASLD Score, HSI, K-NAFLD, NSS, and NAFLD Ridge
Score) was systematically evaluated (Table 4). The results indicated
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FIGURE 3

AGEs and esRAGE levels in obese and non-obese MASLD patients are compared. (A) No substantial variations in AGE levels were seen between
non-obese and obese MASLD patients. (B) Patients with MASLD who were obese had elevated levels of esRAGE (P < 0.05). (C) A heatmap depicting
the correlation analysis among all candidate predictors showed statistical significance, indicated by asterisks (*) and double asterisks (**), in the
correlations between variables. (D) AGEs and esRAGE did not show a statistically significant link, according to Spearman’s correlation analysis.

FIGURE 4

Factor selection was conducted using Lasso binary logistic regression models. (A) The logarithm of the lambda (λ) values for the 28 candidate
variables in the Lasso model was determined. (B) log (Lambda) value that was most appropriate in the LASSO model.

that the MASLD Score exhibited superior diagnostic performance
compared with the other scoring systems (Figure 7A). To assess the
diagnostic performance of the five models in the non-obese and
obese MASLD subgroups, we applied each model to its respective
subgroup. In the non-obese MASLD subgroup, the MASLD Score
maintained high discriminatory power (AUC = 0.942), whereas
the diagnostic validity of the other models was significantly lower
(Figure 7B). In contrast, all models demonstrated robust diagnostic
performance in the obese MASLD subgroup (Figure 7C; Table 5).

4 Discussion

Research has demonstrated that the AGE/RAGE axis
establishes a positive feedback loop that initiates a series of
processes, including oxidative stress, inflammation, cellular
malfunction, fibrosis, and apoptosis, all of which contribute to
damage in end organs (18, 34). Conversely, the esRAGE provides
a protective effect by inhibiting AGE/RAGE interactions (20,
26, 28). Therefore, a comprehensive assessment of AGEs and

their receptors (esRAGE), is essential for understanding the
development and progression of MASLD.

In the study, we discovered that the levels of AGEs were
considerably elevated in MASLD patients than in healthy controls,
aligning with findings from previous research. In a cross-sectional
survey of MASLD cases (n = 67), serum AGEs were significantly
elevated in both early and advanced stages of MASLD when
compared to the normal group (25). Additionally, a controlled
study of 58 MASLD patients and 58 healthy individuals found
greater levels of late glycation markers, such as carboxymethyl-
lysine, pentosidine, and AGE fluorescence, in the MASLD group
(35). Interestingly, only three previous research have assessed the
correlation between blood esRAGE levels and MASLD, despite
the fact that several investigations have shown the link between
esRAGE and liver disease. D’Adamo et al. (36) found that in a
cohort of obese prepubertal children (n = 140, aged 6–10 years),
serum esRAGE levels were lower in those with hepatic steatosis
than in healthy controls. Francesca et al. (37) investigated 60
patients with MASLD and 50 without hepatic steatosis, finding that
serum esRAGE levels were lower in the MASLD group. Conversely,

Frontiers in Medicine 06 frontiersin.org

https://doi.org/10.3389/fmed.2025.1539708
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1539708 March 25, 2025 Time: 15:47 # 7

Cao et al. 10.3389/fmed.2025.1539708

TABLE 3 Table of MASLD risk variables analyzed using univariate and multivariate logistic regression.

Variable Univariable analysis Multivariable analysis

OR (95%CI) P-value OR (95%CI) P-value

Age 1.089(1.061–1.117) <0.001 1.146(1.079–1.218) <0.001

WC 1.265(1.201–1.332) <0.001 1.139(1.032–1.258) 0.01

BMI 1.769(1.545–2.025) <0.001 1.381(1.073–1.777) 0.012

SBP 1.076(1.053–1.1) <0.001

Neutrophils 1.381(1.146–1.665) 0.001

Monocytes 50.064(7.378–339.706) <0.001

ALT 1.14(1.093–1.189) <0.001 1.103(1.042–1.168) 0.001

TB 0.98(0.943–1.02) 0.31

UA 1.015(1.011–1.02) <0.001

TC 1.583(1.227–2.042) <0.001

TG 4.464(2.852–6.989) <0.001 1.522(1.088–2.129) 0.014

HDL 0.038(0.016–0.092) <0.001 0.201(0.052–0.773) 0.019

LDL 1.709(1.28–2.283) <0.001

FBG 1.321(1.127–1.549) 0.001

Sodium 0.965(0.899–2.357) 0.331

Potassium 1.278(0.693–2.357) 0.433

AGEs 1.106(1.061–1.153) <0.001 1.113(1.027–1.206) 0.009

esRAGE 1.979(1.408–2.781) <0.001 2.259(1.154–4.422) 0.017

Univariate and multivariate logistic regression analyses were conducted to identify risk factors for MASLD. OR: ratio of ratios; Statistical significance is shown by bold values (P < 0.05).

