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One of the leading causes of cancer-related mortality globally is non-small cell 
lung cancer (NSCLC). It has become a significant public health concern due to its 
rising incidence rate and fatality. Tumor-associated macrophage (TAM) is important 
in the tumor microenvironment (TME) of NSCLC because they have an impact on 
the development, metastasis, and incidence of tumors. As a crucial element of the 
TME, TAM contributes to tumor immune evasion, facilitates tumor proliferation 
and metastasis, and modulates tumor angiogenesis, immunosuppression, and 
treatment resistance through the secretion of diverse cytokines, chemokines, 
and growth factors. Consequently, TAM assumes a multifaceted and intricate 
function in the onset, progression, and therapeutic response of NSCLC, serving 
as a crucial focal point for comprehending the tumor microenvironment and 
formulating novel therapeutic methods. The study aims to review the biological 
properties and potential processes of TAM in NSCLC, investigate its involvement 
in the clinical of NSCLC patients, and discuss its potential as a therapeutic target.
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1 Introduction

Lung cancer is one of the leading causes of cancer death worldwide (1). Non-small cell 
lung cancer (NSCLC) is the most common type of lung cancer, and according to the study, 
NSCLC patients account for about 80–85% of all lung cancer patients (2). In addition, with 
the increase in risk factors such as smoking, air pollution, and chronic obstructive pulmonary 
disease, the incidence of NSCLC is increasing globally (3). These factors not only affect the 
survival rate of patients but also pose serious challenges to public health.

Tumor cells, stromal cells, blood vessels, and immune cells are some of the components 
that make up the tumor microenvironment (TME), which plays a crucial role in tumor growth 
and metastasis (4). Through signal transduction and intercellular interactions, TME influences 
tumor growth and responsiveness to therapy (5). The macrophage present in TME is called 
tumor-associated macrophage (TAM). While TAM can promote tumor development and 
spread by creating an immune escape route for malignancies, it can also prevent tumor growth 
by engulfing tumor cells and secreting cytokines (6).

The purpose of the study is to review the role and subclassification of TAM in NSCLC and 
discuss its potential as a therapeutic target. The upcoming chapters will cover these subjects 
in detail, to offer references for future studies and clinical applications.
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2 The origin of TAM

In most solid tumors, TAM and their precursors constitute the 
largest proportion of bone marrow infiltration among the cell types 
associated with the TME (7). 50% of the tumor mass may be made up 
of them (8, 9). The origin of TAM represents complex; They primarily 
derive from peripheral blood monocytes that circulate to the TME 
and differentiate into TAM in the presence of local cytokines (10). 
Besides, certain tumors may utilize pre-existing tissue-resident 
macrophages located in adipose tissue, liver, or lungs, which may 
undergo phenotypic changes within the TME (11). Additionally, 
tumor cells can secrete various cytokines and chemokines, such as 

CCL2 and CSF-1, which promote the migration of monocytes to the 
tumor site and facilitate their polarization into different types of 
TAM (12).

3 The TAM subclassification

3.1 Classical TAM subclassification

The concept of M1-TAM and M2-TAM (Figure 1) was initially 
introduced by Mills et al. (13). The biomarkers CD80, CD86, CD68, 
and iNOS are up-regulatedly expressed in M1-TAM, which mostly 

FIGURE 1

CSF-1 could induce monocytes to differentiate into M0 macrophages. Then, M0 macrophages could further evolve into M1 or M2 macrophages 
stimulated by Th1-type or Th2-type cytokines. Due to their differences in activation patterns and other aspects, M2 macrophages could be further 
divided into four subtypes: M2a, M2b, M2c, and M2d. colony-stimulating factor 1, CSF-1; interferon-γ, IFN-γ; lipopolysaccharides, LPS; granulocyte 
monocyte colony-stimulating factor, GM-CSF; tumor necrosis factor-α, TNF-α; immune complexes, IC; C-C motif chemokine 17, CCL17; interleukin-4 
IL-4; glucocorticoid, GC; leukemia inhibitory factor, LIF; transforming growth factor-β, TGF-β.
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secretes pro-inflammatory cytokines such as TNF-α, IL-6, IL-12, and 
IL-23 (14). M1-TAM polarization is typically triggered by T helper 
type 1-associated cytokines, including IFN-γ, TNF-α, LPS, and 
GM-CSF (15, 16). M1-TAM can limit tumor cell proliferation and 
augment the anti-tumor immune response by facilitating T cell 
activation and proliferation in the TME (17).

M2-TAM plays a crucial immunomodulatory role in the 
TME. The M2-TAM subclassifications are classified into M2a-TAM, 
M2b-TAM, M2c-TAM, and M2d-TAM based on their specific roles 
and phenotypic characteristics. The biomarkers CD206, CD209, and 
Dectin-1 are up-regulatedly expressed in M2a-TAM, which is 
primarily involved in Th2 immune response. M2a-TAM polarization 
is typically triggered by IL-4 and IL-13 (18). The biomarkers CD86 
and MHC II are up-regulatedly expressed in M2b-TAM, which 
primarily contributes to the anti-inflammatory and immune 
regulation by secreting cytokines like TNF-α, IL-6, and IL-10. 
M2b-TAM polarization is typically triggered by IC and IL-1β. 
M2c-TAM polarization is typically triggered by GC, TGF-β, and IL-10 
(19). The biomarkers CD163, MerTK, and Tie2 are up-regulatedly 
expressed in M2c-TAM, while CD14, CD86, CD16, and CD206 are 
down-regulatedly expressed at low levels (20–22). M2c-TAM 
primarily contributes to tissue remodeling (19). M2d-TAM 
polarization is typically triggered by adenosine, LIF, and IL-6. 
M2d-TAM mostly contributes to stimulating angiogenesis and 
extracellular matrix disintegration to promote tumor spread, with 
up-regulated expression levels of biomarkers CD14, CD163, ILT2, and 
ILT3 (23).

In conclusion, the different polarization states of M1-TAM and 
M2-TAM play various roles in the TME. M1-TAM generally appears 
as a promoter of anti-tumor immunity, while M2-TAM, through its 
different subtypes, plays a role in immunosuppression, tissue 
remodeling, and promoting tumor development.

3.2 TAM subclassification based on 
scRNAseq information

The increasing application of scRNAseq information in cancer 
research is enhancing the understanding of tumor biology. scRNAseq 
information aids in identifying distinct cell subsets and their 
characteristics, while also revealing cell heterogeneity within tumors. 
This is particularly important for analyzing the TME and 
understanding tumor development and metastasis. Seven TAM 
subtypes are present in nearly all malignancies (Table 1), according to 
recent widely used scRNAseq analysis studies. These TAM subgroups 
are named interferon-induced TAM (IFN-TAM), immunomodulatory 
TAM (Reg-TAM), inflammatory cytokine enriched TAM 
(Inflam-TAM), lipid-associated TAM (LA-TAM), angiogenic TAM 
(AngioTAM), tissue-resident TAM (RTM-TAM), and proliferative 
TAM (Prolif-TAM) based on their signature genes, enrichment 
pathways, and potential roles (24).

