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Objective: To identify imaging biomarkers of primary tumors and lymph nodes 
in patients with stage III–IV non-small cell lung cancer (NSCLC) and assess 
their predictive ability for treatment response (response vs. non-response) to 
immune checkpoint inhibitors (ICIs) after 6 months.

Methods: Retrospective analysis of 83 NSCLC patients treated with ICIs. 
Quantitative imaging features of the maximum primary lung tumors and lymph 
nodes on contrast-enhanced CT imaging were extracted at baseline (time 
point 0, TP0) and after 2–3 cycles of immunotherapy (time point 1, TP1). Delta-
radiomics features (delta-RFs) were defined as the net changes in radiomics 
features (RFs) between TP0 and TP1. Interobserver interclass coefficient (ICC) 
and Pearson correlation analyses were applied for feature selection, and logistic 
regression (LR) was used to build a model for predicting treatment response.

Results: Four and five important delta-RFs were selected to construct the nodal 
and tumor models, respectively. Δ Tumor diameter was used for constructing 
the clinical prediction model. The predictive efficacy of the nodal model for 
the treatment response status was higher than that of the tumor and clinical 
models. In the training set, the AUC values for the three models were 0.96 (95% 
CI = 0.90–1.00), 0.86 (95% CI = 0.76–0.95), and 0.82 (95% CI = 0.71–0.93), 
respectively. In the validation set, the AUC values were 0.94 (95% CI = 0.85–
1.00), 0.77 (95% CI = 0.56–0.98), and 0.74 (95% CI = 0.48–1.00), respectively.

Conclusion: The nodal model based on delta-RFs performed well in 
distinguishing responders from non-responders and could identify patients 
more likely to benefit from immunotherapy. Finally, the nodal model exhibited a 
higher classification performance than the tumor model.
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1 Introduction

Non-small cell lung cancer (NSCLC) accounts for 85% of all lung 
cancers and is the leading cause of cancer-related deaths worldwide 
(1). Despite recent advancements in lung cancer treatment, the 5-year 
survival rate of patients with lung cancer remains disappointing at 
only 15% (2). In recent years, immune checkpoint inhibitors (ICIs) 
have improved the treatment outcomes of patients with advanced 
NSCLC without targetable mutations. However, according to 
published evidence (3), the increase in progression-free survival (PFS) 
and/or overall survival (OS) is still limited to a small percentage of 
patients (15–30%). Although the expression of the tumor cell PD-L1 
has been widely used as a biomarker for selecting patients for immune 
therapy (2, 4), the relationship between PD-L1 expression and the 
efficacy of ICIs treatment remains uncertain.

Radiomics is an emerging field in medical imaging, which can 
quantify medical imaging data and translate qualitative clinical 
problems into quantitative ones, thus providing a more objective 
approach to solving clinical problems (5). Recent studies (6) have 
shown that non-invasive diagnostic images can describe the 
phenotype of lung tumors, and their use could be feasible to predict 
the survival stratification of patients with advanced NSCLC under 
different treatment methods. In these noninvasive imaging-based 
prediction or classification models, a radiomics method based on CT 
images has been developed and applied to establish prognosis 
prediction models, evaluate the effectiveness and necessity of different 
treatment methods, and predict early clinical outcomes. More 
specifically, traditional radiomics methods use baseline medical 
images for evaluation or prediction and ignore changes in tumors 
during treatment or follow-up. Alternatively, delta radiomics utilize 
changes in radiomic features (RFs) during or after treatment to guide 
clinical decision-making and may be more suitable for evaluating 
tumor responses to treatment (7, 8).

In locally advanced NSCLC, tumors tend to spread from the 
primary site to lymph nodes. Pretreatment lymph node staging is 
closely associated with disease progression and poor prognosis (9). As 
such, involved lymph nodes may have unique phenotypic 
characteristics related to the biological processes that affect disease 
spread, and thus, treatment response. In this study, we hypothesized 
that the presence of more invasive cancer cells in the metastatic 
mediastinal/paratracheal lymph nodes may determine prognosis and 
provide additional valuable information regarding the primary tumors 
of patients with NSCLC. To prove this, we analyzed the delta-radiomic 
features (delta-RFs) of the primary tumor and metastatic lymph nodes 
based on contrast-enhanced CT (CE-CT) scans and further validated 
these results in an independent cohort.