Rohini et al. (38) reported that among 340 patients (BMI > 35) who
underwent bariatric surgery, there were no significant differences
in serum levels of esRAGE between those with MASLD and
those without liver disease. These studies were conducted with
smaller cohort samples or within specific populations and do not
adequately reflect serum esRAGE levels in a broader MASLD
population. Consequently, larger studies investigating esRAGE in
MASLD are warranted. The present study was conducted in a
larger cohort, serum esRAGE levels were elevated in patients with
MASLD compared to healthy controls. Recent evidence suggests
that RAGE activation leads to an increase in reactive oxygen species
production and upregulation of various genes, including RAGE
itself, thereby initiating a positive feedback loop (18). Since esRAGE
is derived from RAGE (26), any alterations in RAGE levels are
mirrored by changes in esRAGE levels. Consequently, the elevated
RAGE levels are attributable to significantly increased serum AGEs,
which may further elevate esRAGE levels. In conclusion, AGEs and
esRAGE can be used as biomarkers for the diagnosis of MASLD.

The current study population found that the incidence was
higher in females than males in non-obese MASLD populations.
Recent studies have corroborated that non-obese MASLD is more
prevalent among women (11, 39). Additionally, our findings
revealed that non-obese MASLD patients were older than their
obese counterparts, a result supported by a cross-sectional analysis
of 946 MASLD cases (13). The comparison of serum AGEs and
esRAGE levels between non-obese and obese MASLD patients
found that serum AGEs were greater in obese MASLD patients,
but there was no statistical difference. A comparison of correlations
revealed a positive correlation between AGEs and BMI (P < 0.05).
This was consistent with a bibliometric analysis that showed higher

levels of serum AGEs in the presence of obesity (40). Notably, for
the first time, our study discovered that obese MASLD patients
had significantly elevated serum esRAGE levels than non-obese
MASLD patients. Consistent with the idea in this paper, elevated
amounts of AGEs can cause elevated levels of RAGE, which can
then increase levels of esRAGE. There is a lack of studies on
esRAGE in non-obese and obese MASLD, and the emergence of
serum esRAGE as a non-invasive biomarker for non-obese and
obese MASLD needs to be confirmed by further studies.

There have been numerous non-invasive and simple models
created to identify MASLD (6, 7). The Fatty Liver Index (FLI),
developed from a cohort of 5,780 individuals in Italy (10), is
suitable for large-scale detection of MASLD (41). The Hepatic
Steatosis Index (HSI) has demonstrated effectiveness as a simple
screening tool for predicting MASLD in studies involving over
10,000 Korean patients (30). Other scoring systems, such as
the Lipid Accumulation Product (LAP), can assess central lipid
accumulation (42). MASLD results from a complex interaction of
environmental, genetic, and dietary factors (43). Certain dietary
practices, including excessive consumption of fructose and calories,
as well as physical inactivity, are linked to the development of
MASLD (44). However, there are notable differences between Asian
and Western people’s food habits, lifestyles, and genetic origins (45).
These scoring systems were originally designed for Western cohorts
and may not be applicable to Asian individuals. Furthermore,
there are notable variations in the clinical and metabolic features
of individuals with MASLD who are not fat compared to their
counterparts who are obese (13). Therefore, obesity should not be
the only criterion for MASLD screening, particularly in light of
the increasing prevalence of non-obese MASLD (12). This study

Frontiers in Medicine 07 frontiersin.org

https://doi.org/10.3389/fmed.2025.1539708
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1539708 March 25, 2025 Time: 15:47 # 8

Cao et al. 10.3389/fmed.2025.1539708

FIGURE 5

ROC curves for predictors and MASLD diagnostic models. (A–H) ROC curves for predictors Age, WC, BMI, ALT, TG, HDL, AGEs, esRAGE models.
(I) ROC curves for diagnostic models.

developed a diagnostic model incorporating Age, WC, BMI, ALT,
TG, HDL, AGEs, and esRAGE for diagnosing MASLD. To our
knowledge, this is the first investigation to create a diagnostic model
based on AGEs and esRAGE in MASLD patients. In this paper, we
developed a nomogram to calculate the exact probability of having
MASLD, facilitating the model’s application in clinical settings. The
values of each variable in the nomogram are assigned scores on a
scale from 0 to 100, and the scores are subsequently summed. The
total sum is plotted on the total score axis, enabling the prediction
of the probability of MASLD. Internal validation using Bootstrap
resampling demonstrated good discrimination, indicating that the
model we constructed is stable for prediction. The most crucial
factor to consider when using a model is determining whether an
individual requires further treatment or care based on their actual

needs (46). To establish clinical utility, we used decision curve
analysis to determine whether model-assisted decision-making
would give clinical advantages to individuals. The decision curves
indicated that using our model to predict MASLD could yield
greater benefits compared to a "treat all" or "treat none" approach.
In the present study, the MASLD Score demonstrated superior
diagnostic performance compared with existing MASLD models
(i.e., HSI, K-NAFLD, NSS, and NAFLD Ridge Score), achieving
high accuracy in both the overall population and the non-obese
subgroup, thereby overcoming the poor diagnostic performance of
traditional models in non-obese MASLD patients. Therefore, this
model might be a useful tool for Chinese community doctors in
diagnosing MASLD.
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TABLE 4 Diagnostic accuracy of the model.