IFN-TAM demonstrates immunosuppressive characteristics 
while also exhibiting high expression of interferon regulatory 
genes, including CXCL10, PDL1, and ISG15, similar to M1-TAM 
(25, 26). Reg-TAM exhibits high expression levels of CX3CR1, 
MRC1, and TAMARG1. It may possess immunosuppressive 
properties; however, further research is required to determine its 
specific functions (27–29). Inflammatory cytokines such as IL1B, 

CXCL1/2/3/8, CCL3, and CCL3L1 are expressed by Inflam-TAM 
(25, 30), which is involved in immune cell recruitment and 
regulation in the inflammatory response associated with tumors 
(31). By encouraging angiogenesis and metastasis, angiogenic 
markers, such as VEGFA and SPP1, contribute to the development 
of tumors, which are highly expressed in the Angio-TAM (25, 30, 
32, 33). Lipid-related genes, including APOC1, APOE, ACP5, and 
FABP5, are highly expressed by LA-TAM and demonstrated active 
suppression of the anti-tumor immune response (30, 34, 35). 
RTM-TAM is similar to normal tissue TAM and expresses LYVE1, 
HES1, and FOLR, which may play a promoting role in tumor 
invasion and progression (36, 37). The characteristic genes of 
Prolif-TAM include MKI67 and cell cycle-related genes, which 
have potential pro-inflammatory functions and play a role in 
tumor progression (38).

The increasing use of scRNAseq in cancer research is improving 
the understanding of tumor biology by identifying distinct TAM 
subclassifications, each with unique gene signatures and roles in 
tumor development, immune response, and metastasis.

4 Signaling crosstalk between TAM 
and non-tumor cells in TME

4.1 TAM and CAF

Fibroblast is an essential biological constituent of the TME, with 
distinct activities and functions between normal and tumor tissues. 
Normal fibroblast predominantly contributes to the maintainment of 
tissue architecture and functionality, however, in tumors, it 
differentiates into cancer-associated fibroblast (CAF), which displays 

TABLE 1 TAM subclassification based on scRNAseq information.

TAM Type Markers Properties/Functions

IFN-TAM CXCL10, PDL1, ISG15

Immunosuppressive characteristics; 

High expression of interferon 

regulatory genes, similar to M1-TAM

Reg-TAM
CX3CR1, MRC1, 

TAMARG1

Possible immunosuppressive 

properties; further research needed to 

determine its specific functions

Inflam-TAM
IL1B, CXCL1/2/3/8, 

CCL3, CCL3L1

Involved in immune cell recruitment 

and regulation in the inflammatory 

response associated with tumors

Angio-TAM VEGFA, SPP1

Promotes angiogenesis and 

metastasis, contributing to tumor 

development

LA-TAM
APOC1, APOE, ACP5, 

FABP5

Active suppression of anti-tumor 

immune response; lipid-related gene 

expression

RTM-TAM LYVE1, HES1, FOLR

May promote tumor invasion and 

progression, similar to normal tissue 

TAM

Prolif-TAM
MKI67, Cell cycle-

related genes

Potential pro-inflammatory 

functions; contribute to tumor 

progression
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an activated phenotype and facilitates tumor proliferation and 
dissemination (39). CAF is differentiated from fibroblasts by its 
contractile properties, metabolic processes, and transcriptomic 
activity (40, 41). Furthermore, they exhibited elevated levels of FAP, 
αSMA, and vimentin (42, 43).

In the TME, the interaction between CAF and TAM plays an 
important role in tumor progression. On the one hand, CAF secrete 
CXCL12 to regulate M2-TAM polarization (44, 45). In addition, CAFs 
can also secrete IL-11 to activate the AXL-STAT3 signal transduction 
pathway, thereby up-regulating M2-TAM polarization (46). TAM, on 
the other hand, promotes the activation of CAF and enhances the 
aggressiveness of tumor cells by producing molecules such as IL-6, 
CXCL12, and TGF-β. In addition, it has been shown that CAF can 
be derived from M2-TAM, which is called macrophage mesenchymal 
transformation (MMT). Meanwhile, Smad3 has been found to play a 
key role in MMT in NSCLC (47).

These complex intercellular signal transduction crosstalk 
significantly influences the immune environment and metastatic 
ability of tumors. Therefore, understanding the interaction of CAF 
and TAM in TME and their signaling pathways is of great significance 
for tumor therapy.

4.2 TAM and MSC

Mesenchymal stromal cell (MSC) is an undifferentiated, 
adherent stromal cell present in several organs, frequently located 
at injury sites and within malignancies (48). MSC can facilitate 
tumorigenic processes, encompassing tumor tissue creation, 
maintenance, chemotherapy resistance, and tumor proliferation 
(48, 49). Recent research indicates that substantial functional 
interactions may occur between MSC and TAM. Babazadeh et al. 
discovered that the MSC-derived CXCL12 niche affects TAM 
polarization dynamics by promoting the phenotypic transformation 
of BMDMs into M2-TAM, potentially playing a crucial role in the 
TME (44). Furthermore, Ren et al. demonstrated that extracellular 
vesicles released by hypoxia-preconditioned MSC enhance NSCLC 
cell proliferation and motility, as well as M2-TAM polarization, 
through the transfer of miR-21-5p (50). The investigation of the 
interplay between MSC and TAM will advance the development of 
innovative cell treatments for cancer.

4.3 TAM and other cell

Moreover, certain immune cells regulate TAM polarization within 
the TME by cytokine secretion, consequently influencing immune 
evasion, metastasis, and treatment resistance of tumors. The miR-320a, 
released by neutrophils, down-regulates STAT4 upon entering 
macrophages and facilitates M2-TAM polarization (51). In addition, 
the expression of signal regulatory protein-α (52) in neutrophils 
enhances the SHP-1/p38/MAPK/STAT3 signaling pathway and 
induces M2-TAM polarization (52). IL-17A/IL-17AF released by Th17 
cells facilitates NSCLC metastases through the induction of M2-TAM 
polarization (53). TNFSF15, produced by vascular endothelial cells, 
inhibits STAT6, resulting in the induction of M1-TAM polarization 
(54). These pathways offer novel targets and therapeutic approaches 
for cancer treatment.

5 The function of TAM in NSCLC

5.1 Reprogramming metabolism

Interactions between tumor cells and surrounding cells cause 
metabolic reprogramming of TME, which impacts tumor 
development, metastasis, and immune escape. TME is characterized 
by hypoxia and lactic acid accumulation (55). The absence of oxygen 
in the TME and the acidic environment alter the metabolism of 
immune cells and tumor cells, which encourages immune escape and 
tumor growth (56).