2 Materials and methods

2.1 Patients

This was a retrospective analysis of patients with NSCLC treated 
with ICIs at Shaoxing Second Hospital between January 2016 and 
November 2022. Tumor staging was performed according to the 8th 
edition of the American Cancer Joint Committee TNM staging 
criteria (10). All patients were pathologically diagnosed with III–IV 
NSCLC. This study adhered to the principles of the Declaration of 

Helsinki and was approved by the hospital’s Ethics Committee 
[Approval No. Ethics Approval (2022018)].

The inclusion criteria were as follows: (1) NSCLC confirmed by 
histology, (2) first- or later-line treatment with ICIs, and (3) complete 
baseline demographic data before treatment. The exclusion criteria 
were as follows: (1) baseline imaging (time point 0, TP0) or follow-up 
after 2–3 cycles of immunotherapy (time point 1, TP1) without 
CE-CT, (2) inability to accurately evaluate lesion boundaries on 
CE-CT images, (3) time interval between baseline imaging and 
immunotherapy exceeds 4 weeks; and (4) short axis of lymph nodes 
less than 15 mm.

2.2 CT image acquisition

A 64-slice CT scanner (Siemens SOMATOM Definition AS, 
Germany) was used to examine the patients who underwent routine 
respiration training. The scanning parameters were as follows: tube 
voltage = 120 kV, tube current = 200–300 mA, rotation time = 0.75 s, 
collimation = 32×1.25 mm, FOV = 360.0–500.0 mm, matrix = 512 ×  
512, slice thickness and interval = 5.0 mm, contrast agent injection 
rate = 2.5–3.0 mL/s, and injection volume = 1.1–1.7 mL/kg. After the 
routine scan, a thin-layer post-processing reconstruction of 0.6–1.5 mm 
was performed.

2.3 Image analysis

Two radiologists (A and B) with 15 years of experience in chest 
radiography independently evaluated the images, and the final results 
were obtained through consultation in cases of disagreement. The 
observed indicators included the selection of target lesions, target 
lesion boundaries, and TNM staging. This study evaluated whether 
the target lesions progressed after 6 months of treatment, based on the 
Response Evaluation Criteria in Solid Tumors (RECIST, version 
1.1) (11).

2.4 Target lesion segmentation

ITK-SNAP software (version 3.6.0, http://www.itksnap.org/) was 
used for tumor segmentation. Radiologist A manually delineated the 
region of interest (ROI) for lesions on TP0 and TP1 CE-CT images, as 
shown in Figure  1I. To ensure reproducibility and accuracy, the 
radiologists separately segmented the lesion ROIs and extracted the 
features at TP0 and TP1 from 10 randomly selected patients. 
Interobserver interclass coefficient (ICC) was used to determine the 
consistency of these features, with an ICC value greater than 0.75 
indicating higher repeatability of the results.

2.5 Image preprocessing and RFs 
extraction

The PyRadiomics package was used to analyze the 
segmentation data and isolate phenotypic features from the tumor 
regions after manual segmentation. To standardize all voxel sizes 
among the patients, the CT images were resampled to a 2-mm 
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resolution in all three directions (Figure 1II). To avoid redundancy 
with traditional radiological features and highlight texture 
differences within the target lesions, shape features were excluded 
from the RFs extraction. A total of 1,050 RFs were extracted for 
each 3D ROI, including the first-order features, grey-level 
co-occurrence matrix (GLCM), grey-level run length matrix 
(GLRLM), grey-level size zone matrix (GLSZM), grey-level 
dependence matrix (GLDM), and neighborhood grey-tone 
difference matrix (NGTDM). Delta-RFs were defined as the net 
change in RFs extracted at TP0 and TP1: Delta-RFs = Feature 
(TP1) − Feature (TP0). All features were normalized using the 
Z-score in Excel.