Models AUC Sensitivity
(%)

Specificity
(%)

PPV (%) NPV (%) PLR NLR Youden’s
index

Age 0.736 63.4 71.6 81 50.2 2.23 0.51 0.350

WC 0.892 87 74.7 86.2 75.9 3.43 0.17 0.617

BMI 0.87 71.5 88.4 92 63.7 6.19 0.32 0.599

ALT 0.772 74.4 70.5 81.5 60.8 2.52 0.36 0.449

TG 0.838 87.4 66.3 82.4 74.3 2.59 0.19 0.537

HDL 0.788 56.5 88.4 89.7 52.7 4.87 0.49 0.449

AGEs 0.664 48.4 82.1 83.2 46.7 2.71 0.63 0.305

esRAGE 0.641 53.7 73.7 79.1 46.2 2.04 0.63 0.274

MASLD Score 0.963 94.3 85.3 94.6 84.7 6.41 0.07 0.796

HSI 0.926 80.5 92.6 95.7 68.1 10.88 0.21 0.731

K-NAFLD 0.914 86.2 80 89.5 75.3 4.31 0.17 0.662

NSS 0.94 82.5 95.8 98 67.9 19.64 0.18 0.783

NAFLD Ridge Score 0.703 62.5 74.7 78 57.4 2.47 0.5 0.372

NPV, negative predictive value; PPV, positive predictive value; NLR, negative likelihood ratio; PLR, positive likelihood ratio.

FIGURE 6

Validation of the diagnostic models. (A) Bootstrap internally validated ROC curves. (B) Nomogram for predicting MASLD risk classification. (C) Model
calibration curves. (D) When compared to a “all treatment” or “no treatment strategy, DCA demonstrates the net advantage of using the model to
diagnose MASLD at different decision thresholds.

Unavoidably, this study has certain limitations. First, due
to the fact that this research is cross-sectional, we are unable
to demonstrate that there is a causal association between the

variables. Second, this study employed a single-center design
with participants from a single region, which may introduce
bias due to geographic diet, genetics, or environmental factors.
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FIGURE 7

Comparison of the MASLD Score with MASLD-related scoring systems. (A) ROC curve analysis of the MASLD score, HSI, K-NAFLD, NSS, and NAFLD
Ridge Score in the MASLD cohort. (B) Comparison of the diagnostic performance of the models in the non-obese MASLD population.
(C) Comparison of the diagnostic performance of the models in the obese MASLD population.

TABLE 5 Comparison of the diagnostic performance of the models in non-obese and obese MASLD populations.

Model Group AUC Sensitivity
(%)

Specificity
(%)

PPV (%) NPV (%) PLR NLR Youden’s
index

MASLD Score Non-obese 0.942 88.1 86.3 88.9 85.3 6.43 0.14 0.744

Obese 0.987 97.7 90.4 94.6 96.3 10.18 0.025 0.881

HSI Non-obese 0.852 75.4 80 82.4 72.4 3.77 0.31 0.554

Obese 0.964 95.3 90.4 93.7 92.7 9.92 0.052 0.857

K-NAFLD Non-obese 0.868 86.4 71.6 79 81.2 3.04 0.19 0.58

Obese 0.949 96.1 79.8 84.8 94.8 4.76 0.049 0.759

NSS Non-obese 0.887 67.8 95.8 95.3 68.5 16.3 0.34 0.636

Obese 0.972 96.1 88.3 90.8 95.2 8.23 0.044 0.844

NAFLD Ridge Score Non-obese 0.663 59.3 72.6 68.4 64 2.16 0.56 0.319

Obese 0.738 64.1 78.7 67.6 75.7 3.02 0.456 0.428

NPV, negative predictive value; PPV, positive predictive value; NLR, negative likelihood ratio; PLR, positive likelihood ratio.

Future multicenter studies are essential to validate the model’s
generalizability, particularly by including cohorts from diverse
ethnic, geographic, and socioeconomic backgrounds. In addition,
although conventional ultrasound is widely employed for the
clinical screening of MASLD, its capacity to quantitatively assess
steatosis remains limited. Future studies should incorporate
more precise imaging techniques (e.g., MRI-PDFF or controlled
attenuation parameter) to further enhance diagnostic accuracy.

5 Conclusion

In conclusion, this cross-sectional study indicates that AGEs
and esRAGE can be used as potential non-invasive biomarkers
for differentiating patients with MASLD. Additionally, this study
is the first to show that obese MASLD patients have considerably
higher serum esRAGE levels than their non-obese counterparts.
Finally, we create and evaluate a diagnostic model to predict the risk

of MASLD, which assists in identifying high-risk individuals and
enhancing strategies for the prevention and treatment of MASLD.
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