In the TAM of NSCLC, hypoxia can enhance the tumor-
supportive role of TAM by boosting iron availability through the 
upregulation of associated proteins and facilitating the proliferation of 
malignant cells (7). Furthermore, TAM will release a range of 
metabolic cytokines, including IL6, TNF-α, and others, in response to 
hypoxia or a lactic acid environment. These cytokines can encourage 
the glycolysis of tumor cells (56). TAM increases the intake and 
synthesis of fatty acids while simultaneously supplying energy for the 
TCA cycle through the use of alternate metabolites (like glutamine). 
TME hypoxia is facilitated by this mechanism, which raises lactic acid, 
NO, reactive oxygen species, and other metabolic byproducts (57).

5.2 Continuous angiogenesis

Continuous angiogenesis in the TME is a multifaceted biological 
process involving various cell types and molecular pathways. This 
mechanism is critical for the growth and spread of tumors, as it 
provides them with the necessary supply of oxygen and nutrients (58). 
Prior research has established a substantial correlation between TAM 
infiltration levels and intratumor microvessel counts in NSCLC (59). 
Recent investigations have demonstrated that TAM can facilitate 
persistent angiogenesis in NSCLC through various pathways.

Xu et al. indicated that TAM can enhance the proliferation and 
migration of endothelial cells through the secretion of various 
angiogenic factors, including VEGF, FGF, and TGF-β, thereby 
facilitating the formation of new blood vessels (60). Chen et al. (61) 
observed that the interaction between TAM and tumor cells may 
up-regulate the expression of IL-8, which increases tumor angiogenesis 
in NSCLC patients to a great extent. Furthermore, TAM can facilitate 
matrix remodeling and augment angiogenesis by upregulating matrix 
metalloproteinases (62). In a hypoxic environment, TAM can activate 
hypoxia-inducible factor, which subsequently increases the production 
and secretion of angiogenic factors, thereby sustaining the tumor’s 
blood supply (63, 64).

5.3 The acquirement of the ability to 
infiltrate and transfer

The activation of epithelial-mesenchymal transition (EMT) is a 
critical mechanism in tumor cell metastasis, wherein epithelial cells 
adopt mesenchymal traits, resulting in increased motility and 
migration (65). EMT is characterized by the lack of epithelial cell 
markers and the increased expression of mesenchymal cell markers 
(66). Numerous studies have indicated that various cytokines and 
chemokines released by TAM might induce EMT.
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A prior study indicated that TGF-β released by TAM can facilitate 
EMT and increase the expression of SOX9, hence augmenting the 
proliferation, migration, and invasion of NSCLC cells (67). Moreover, 
the suppression of TGF-β expression may impede EMT in NSCLC 
cells (68). Chen et al. (69) discovered that TAM generated from THP-1 
exhibited elevated IL-6 expression when co-cultured with NSCLC 
cells, hence augmenting the invasive capacity of NSCLC cells through 
the modulation of EMT. Hu et al. (70) did a comparable investigation 
and discovered that IL-6 released by TAM can activate the JAK2/
STAT3 pathway via autocrine signaling, with STAT3 functioning as a 
transcription factor to enhance the expression of C/EBP-β, so further 
increasing the transcription and production of IL-6. The establishment 
of a positive feedback loop involving IL6-STAT3-C/EBP-β-IL6  in 
TAM facilitates EMT and metastasis in LUAD (70). Suppression of 
EMT in NSCLC by the inhibition of M2-TAM mediated STAT3 
signaling pathway (71). CXCL8 is a chemokine released by 
M2-TAM. Prior research indicated that CXCL8 may promote EMT 
and enhance the invasion and migration of NSCLC via the MAPK/
NF-κB and JAK2/STAT3 signaling pathways (72, 73).

5.4 Evasion of immune surveillance

Immunosuppressive TME is the decisive element for cancer 
spread, immunological escape, and development of suppressed 
immune microenvironment. Immune cells are a crucial element of 
the immune system, regulating the equilibrium between inhibitory 
and cytotoxic responses in NSCLC (74). Research indicated that 
TAM can modulate immune surveillance by inhibiting the activity 
of other immune cells and attracting negative regulatory 
immune cells.

In the TME of NSCLC, TAM has been shown to enhance the 
expression of PD-L1, hence suppressing T cell cytotoxicity and 
phagocytosis, and facilitating T cell exhaustion by increasing the 
expression of IRF8. Furthermore, Young et al. observed that TAM also 
impedes the cytotoxicity of NK cells (75). Allavena et al. discovered 
that M2-TAM secreted immunosuppressive cytokines, such as IL-10 
and TGF-β, within the TME, thereby diminishing the population of 
tumor-infiltrating lung dendritic cells and inhibiting their maturation 
(76). Regulatory T cells are a subset of T cells that inhibit the 
immunological response. CCL22 released by TAM promotes 
immunosuppressive TME by recruitment of Treg and suppresses the 
immunological function of CD8+ T cells, NK cells, B cells, and 
antigen-presenting cells (77).

5.5 Drug resistance treatment

One of the most popular and significant treatments for malignant 
tumors is chemotherapy. Tumor cells frequently become resistant to 
chemotherapy medications, much like bacteria are readily resistant to 
antibiotics. Numerous investigations have demonstrated the complex 
and significant role TAM plays in the development of treatment 
resistance in NSCLC. In the Lewis lung cancer (LLC) animal model, 
Hughes et al. discovered that chemotherapeutic drug treatment caused 
tumor cells to release CXCL12, which improved CD206+ TAM 
invasion, prevented tumor cell death, and aided tumor recurrence 
(78). By suppressing NEDD4L expression, the exosome miR-3679-5p 

released by TAM can indirectly stabilize the c-Myc protein, increasing 
aerobic glycolysis and ultimately fostering cisplatin resistance in 
NSCLC, according to Wang et  al. (79). Furthermore, IL-6 or 
prostaglandin E2, which induces M2-TAM polarization by activating 
STAT3, STAT1, and STAT6 signaling pathways, can be secreted by 
tumor cells in response to cisplatin or carboplatin therapy. And 
cytotoxic chemotherapy resistance (80, 81).