2.6 Delta-RFs and clinical features 
selection

2.6.1 Delta-RFs selection
A five-fold cross-validation method was used to assign training 

and validation cohorts using the same random seed in all splits to 
ensure consistency in grouping. Feature selection was performed 
using ICC and correlation analyses (Figure 1III). First, features with 
inter-observer instability (ICC <0.75) were excluded. Features with a 
high correlation (Pearson’s correlation coefficient >0.9) were 

eliminated. The most significant predictive features and their 
corresponding weight coefficients were selected and the radiomics 
score (Rad score) for each patient was calculated to build the 
radiomics model.

2.6.2 Clinical features selection
Clinical feature selection involved statistical tests, multivariate 

analyses, and stepwise regression to select features associated with the 
six-month treatment response. These features were used to develop 
the clinical model.

2.7 Construction of radiomics prediction 
model

Significant radiomics and clinical features were selected as 
independent variables, while the six-month treatment response was 
the dependent variable. Logistic regression (LR) was used to establish 
a multivariate regression model to predict the treatment response 
(Figure 1IV). Nodal, tumor, and clinical models were constructed, 
and the receiver operating characteristic (ROC) curve and area 
under the curve (AUC) were used to evaluate the predictive 
performance of the rad-score for immunotherapy efficacy in 
advanced lung cancer.

FIGURE 1

The workflow of this study, which mainly composed of six steps: data set, feature extraction, feature selection, model building, analysis, and validation.
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2.8 Model comparison and evaluation

The performance of the three classifiers was comprehensively 
evaluated using ROC curves, AUC, accuracy (ACC), sensitivity 
(SEN), specificity (SPE), negative predictive value (NPV), and 
positive predictive value (PPV) (Figure 1V). The DeLong’s test was 
used to compare the ROC curves of the three models. Calibration 
curves were used to describe the predictive accuracy of the three 
models. All the models were validated using a validation cohort 
(Figure 1VI).

2.9 Statistical methods

Data analysis was performed using SPSS (version 26.0) and R 
(version 4.1.2; https://www.r-project.org/). Continuous data are 
presented as mean ± standard deviation (x s± ) and were analyzed 
using independent sample t-tests. Categorical data are presented 
as percentages [n (%)] and were analyzed using chi-square or 
Fisher’s exact tests. Univariate and multivariate LR analyses were 
conducted, and the backward stepwise variable elimination 
method was used to select clinically significant features to build 
the clinical prediction model. Statistical significance was set at 
p < 0.05.

3 Results

3.1 Population demographics

A total of 83 NSCLC patients were included in this study, 
including 69 (83.1%) males and 14 (16.9%) females, with an age range 
of 36 to 85 years, and a median age of 67 years. The demographic and 
clinicopathological characteristics of the 83 patients are presented in 
Table 1. Among them, 48 (57.8%) were in the responder group and 35 
(42.2%) were in the non-responder group. Fifty-three (54.6%) of all 
patients received PD-1 ICIs (camrelizumab, sintilimab, tislelizumab 
or nivolumab) or PD-L1 ICIs (atezolizumab) monotherapy. The 
remaining 44 (45.4%) patients were treated with the combination of 
immunotherapies, ICIs in combination with chemotherapeutic agents 
(gemcitabine + cisplatin, paclitaxel + carboplatin) and/or 
antiangiogenic agents (mainly bevacizumab, endo, anlotinib, and 
afatinib). However, there were statistically significant differences in 
tumor diameter and lymph node diameter between the responder and 
non-responder groups (p < 0.05).

3.2 Delta-RFs selection and model 
construction

A total of 1,050 delta-RFs were extracted, and four key RFs (nodal 
model) and five key RFs (tumor model) were selected after ICC and 
correlation analysis, as shown in Table 2. Based on these features, the 
LR algorithm was applied to train the delta-RF sets of each lymph 
node and primary tumor, construct the nodal and tumor models, and 
convert the output probability scores into delta rad-scores. There were 
significant differences in the delta rad-scores between the responder 
and non-responder groups (Figure 2).

3.3 Clinical prediction model establishment

The results of the multivariate LR analysis showed that Δ Tumor 
diameter was an independent prognostic factor affecting the efficacy 
of ICIs treatment in patients with NSCLC (p < 0.05), as shown in 
Table 3. A clinical prediction model (clinical model) was established 
based on the selected independent variables.