As translational medicine has advanced, it has become clear that 
tumor-driven gene mutations use several signaling channel 
transduction processes to encourage the emergence and growth of 
malignancies. Although this finding makes tumor-focused therapy 
possible, likely, drug resistance issues will likely eventually arise with 
targeted therapy, and we  are still working to find a solution (82). 
According to earlier research, NSCLC cells enhance their resistance to 
epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-
TKIs) by promoting M2-TAM polarization and inhibiting M1-TAM 
polarization through the transfer of exosomes to TAM by targeting the 
miR-627-3p/Smads signaling pathway (83). A related work by Wang 
et al. (84) demonstrated that M2-TAM-generated exosomes regulated 
the MSTRG.292666.16/miR-6836-5p/MAPK8IP3 axis, hence 
promoting ocitinib resistance in NSCLC. Targeting TAM has also 
been demonstrated in studies to lessen acquired resistance to targeted 
therapy. By blocking the CD47-SIRRPα signal axis and M2 
polarization in the co-culture system, Lu et al. discovered that STAT3 
inhibitors can increase the phagocytic activity of TAM and decrease 
the acquired resistance to EGFR-TKIs. Furthermore, gefitinib reduced 
acquired resistance to gefitinib both in  vitro and in  vivo when 
combined with STAT3 inhibitors and anti-CD47 monoclonal 
antibodies (85).

Therefore, the anticancer activity of chemotherapeutic drugs and 
targeted agents may be enhanced when treatment is combined with 
intervention measures that decrease TAM infiltration or inhibit 
M2-TAM polarization.

6 The clinical importance of TAM

6.1 TAM and prognosis in NSCLC

Multiple studies have demonstrated that the level of TAM 
infiltration is directly associated with the prognosis of NSCLC patients 
(Table 2).

Research indicates that low TAM infiltration indicates a desirable 
prognosis, whereas high TAM infiltration is associated with an 
undesirable prognosis (86). For various TAM classifications, high 
M1-TAM infiltration typically indicates a desirable prognosis, whereas 
low M1-TAM infiltration is associated with an undesirable prognosis 
(87). Furthermore, low M2-TAM infiltration (88–95), and low 
TREM2+ TAM infiltration (96) are associated with a 
desirable prognosis.

Concerning the distribution of TAM in the TME, research 
indicates that high TAM infiltration in the nest and low TAM 
infiltration in the stromal typically indicate a desirable prognosis 
(97–100). Furthermore, high M1-TAM infiltration in the nest is 
typically correlated with a desirable prognosis (101). In addition, high 
M1-TAM infiltration in metastatic lymph nodes is regularly associated 
with a favorable prognosis (102). There is disagreement on the impact 
of M2-TAM distribution on prognosis. Jackute et al. indicated that low 
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M2-TAM infiltration in both the nest and stroma is typically 
correlated with a desirable prognosis (103). Whereas Cao et al. (104) 
indicated that low M2-TAM infiltration in the nest is associated with 
a desirable prognosis, M2-TAM infiltration in the stroma is not 
correlated with the prognosis of NSCLC patients. In addition, low 

infiltration of M2-TAM in the stroma and alveoli correlated with a 
desirable prognosis (105).

These studies indicate that the infiltration, distribution, and 
classification of TAM considerably impact the prognosis of NSCLC 
patients and may serve as potential prognostic biomarkers.

TABLE 2 The relationship between the infiltration, distribution, and classification of TAM and prognosis of NSCLC.

Tumor 
type

Markers Prognosis Article

NSCLC CD68
Desirable prognosis: low TAM infiltration

Undesirable prognosis: high TAM infiltration
Feng et al. (86)

NSCLC CD68, TREM2
Desirable prognosis: low TREM2+ TAM infiltration

Undesirable prognosis: high TREM2+ TAM infiltration
Zhang et al. (96)

NSCLC CD68
Desirable prognosis: high TAM infiltration in the nest low TAM infiltration in the stromal

Undesirable prognosis: low TAM infiltration in the nest high TAM infiltration in the stromal
Welsh et al. (97)

NSCLC CD68
Desirable prognosis: high TAM infiltration in the nest low TAM infiltration in the stromal

Undesirable prognosis: low TAM infiltration in the nest high TAM infiltration in the stromal
Kawai et al. (98)

NSCLC CD68
Desirable prognosis: high TAM infiltration in the nest low TAM infiltration in the stromal

Undesirable prognosis: low TAM infiltration in the nest high TAM infiltration in the stromal
Kim et al. (99)

NSCLC CD68
Desirable prognosis: high TAM infiltration in the nest low TAM infiltration in the stromal

Undesirable prognosis: low TAM infiltration in the nest high TAM infiltration in the stromal
Dai et al. (100)

NSCLC

M1: iNOS, HLA-

DR, MRP 8/14, 

TNF-a M2: CD163, 

VEGF

Desirable prognosis: high M1 infiltration in the nest Undesirable prognosis: low M1 infiltration in the nest Ohri et al. (101)

NSCLC
M1:CD68/HLA-DR 

M2:CD68/CD163
Desirable prognosis: high M1 infiltration in the nest Undesirable prognosis: low M1 infiltration in the nest Ma et al. (87)

NSCLC
M1: CD68, iNOS 

M2: CD68, CD163

Desirable prognosis: high M1 infiltration in the nest low M2 infiltration in the nest and stromal Undesirable 

prognosis: low M1 infiltration in the nest high M2 infiltration in the nest and stromal

Jackute et al. 

(103)

NSCLC M2: CD68, CD163 Desirable prognosis: low M2 infiltration in the nest Undesirable prognosis: high M2 infiltration in the nest Cao et al. (104)

LUAD M2: CD68, CD204 Desirable prognosis: low M2 infiltration Undesirable prognosis: high M2 infiltration
Ohtaki et al. 

(88)

LUAD
M1: CD68, iNOS 

M2: CD68, CD206
Desirable prognosis: low M2 infiltration Undesirable prognosis: high M2 infiltration Zhang et al. (89)

LUAD M2: CD204 Desirable prognosis: low M2 infiltration Undesirable prognosis: high M2 infiltration
Kaseda et al. 

(90)

LUSC M2: CD204 Desirable prognosis: low M2 infiltration Undesirable prognosis: high M2 infiltration Maeda et al. (91)

LUSC M2: CD204 Desirable prognosis: low M2 infiltration Undesirable prognosis: high M2 infiltration
Hirayama et al. 

(92)

LUAD M2: CD204 Desirable prognosis: low M2 infiltration Undesirable prognosis: high M2 infiltration
Sun and Xu 

(168)

NSCLC M2: CD68, CD204 Desirable prognosis: low M2 infiltration Undesirable prognosis: high M2 infiltration Li et al. (93)

NSCLC M2: CD68, CD163 Desirable prognosis: low M2 infiltration Undesirable prognosis: high M2 infiltration
La Fleur et al. 

(94)

NSCLC
M2: CD68, CD163, 

VEGF-A, VEGF-C
Desirable prognosis: low M2 infiltration Undesirable prognosis: high M2 infiltration

Hwang et al. 

(95)

NSCLC

M1: CD68, HLA-

DR; M2: CD68, 

CD204; M2: CD68, 

CD163

Desirable prognosis: high M1 infiltration in metastatic lymph node Undesirable prognosis: low M1 

infiltration in metastatic lymph node

Rakaee et al. 

(102)

NSCLC M2:CD163
Desirable prognosis: low infiltration of M2 in stromal and alveolar Undesirable prognosis: high infiltration of 

M2 in stromal and alveolar

Sumitomo et al. 

(105)
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6.2 TAM and responses to immunotherapy 
in NSCLC

Furthermore, research indicates that TAM is significantly 
associated with the response to immunotherapy in NSCLC. TREM2+ 
TAM is abundant in several anti-inflammatory cytokines and has an 
M2-type immunosuppressive phenotype, hence enhancing the 
inhibition of T-cell activity. TREM2+ TAM diminishes the anti-tumor 
efficacy of CD8+ T cells by exacerbating their malfunction and 
facilitating the development of FOXP3+ regulatory T cells. These 
alterations intensify the mechanism of immune evasion, enabling 
NSCLC cells to avoid elimination by the host immune system (96). 
The infiltration of TREM2+ TAM was significantly correlated with 
response rates to immunotherapy. Previous research revealed that 
patients undergoing PD-1-based immunotherapy with a low 
percentage of TREM2+ TAM in the TME typically exhibited a 
desirable treatment response rate, which indicates that TREM2+ TAM 
may adversely influence immunotherapy due to its immunosuppressive 
properties, thereby decreasing the effectiveness of PD-1 inhibitors 
(96). Decreasing the proportion of TREM2+ TAM in the TME may 
enhance the effectiveness of immunotherapeutic agents like 
PD-1 inhibitors.

6.3 Cytokines related to TAM and prognosis 
in NSCLC

The cytokines and chemokines secreted by TAM substantially 
influence the prognosis of NSCLC patients by regulating the tumor’s 
biological features (Table 3).

IL-10, as an immunosuppressive cytokine, can impede the anti-
tumor immune response, facilitate tumor immune evasion, and hence 
expedite tumor development. The research has indicated that 
upregulated expression of IL-10 in TAM is significantly associated 
with poorly differentiated NSCLC (106). IL-34 serves as a ligand for 
the CSF-1R, facilitating the recruitment of TAM and triggering 
M2-TAM polarization. Baghdadi et al. discovered that in patients with 
advanced NSCLC, IL-34, by its interaction with CSF-1R, facilitates the 
M2-TAM polarization, which is significantly associated with tumor 
immunosuppression and tumor growth (107). Moreover, serum 
YKL-40 levels have been significantly correlated with the prognosis of 
NSCLC. Elevated YKL-40 levels are regarded as an independent 
predictive indicator of worse survival in individuals with metastatic 
NSCLC. YKL-40 is a glycoprotein that influences the immunological 
microenvironment of tumors and facilitates their aggressive growth 
through interactions with immune cells (108). Consequently, the 
identification of YKL-40 serves as an indicator for assessing the course 

of NSCLC and may potentially offer significant guidance for 
personalized treatment (108).

These molecular markers offer novel potential targets for the early 
diagnosis and prognostic evaluation of NSCLC, along with prospective 
avenues for future immunotherapy therapies.

7 TAM as the potentially therapeutic 
target for NSCLC

In recent years, the rapid progress in molecular biology and tumor 
immunology has established drug research targeting TAM as a novel 
emphasis in cancer treatment. Researchers have discovered that 
various Chinese herbal formulas and natural compounds could target 
TAM as a potential treatment for NSCLC. The advancement of novel 
nanomaterials can enhance medication accumulation at tumor sites 
by targeting TAM, while simultaneously minimizing systemic toxicity 
(109). Additionally, TAM plays a critical role in influencing the 
effectiveness of radiotherapy, chemotherapy, immunotherapy, and 
targeted therapy in NSCLC.

7.1 Natural compounds

Natural compounds exhibit promise in the management of 
NSCLC by targeting TAM. Numerous natural substances possess anti-
tumor activities and can enhance therapeutic outcomes by regulating 
the function of TAM. Presented are many promising natural 
compounds together with their modes of action (Table 4).

7.1.1 Steroidal saponins
Steroid saponins are saponins that exist in an unbound form. In 

vitro and in  vivo investigations have demonstrated that steroid 
saponins exhibit extensive anti-tumor properties, including the 
inhibition of tumor cell proliferation, induction of tumor cell 
apoptosis and autophagy, as well as the suppression of tumor invasion 
and metastasis (110–112), characterized by low toxicity and high anti-
tumor efficacy. The study elucidates the mechanism via which steroid 
saponins modulate NSCLC by targeting TAM. Xu et al. discovered 
that the infiltration of M2-TAM in neoplastic tissues diminished 
following Astragalus IV administration, significantly suppressing 
tumor proliferation (113). Cui et al. (114) demonstrated that diosgenin 
can stimulate anti-tumor immunity in NSCLC by decreasing IL-10 
secretion from TAM in the TME, modulating STAT3 and JNK 
signaling pathways, and facilitating the polarization of M2-TAM to 
M1-TAM. Li et al. (115) discovered that ginsenoside Rh2 diminishes 
the expression of the M2-TAM marker CD206, enhances the 

TABLE 3 The relationship between cytokines related to TAM and prognosis in NSCLC.

Tumor type Prognosis Marker Article

NSCLC
Desirable prognosis: high IL-10 expression of TAM Undesirable prognosis: low IL-10 expression 

of TAM
IL-10 Wang et al. (106)

NSCLC
Desirable prognosis: low YKL-40 expression of TAM Undesirable prognosis: high YKL-40 

expression of TAM
YKL-40 Thöm et al. (108)

NSCLC
Desirable prognosis: low IL-34 and M-CSF expression of TAM Undesirable prognosis: high IL-34 

and M-CSF expression of TAM
IL-34 and M-CSF Baghdadi et al. (107)
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expression of the M1 marker CD16/32, decreases the levels of VEGF, 
MMP2, and MMP9, facilitates the reprogramming of TAM, and 
polarises them from M2-TAM to M1-TAM. Inhibiting the migration 
of NSCLC cells. Paeoniflorin has been demonstrated to impede 
NSCLC metastasis by down-regulating IL-4 production and blocking 
the polarization of M2-TAM (116). Zonoside VII is an active 
monomer of the genus Zonoside, demonstrating significant anti-
tumor efficacy across multiple tumor types (117, 118). Yu et  al. 
discovered that in the TME of NSCLC, regonoside VII can block 
STAT3 phosphorylation by activating the STING/TBK1/IRF3 
pathway, promote the polarization of M1-TAM, and potentially 
up-regulate PD-L1 expression. Thus improving the effectiveness of 
immune checkpoint inhibitors (119).