3.4 The performance of the nodal model, 
tumor model, and clinical model

In the training set, the nodal model had the highest AUC of 0.96 
(95% CI = 0.90–1.00), significantly higher than the tumor (0.86, 95% 
CI = 0.76–0.95) (DeLong test, p < 0.05) and clinical models (0.82, 95% 
CI = 0.71–0.93) (DeLong test, p < 0.05). The AUC of the tumor model 
was higher than that of the clinical model (DeLong’s test, p > 0.05). In 
the validation set, the AUC of the nodal model (0.94, 95% CI = 0.85–
1.00) was higher than the tumor model (0.77, 95% CI = 0.56–0.98) 
and the clinical model (0.74, 95% CI = 0.48–1.00), but the differences 
were not statistically significant (DeLong test, p > 0.05). Finally, the 
AUC of the tumor model was higher than that of the clinical model 
(DeLong’s test, p > 0.05) (Figure 3). The calibration curve along with 
the Hosmer–Lemeshow test (p > 0.05) demonstrated good consistency 
between the predictions and observations in the three models 
(Supplementary Figure 1).

Using the Youden index to determine the cutoff value of the ROC 
curve, the ACC, SEN, SPE, NPV, and PPV of the nodal, tumor, and 
clinical models were calculated. The results are summarized in Table 4. 
Except for SPE and PPV, which were the highest in the clinical model, 
all other indicators were the highest in the nodal model.

4 Discussion

The data of the SEER (surveillance, epidemiology, and end results) 
database in the United States in 2018 showed that the overall 5-year 
survival rate of lung cancer patients was 18.6%, while the 5-year 
survival rate of advanced lung cancer patients with distant metastases 
was only 4.7%. With the advent of ICIs, the 5-year survival rate of 
patients with advanced lung cancer increased to 16% for the first time 
(12), which became a breakthrough in the treatment of advanced 
NSCLC. The ICI response of NSCLC patients varies widely among 
individuals, and the prognosis is influenced by a variety of factors, so 
it is necessary to find reliable biomarkers to screen the population that 
may benefit from ICIs (13).

Despite the availability of new treatment methods, patient survival 
rates remain relatively low (14). Although many clinical and 
histopathological features, laboratory markers, molecular biomarkers, 
and genetic markers have been tested for potential prognostic value, 
few effective and accurate prognostic factors are currently used in 
clinical practice to manage or predict individual patient prognosis. 
Clinical trials (15) have shown that lymph node clearance is closely 
related to patients’ overall survival. Lymph nodes are common sites of 
regional metastases and are crucial for cancer staging. Lymph node 
phenotypic characteristics contain valuable information that is 
particularly relevant to patients with advanced NSCLC and can 
effectively predict clinical endpoints. There is also evidence that lymph 
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TABLE 1 Baseline data of the responders and non-responders.

Demographic or clinicopathologic 
characteristic

Responders (N = 48) Non-responders (N = 35) p-value

Gender, No. (%) 0.213

  Female 6 (12.5%) 8 (22.9%)

  Male 42 (87.5%) 27 (77.1%)

Age, [M (Q1, Q3)] 67 (59, 73) 67 (62, 71) 0.969

Tobacco use, No. (%) 0.564

  Never smoker 24 (50.0%) 16 (45.7%)

  Current smoker 15 (31.3%) 9 (25.7%)

  Former smoker 9 (18.8%) 10 (28.6%)

Pathological type, No. (%) 0.329

  Squamous cell 35 (72.9%) 22 (62.1%)

  Adenocarcinoma 13 (27.1%) 13 (37.1%)

Pathologic N stage, No. (%) 0.238

  N1 2 (4.2%) 1 (2.9%)

  N2 22 (45.8%) 10 (28.6%)

  N3 24 (50.0%) 24 (68.6%)

TNM stage, No. (%) 0.622

  III 19 (39.6%) 12 (34.3%)

  IV 29 (60.4%) 23 (65.7%)

Line of treatment, No. (%) 0.098

  First line 32 (66.7%) 17 (48.6%)

  Later line 16 (33.3%) 18 (51.4%)