7.1.2 Alkaloids
Alkaloids impede the proliferation and metastasis of NSCLC cells 

through the modulation of TAM polarization. Matrine, sophoridine, 

and sanguinarine are the most prominent among them. Cui et al. 
(120) discovered that sanguinarine can target the WNT/β-Catenin 
pathway, suppress polarization of M2-TAM, and have anti-angiogenic 
actions on NSCLC, along with the modulation of immunological 
factors. Zhao et al. (121) demonstrated that sophoidine enhances the 
secretion of pro-inflammatory cytokines IFN-γ, TNF-α, IL-6, iNOS, 
and IL-1β by activating the MARKs signaling pathway, and upregulates 
the expression of the M1-TAM surface marker CD86. It can facilitate 
the polarization of M1-TAM and impede the proliferation of 
NSCLC. Matrine has been shown to down-regulate the expression 
levels of IL-4, Arg-1, and IL-10 by blocking the PI3K/Akt/mTOR 
signaling pathway, consequently suppressing the polarization of 
M2-TAM and the metastasis of NSCLC (122).

7.1.3 Polyphenols
Polyphenols are compounds characterized by benzene rings and 

multiple hydroxyl groups in their chemical structure, capable of 

TABLE 4 Natural compounds formulas as the potential treatment for NSCLC by targeting TAM.

Classification Name Function Mechanism

Natural compound Dihydroartemisinin
Induce M2 macrophages to polarize 

into M1 type
Initiate the Akt/mTOR signaling pathway (133)

Natural compound Dioscin
Induce M2 macrophages to polarize 

into M1 type

Downregulating IL-10 expression, activating the JNK signaling pathway, 

and blocking the STAT3 signaling pathway (114)

Natural compound Ginsenoside Rh2
Induce M2 macrophages to polarize 

into M1 type

The expression of the M2 macrophage marker CD206 was diminished, 

the expression of the M1 macrophage markers CD16/32 was elevated, and 

the expression levels of VEGF, MMP2, and MMP9 were reduced (115).

Natural compound Curcumin
Augment the polarization of M1 

macrophages
Increased expression of IL-6 and TNF-α (143)

Natural compound Puerarin
Induce M2 macrophages to polarize 

into M1 type

The expressions of IL-10, IL-4, and TGF-β were decreased, whereas the 

expressions of IFN-γ, TNF-α, and IL-12 were elevated (130).

Natural compound Astragalus polysaccharides
Induce M2 macrophages to polarize 

into M1 type

Decreased the expression of IL-4 and IL-13, increased the expression of 

LPS and IFN-γ (132).

Natural compound Astragaloside IV
Suppression of M2 macrophage 

polarization
Decreased expression of IL-13 and IL-4 (113)

Natural compound Paeoniflorin
Suppression of M2 macrophage 

polarization
Decreased expression of IL-4 (116)

Natural compound Matrine
Suppression of M2 macrophage 

polarization
Suppression of the PI3K/Akt/mTOR signaling pathway (122)

Natural compound Resveratrol

Suppression of macrophage 

recruitment and suppression of M2 

macrophage polarization

F4/80+ cells diminished and suppressed STAT3 phosphorylation (128)

Natural compound Sanguinarine
Suppression of M2 macrophage 

polarization
Suppression of the WNT/β-Catenin signaling pathway (120)

Natural compound Dihydroisotanshinone I
Suppression of macrophage 

recruitment

Suppression of the CCL2/STAT3 signaling pathway and reduction of 

CCL2 release (136)

Natural compound Polyphyllin VII
Augment the polarization of M1 

macrophages

Initiate the STING/TBK1/IRF3 signaling pathway and suppress STAT3 

phosphorylation (119)

Natural compound Sophoridine
Augment the polarization of M1 

macrophages

Initiate the MARK signaling pathway, enhance the expression of IFN-g, 

TNF-a, IL-6, iNOS, and IL-1b, and elevate the expression of CD86 on the 

surface of the M1 macrophage marker (121).

Natural compound
Ginseng Berry 

Polysaccharides Portion

Augment the polarization of M1 

macrophages
Increased expression of IL-6, IL-12, and TNF-α (134)
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modulating various signal transduction pathways, including PI3K/
Akt, MAPK, and NF-κB, which are crucial in tumor growth, 
proliferation, and metastasis (123, 124). Curcumin and resveratrol 
have garnered significant interest. Curcumin exhibits several 
biological effects, including anti-inflammatory, anti-tumor, and 
antioxidant properties. Due to its reduced adverse effects, curcumin 
has been utilized by several researchers as an anti-tumor agent (125, 
126). Wang et  al. (127) discovered that curcumin enhances the 
secretion of IL-6 and TNF-α in the TME of NSCLC, reprograms 
M2-TAM to tumoricidal M1-TAM, and creates an innovative 
nanomedical approach for combination therapy of NSCLC. Sun et al. 
discovered that the F4/80 positive cells in the TME of LCC mice 
treated with resveratrol diminished, suggesting that resveratrol may 
impede the recruitment of TAM, thereby decreasing their infiltration. 
Moreover, resveratrol has demonstrated the capacity to impede the 
activation and differentiation of M2-TAM by blocking STAT3 
phosphorylation (128).

7.1.4 Additional categories
Puerarin is an isoflavone molecule derived from Pueraria, 

exhibiting numerous pharmacological activities including 
vasodilation, heart protection, neuroprotection, anticancer effects, 
antioxidant properties, and anti-inflammatory actions (129). Puerarin 
greatly enhances the expression of anti-tumor cytokines IFN-γ, 
TNF-α, and IL-12, while diminishing the levels of anti-inflammatory 
cytokines IL-10, IL-4, and TGF-β, thereby inhibiting the polarization 
of M2-TAM and promoting the polarization of M1-TAM (130). 
Astragalus polysaccharide is a polysaccharide derived from Astragalus, 
which has garnered significant attention in cancer treatment research 
in recent years (131). Bamodu et  al. established that Astragalus 
polysaccharide facilitates the polarization of M2-TAM to M1-TAM by 
down-regulating IL-10, IL-4, and TGF-β while up-regulating IFN-γ, 
TNF-α, and IL-12, so augmenting the anti-cancer immune response 
(132). The artemisinin derivative dihydroartemisinin has 
demonstrated the capacity to diminish TAM infiltration in the TME 
of LLC mice via the Akt/mTOR signaling pathway, drastically elevate 
the M1/M2 ratio of TAM, and augment the phagocytic capability of 
M1-TAM (133). Furthermore, in murine studies, Lee et al. established 
that ginseng berry polysaccharide partially elicited a pro-immune 
response by augmenting the expression of IL-6, IL-12, and TNF-α in 
mouse peritoneal TAM, and prompted the polarization of TAM 
towards the M1 phenotype, thereby emerging as a potential 
therapeutic agent for immunotherapy in NSCLC (134). 
Dihydrotanshinone I  is a lipophilic terpenoid molecule, which is 
considered an anticancer agent. It has been documented to impede the 
proliferation of certain cancer types (135). The fundamental 
mechanism of NSCLC remains ambiguous. Wu et al. established that 
dihydrotanshinone I can obstruct the CCL2/STAT3 signaling pathway, 
diminish CCL2 release from TAM and NSCLC cells, and impede the 
TAM recruitment capacity of NSCLC cells (136).

7.2 Chinese herbal formula

Several clinical studies have commenced investigating the efficacy 
of traditional Chinese medicine formulations in patients with NSCLC 
(Table  5), and initial findings indicate that traditional Chinese 
medicine may enhance patients’ quality of life and maybe improve 
outcomes. Wang et  al. (137) discovered that Yupingfeng Powder 
facilitated M1-TAM polarization by enhancing STAT1 
phosphorylation, activating CD4+ T cells, augmenting their 
cytotoxicity, and suppressing the in situ development of 
LLC. Moreover, Bu-Fei decoction, a traditional Chinese medicine 
formulation, can impede the proliferation, migration, invasion, and 
immunosuppression of M2-TAM-generated NSCLC by suppressing 
the production of IL-10 and PD-L1 (138). Jinfu’an decoction facilitates 
the conversion of M2-TAM to M1-TAM, amplifies the anticancer 
efficacy of cisplatin, and diminishes the expression of markers 
associated with M2-TAM. This regulatory action may be associated 
with the downregulation of β-catenin expression (139). Research on 
Traditional Chinese Medicine (TCM) aimed at targeting TAM is still 
developing, necessitating additional clinical trials in the future to 
validate the effectiveness of TCM formulations and their underlying 
processes. Simultaneously, in conjunction with contemporary 
biotechnology, novel active compounds and targets may be identified 
to facilitate a more efficacious treatment for NSCLC.

7.3 Nanomedications

Nanomedicine is an innovative product resulting from the 
integration of nanotechnology and medicine. Increasing emphasis is 
being directed toward novel pharmaceuticals for the diagnosis, 
treatment, and prevention of numerous ailments, including tumors 
and immunological disorders.

Liposomes represent a principal category of anti-tumor 
nanomedicine and are among the most successful in clinical 
application (140). Li et  al. (141) engineered a folate-modified 
liposome nanoparticle for the targeted delivery of PFH, STAT3 
siRNA, and Fe3O4 to the TME. The dual effect prevented the 
polarization of M2-TAM in the TME and facilitated their 
transition into M1-TAM, hence increasing T cell activation and 
proliferation, which enhanced the immunological response to 
NSCLC. Tie et al. (142) developed folate-modified liposomes as 
BIM-S plasmid vectors, which markedly enhanced apoptosis in 
tumor cells and M2-TAM by specifically targeting NSCLC cells, 
and substantially suppressed tumor growth in  vivo. Zhu et  al. 
(143) created an innovative carboxymethyl chitosan (CMCS)-
based nanoparticle (CBT-DC) that targets transferrin receptors on 
NSCLC cells and accurately modulates the release of docetaxel 
and curcumin in response to pH and reactive oxygen species 
(ROS) levels. The findings indicated that CBT-DC had superior 

TABLE 5 Chinese herbal formulas as the potential treatment for NSCLC by targeting TAM.

Classification Name Function Mechanism

Chinese herbal formula Bu-Fei decoction Suppression of M2 macrophage polarization Decreased the expression of PD-L1 and IL-10 (138)

Chinese herbal formula Yu-Ping-Feng decoction Augment the polarization of M1 macrophages Increased phosphorylation of STAT1 (137)

Chinese herbal formula Jinfu’an decoction Induce M2 macrophages to polarize into M1 type Decreased expression of β-catenin (139)
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anti-tumor efficacy both in  vitro and in  vivo compared to 
docetaxel monotherapy and other nanocarriers containing just 
docetaxel and curcumin. Su et al. (144) developed nanovesicles 
utilizing microfluidic technology for the delivery of CD47/PD-L1 
antibodies. It can only be liberated upon dissociation in the acidic 
tumor milieu, thereby ameliorating immune-related adverse 
events, such as anemia, pneumonia, hepatitis, and small intestinal 
inflammation caused by off-target effects, and facilitating NSCLC-
specific activation immunotherapy. Furthermore, Wang et  al. 
(127) developed nanovesicles utilizing oligomeric hyaluronic acid 
polymers to encapsulate curcumin and baicalin. In vitro cellular 
assays and in vivo anti-tumor studies on A549 tumor-bearing mice 
showed that the carrier material targeting nano micelles exhibits 
significant cytotoxicity and cellular penetration, effective anti-
tumor efficacy, and minimal adverse effects. Nanomedicine aimed 
at TAM offers an innovative approach to the management of 
NSCLC. By precisely targeting and regulating TAM, nano-agents 
are anticipated to enhance anti-tumor immune responses and 
overall treatment effectiveness. The subsequent study ought to 
concentrate on refining the design and clinical utilization of 
nanomaterials to enhance therapeutic results.

7.4 TAM and NSCLC treatment

Conventional therapies for NSCLC mostly encompass 
radiotherapy, chemotherapy, immunotherapy, and targeted therapy. 
The combination of targeted TAM therapy with conventional 
treatments can more effectively modulate the tumor 
microenvironment and enhance therapeutic outcomes, particularly in 
patients with advanced or metastatic NSCLC.

7.4.1 TAM and radiotherapy
Radiotherapy employs high-energy radiation to obliterate the 

DNA of tumor cells, thereby impeding their proliferation and 
reproduction. It can directly eradicate tumor cells while also indirectly 
enhancing the anti-tumor immune response by stimulating the 
immune system (145). Nonetheless, radiotherapy is recognized for its 
restricted clinical effectiveness in lung cancer patients owing to tumor 
resistance to radiation and the necessity to escalate radiation doses. A 
significant component contributing to this limitation is the 
immunosuppressive microenvironment, where immunosuppressive 
cells assist tumor cells in evading radiation (146, 147).

A recent study revealed that RT upregulates STAT6 signaling 
pathways that facilitate the polarization and aggregation of M2-TAM 
in NSCLC. Inhibiting the STAT6 signaling pathway can diminish the 
population of M2-TAM and facilitate their reprogramming to the Mz1 
phenotype, hence increasing the susceptibility of NSCLC to 
radiotherapy. Moreover, inhibiting STAT6 downregulates TGF-β 
levels and amplifies anti-tumor efficacy. The amalgamation of STAT6 
inhibitors and radiotherapy can impede the proliferation of both 
primary and metastatic tumors in NSCLC (148).

Reprogramming from the M2-TAM to the M1-TAM, along with 
the upgradation of cytotoxic T cell activity through ICIs and other 
inhibitors of immunosuppressive factors, can augment the 
immunological response to radiotherapy and synergistically amplify 
its anticancer efficacy. This is anticipated to decrease the necessary 
dosage of radiotherapy to mitigate systemic damage (149, 150).