Treatment strategy, No. (%) 0.309

  Monotherapy 22 (45.8%) 20 (57.1%)

  Combination therapy 26 (54.2%) 15 (42.9%)

Tumor diameter at pre-treatment (mm) 55.3 ± 19.7 58.7 ± 22.1 0.540

Lymph nodal diameter at pre-treatment (mm) 19.5 ± 6.2 20.4 ± 7.0 0.534

Δ Tumor diameter (mm) −13.4 ± 9.5 0.3 ± 14.1 0.000**

Δ Lymph nodal diameter (mm) −5.8 ± 5.6 1.6 ± 7.4 0.000**

**p < 0.001.

TABLE 2 Results of logistic regression analysis of screened radiomics features.

Models Screened radiomics features Odds ratio OR 95%CI p-value

Node model

wavelet-LLL_glszm_ZoneEntropy 11.113 3.293–37.506 0.000**

log-sigma-4-0-mm-3D_glszm_ZoneEntropy 10.388 2.865–37.673 0.000**

log-sigma-4-0-mm-3D_glszm_

GrayLevelNonUniformity
1.706 1.265–2.300 0.000**

log-sigma-3-0-mm-3D_glrlm_

RunLengthNonUniformity
1.022 1.010–1.035 0.000**

Tumor model

log-sigma-2-0-mm-3D_glszm_ZoneEntropy 6.507 2.286–18.525 0.000 **

log-sigma-3-0-mm-3D_glrlm_RunEntropy 5.153 1.953–13.597 0.001*

log-sigma-4-0-mm-3D_glrlm_

LongRunHighGrayLevelEmphasis
1.015 1.007–1.023 0.000**

log-sigma-4-0-mm-3D_glrlm_LongRunEmphasis 1.023 1.010–1.036 0.001*

wavelet-LLL_gldm_

DependenceNonUniformityNormalized
3.489 1.608–7.570 0.002*

*p < 0.05 and **p < 0.01. HR, hazard ratio; CI, confidence interval.
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FIGURE 2

Comparison of delta radiomics scores between the non-responders group and the responders group in the training set (A) and validation set (B) of the 
nodal model, as well as in the training set (C) and validation set (D) of the tumor model. In both groups, the delta radiomics scores of the non-
responders group were significantly higher than those of the responders group (p < 0.05).

node imaging features have a higher prognostic value than primary 
tumors in patients with lung, head, and neck cancers (16, 17). 
However, despite extensive research investigating the relationship 
between primary tumor phenotypes and clinical outcomes, there has 
been little quantitative analysis of the correlation between NSCLC 
lymph node characteristics and clinical outcomes. Coroller et al. (17) 
conducted the first study using quantitative lymph node imaging 

features to predict tumor response to radiochemotherapy. Carvalho 
et  al. (18) found that common standard uptake value (SUV) 
descriptors from metastatic lymph nodes were associated with overall 
patient survival in NSCLC. Furthermore, compared to positron 
emission tomography (PET) information extracted solely from 
primary tumors, PET information extracted from metastatic lymph 
nodes had a higher prognostic value (C-index: 0.62 vs. 0.53, 0.56 vs. 
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TABLE 3 Results of logistic regression analysis of clinical variables in the training set.

Demographic or clinicopathologic 
characteristic

Odds ratio OR 95% CI p-value

Gender (male vs. female) 8.900 0.634–124.867 0.105

Age 1.026 0.937–1.125 0.577

Tobacco use never smoker vs. current smoker 0.464 0.051–4.205 0.495

Former smoker 1.636 0.239–11.189 0.616

Pathological type (squamous cell vs. adenocarcinoma) 1.716 0.286–10.313 0.555

Pathologic N stage N1 vs. N2 0.483 0.014–16.939 0.688

N3 2.925 0.114–75.353 0.517

TNM stage (III vs. IV) 0.466 0.059–3.670 0.469

Line of treatment (first line vs. later line) 0.726 0.095–5.581 0.759

Tumor diameter at pre-treatment 1.042 0.999–1.087 0.055

Lymph node diameter at pre-treatment 1.033 0.923–1.156 0.571

Δ Tumor diameter 0.878 0.794–0.970 0.011

Δ Lymph node diameter 0.879 0.765–1.010 0.070

CI, confidence interval.

FIGURE 3

The AUC values of the nodal, tumor, and clinical models, as well as their comparisons in the training set (A,C) and validation set (B,D).
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0.54, respectively). Our study is based on the fundamental principle 
that disease progression and metastatic ability are closely related to the 
presence of metastatic lymph nodes. We  extracted quantitative 
features related to immunotherapy response from CE-CT images of 
both primary tumors and affected lymph nodes. We found that the 
predictive efficacy of the nodal model was superior to that of the 
tumor model (AUC: 0.96 vs. 0.86, 0.94 vs. 0.77, respectively). Although 
there was no statistically significant difference in the validation group, 
the tumor model had a lower 95% CI limit of only 0.56 with a wide 
interval, indicating that the predictive efficacy of the tumor model was 
relatively low. The clinical model also exhibited a similarly poor 
performance, confirming that lymph node radiomic information 
based on CE-CT scans provides additional prognostic information to 
that obtained from primary tumors (19). Coroller et  al. (17) 
demonstrated that the optimal radiomics features extracted from 
metastatic lymph nodes can predict the pathological response after 
radiochemotherapy in patients with NSCLC, and this performance is 
higher than that of the optimal radiomics features extracted from 
primary tumors (AUC: 0.75 vs. 0.61, p = 0.03), further confirming the 
point above.

Moreover, previous radiomics studies have mainly focused on 
analyzing pretreatment imaging features. In our study, we provided a 
more comprehensive description of the rich temporal dependence 
between primary tumors and lymph nodes in pre-treatment and 
mid-treatment scans. This information can provide insights into 
treatment-induced changes, dynamically evaluate tumor burden, and 
better align with the evaluation of immunotherapy efficacy in clinical 
practice, which is consistent with recent reports (20, 21). In a similar 
study, Liu et al. (20) extracted delta-RFs from primary lesions and 
mediastinal metastatic lymph nodes in patients with late-stage NSCLC 
to predict the response status to ICIs treatment after 6 months. They 
found that the predictive performance of delta-RFs (AUC: 0.80–0.82) 
was significantly higher than that of baseline radiomics features (AUC: 
0.51–0.59). In the present study, the predictive performance of the 
delta radiomics model reached a maximum of 0.96. Delta radiomics 
has been proposed to evaluate the changes that occurred during 
treatment after time by accessing changes in RFs of different timeline 
CT scans. Delta-radiomics has greater reproducibility and stability 
than conventional imaging histology (22). In addition to the fact that 
delta-RFs have been shown to be effective in differentiating responders 
from non-responders in advanced non-small cell lung cancer 
undergoing immunotherapy, delta-RFs have also shown good efficacy 
in treatment response assessment in patients with metastatic 
melanoma (23). In a recent study, Fan et al. (24) for the first time 
assessed tumor response in patients with esophageal squamous cell 
carcinoma undergoing neoadjuvant chemoradiotherapy based on 
delta-RFs of CT images. The model based on delta-RFs had higher 
predictive power than previous studies, especially when combined 
with clinical factors, further improving the predictive performance 

with an AUC of 0.963. In the clinical model, Δ Tumor diameter was 
an independent risk factor for prognosis. This represents the change 
in the diameter of the primary tumor caused by treatment, indicating 
that mid-treatment scans can provide important information related 
to clinical outcomes, supplementing the information provided by 
pretreatment imaging features.

Owing to the large number of features included in radiomics, 
we used the ICC and Pearson correlation analysis to select the most 
critical delta-RFs. Four and five optimal features were selected to 
construct the nodal and tumor models, respectively. Interestingly, 
we found that the zone entropy (ZE) of the GLSZM was the highest-
weighted delta-RF regardless of the nodal or tumor model. The ZE 
measures the uncertainty/randomness in the distribution of zone sizes 
and grey levels, with a higher value indicating greater heterogeneity in 
the texture patterns. In our cohort, the ZE values were significantly 
higher in the non-responder group than in the responder group, both 
in the nodal model and the tumor model. The level of the ZE value 
may reflect the heterogeneity of the target lesions, with higher ZE 
values indicating higher heterogeneity of the target lesions, which is 
more likely to cause drug resistance.