7.4.2 TAM and chemotherapy
The resistance of tumor cells to chemotherapy presents a 

substantial obstacle in cancer treatment, particularly in NSCLC, where 
this resistance markedly influences therapeutic efficacy (151, 152). 
Research indicated that the accumulation and polarization of 
M2-TAM significantly contribute to chemotherapy resistance as a 
facilitator of tumor growth and immunosuppression via many 
pathways (153, 154).

IL-34, a ligand for CSF-1R, is recognized for its capacity to enhance 
the viability, growth, differentiation, and proliferation of monocytes 
and macrophages. Prior research has demonstrated that in NSCLC, 
IL-34 secreted by tumor cells can modulate the activity of TAM through 
AKT signaling activation, hence augmenting local immunosuppression 
and facilitating the survival of chemotherapy-resistant tumor cells. 
Further research shows that inhibiting IL-34 in chemotherapy-resistant 
tumors markedly suppresses tumor proliferation (155). P2X7, as an 
essential sensor of extracellular ATP, is extensively present in various 
immune cells and serves as a potent inflammatory and immunological 
activator (156). The expression of P2X7 was upregulated in TAM (157). 
Prior research indicated that P2X7 deficiency can inhibit M2-TAM 
polarization by down-regulating STAT6 and IRF4 phosphorylation. 
Furthermore, P2X7 deficiency enhances T-cell mobilization, reverses 
M2-TAM polarization, and curtails the advancement of NSCLC by 
diminishing tumor cell proliferation and angiogenesis. Consequently, 
the inhibition or obstruction of P2X7 yields a therapeutic benefit in 
NSCLC. Subsequent research indicated that the coadministration of the 
P2X7 inhibitors O-ATP, A-438079 hydrochloride, and A-740003 
mitigated resistance to cisplatin (158).

The aforementioned results demonstrate that by targeting TAM 
and its regulated immunosuppressive mechanisms, immune evasion, 
and chemotherapy resistance in tumors can be effectively overcome, 
hence enhancing the overall therapeutic efficacy. This discovery offers 
a novel approach to the treatment of NSCLC.

7.4.3 TAM and immunotherapy
Immunotherapy has emerged as a crucial treatment for NSCLC 

by stimulating the patient’s immune system to identify and eliminate 
tumor cells, with ICIs such as PD-1/PD-L1 and CTLA-4 inhibitors 
being integral to this mechanism (159). The significance of TAM in 
NSCLC immunotherapy has garnered considerable attention in recent 
years. Leucine-rich repeat-containing G-protein-coupled receptor 4 
(Lgr4) is identified as a crucial regulator of TAM polarization. The 
polarization of M2-TAM can be enhanced via the Rspo/Lgr4/Erk/
Stat3 signaling pathway, and inhibiting this route can mitigate lung 
cancer’s resistance to PD-1 therapy and enhance therapeutic efficacy 
(160). The transcription factor c-Maf serves as a metabolic checkpoint 
that regulates the TCA cycle and UDP-GlcNAc production, hence 
facilitating the polarization and activation of M2-TAM. Liu et al. (161) 
established the LLC mice model and discovered that c-Maf inhibition 
partially mitigates resistance to PD-1 treatment. In conclusion, 
targeting TAM and controlling their polarization can markedly 
enhance the effectiveness of lung cancer immunotherapy. Strategies 
involving the inhibition of particular receptors and the regulation of 
TAMs are anticipated to address drug resistance in immunotherapy.

7.4.4 TAM and targeted therapy
For NSCLC patients possessing identifiable driver-sensitive 

mutations, targeted therapy has emerged as the standard of care. The 
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mutation of the EGFR is a significant catalyst for NSCLC. EGFR-TKIs 
represent a significant advancement in lung cancer treatment, 
demonstrating improved efficacy compared to standard chemotherapy 
in patients with advanced EGFR mutation-positive NSCLC. A recent 
study has demonstrated that EGFR-TKIs can target TAM for NSCLC 
patients, hence augmenting anti-tumor efficacy. Tariq et  al. (162) 
discovered that gefitinib can inhibit IL-13-induced phosphorylation of 
STAT6, which was a crucial signaling pathway in M2-TAM 
polarization. Imatinib (163) and Lapatinib (164) have demonstrated 
analogous modes of action in inhibiting M2-TAM polarization. These 
findings indicated that EGFR-TKIs may dynamically modify the 
cellular composition of TME in NSCLC patients. Aligning immune-
stimulating conditions with targeted therapies can influence the 
enduring efficacy for patients because of the intricate interactions 
between macrophages in the TME and targeted medications (165–167).

In conclusion, TAM plays a critical role in influencing the 
effectiveness of radiotherapy, chemotherapy, immunotherapy, and 
targeted therapy in NSCLC, with strategies targeting TAM polarization 
and its immunosuppressive mechanisms enhancing treatment efficacy 
and overcoming resistance.

8 Perspective

In NSCLC research, TAM is increasingly acknowledged as a 
crucial immunomodulator. This study examines the significant 
significance of TAM in the progression of NSCLC, highlighting its 
intricate involvement in the TME, which influences tumor growth and 
metastasis, as well as profoundly affecting the immune response in 
NSCLC patients. The study indicates that TAM can profoundly 
influence the clinical manifestations and patient outcomes of NSCLC 
via metabolic reprogramming, persistent angiogenesis, enhanced 
infiltration, and metastatic potential, evasion of immune surveillance, 
and the facilitation of therapeutic resistance. Numerous clinical drugs, 
Chinese herbal formulas, and natural compounds have exhibited 
efficacy in targeting TAM for the treatment of NSCLC. Additionally, 
the advancement of novel nanomedicine offers a fresh perspective for 
the precise treatment of NSCLC.

Future TAM research is anticipated to achieve significant 
advancements in various areas. The focused therapy method for TAM 
will be a significant research focus. By identifying distinct surface 
markers and signaling pathways, researchers can create innovative 
tailored therapeutics to modify the activity of TAM, thereby 
augmenting the anti-tumor immune response. Secondly, the ongoing 
progress in scRNAseq technology enables researchers to investigate 
the heterogeneity of TAM and its function across various tumor types 
more comprehensively. This will establish a theoretical foundation for 
individualized treatment. Furthermore, the integration of 
nanomedicine technology with the creation of tumor-targeted 

nanomedicine based on TAM may emerge as a significant research 
avenue in the future, enhancing medication targeting while 
minimizing harm to normal tissues. Ultimately, interdisciplinary 
collaboration and research will advance the area of TAM, enhance the 
integration of fundamental research with clinical application, and 
offer more effective therapy alternatives for NSCLC patients.
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