Our study had certain limitations. First, this was a retrospective 
study based on a single medical center, and our model lacked external 
validation. Studies have shown that variations in scanning devices, 
acquisition methods, reconstruction parameters, and scanning 
protocols may affect the subsequent feature analysis (25, 26). 
Therefore, we  believe that designing prospective trials and 
standardizing imaging scans for all patients from different research 
institutions is necessary. Secondly, the sample size of our cohort was 
relatively small, and the robustness and effectiveness of the model 
must be  validated using larger datasets. Nevertheless, our study 
included a larger dataset (83 patients) than previous studies on lymph 
nodes (27, 28) (which included 25 and 43 patients). Third, limited 
follow-up was conducted in some patients; therefore, PFS and OS 
analyses were not performed on this dataset. However, due to the 
advanced stage of the tumors, our follow-up period was sufficient to 
provide clinically relevant information. Fourth, the included lymph 
nodes in this study were not confirmed by pathology but were 
included based on the diagnostic criteria of RECIST 1.1 for 
pathological lymph nodes (short axis greater than 15 mm). The 
diagnosis of mediastinal/hilar lymph node metastasis is usually 
performed through 18F-fluorodeoxyglucose positron-emission 
tomography/computed tomography (18F-FDG PET/CT), 
endobronchial ultrasound/endoscopic ultrasound (EBUS/EUS), or 
mediastinoscopy (29). However, 18F-FDG PET/CT has significant 
limitations, particularly regarding the uptake of glucose-like FDG in 
benign inflammatory lymph nodes, which may lead to false-positive 
results (30). In addition, the low spatial resolution of PET/CT hinders 
the detection of small metastatic lymph nodes. Invasive examinations 
are often constrained by the anatomy and are only limited to nodes 

TABLE 4 Performance metrics of the models.

Model Training set Validation set

AUC ACC SEN SPE NPV PPV AUC ACC SEN SPE NPV PPV

Nodal 0.96 0.86 0.92 0.82 0.93 0.79 0.94 0.84 1.00 0.86 1.00 0.82

Tumor 0.86 0.78 0.75 0.79 0.82 0.72 0.77 0.80 0.82 0.79 0.85 0.75

Clinical 0.82 0.69 0.67 0.71 0.71 0.67 0.74 0.84 0.50 1.00 0.81 1.00
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accessible through this approach. CE-CT can help reduce the number 
of invasive surgeries required to confirm lymph node metastasis, 
thereby reducing the complications associated with invasive 
procedures. Therefore, CE-CT has a wider potential for clinical 
applications, does not require additional ionizing radiation, and does 
not incur significant additional costs. Fifth, in the clinical model of 
this study, wide confidence intervals were observed. Due to the small 
sample size, when using 5-fold cross-validation to evaluate model 
performance, the limited sample size in each fold may not fully 
represent the overall data, which could affect the stability of the 
model’s performance. In future research, we aim to explore other 
methods, such as bootstrapping, to increase the diversity of the sample 
size through repeated sampling, thus mitigating the fluctuations 
caused by the small sample size.

In conclusion, this study demonstrated that lymph node-based 
phenotypic features are superior in reflecting the potential 
sensitivity of patients to immunotherapy than primary tumor sites. 
This allows for the early detection of patients with a high likelihood 
of rapid progression to ICIs treatment. Predicting the tumor 
response early during immunotherapy has potentially significant 
clinical implications for precision medicine. If the model predicts 
a poor response to immunotherapy, clinicians can consider 
pausing or switching the treatment plan, thereby avoiding 
continued use of potentially ineffective therapy, saving treatment 
resources, and minimizing side effects. Additionally, the model can 
help identify patients who require treatment adjustments, such as 
through combination therapy or changing the immunotherapy 
approach. Based on the early response predicted by the model, 
clinicians can develop a personalized management plan for the 
patient. This may include enhanced monitoring, regular 
evaluations, and treatment adjustments to ensure the optimal 
therapeutic outcome.
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