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pulmonary adenocarcinoma 
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Objective: To evaluate the predictive value of CT radiomics features within and 
surrounding tumors in determining the invasiveness of primary solitary nodular 
pulmonary adenocarcinoma.

Methods: This retrospective study analyzed 107 patients with pathologically 
confirmed nodular pulmonary adenocarcinoma who underwent conventional non-
enhanced CT Scans in our hospital from 2019 to 2023. Patients were categorized 
as non-invasive or invasive based on pathology findings. Clinical and imaging 
data from both groups were collected and compared, and logistic regression was 
used to independent factors associated with invasiveness. Radiologists manually 
outlined 3-dimensional regions of intratumoral and peritumoral areas to extract 
radiomics features, creating separate intratumor, peritumor, and combined 
intra-peritumor radiomics models. Radiomics models were trained using LASSO 
with 10-fold cross-validation in training dataset. Additionally, integrated models 
combining radiomics with clinical data were developed: intratumor-clinical, 
peritumor-clinical, and an intra-peri-clinical models.

Results: Of the 107 patients, 73 were in the non-invasive group (mean 
age 49.73 ± 13.92, 22 males) and 34 were in the invasive group (mean age 
57.53 ± 12, 14 males). The clinical model identified average nodule diameter 
and vascular type as independent risk factors for invasiveness (both p < 0.025). 
The combined intra-peri-clinical model demonstrated superior predictive 
performance compared to other models, with an AUC of 0.93, sensitivity of 0.91, 
and specificity of 0.86.

Conclusion: The combined model incorporating intratumor and peritumor 
radiomics features with clinical data showed significant value in predicting 
the invasiveness of nodular pulmonary adenocarcinoma, aiding in the precise 
selection of surgical methods.
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 • CT Radiomics Predict Invasion in Lung Adenocarcinoma.
 • Combined Model Outperforms in Predictive Accuracy.
 • Clinical Data Enhances Radiomics Prediction.
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1 Introduction

Lung cancer remains a formidable public human health 
challenge, representing one of the most aggressive malignancies (1). 
Among its various histological subtypes, pulmonary adenocarcinoma, 
the most common histological subtype, in early-stage lung cancer 
cases (2), encompassing a spectrum of precursor glandular lesions 
(PGL), including atypical adenomatous hyperplasia (AAH), 
adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma 
(MIA), and invasive adenocarcinoma (IAC) (3, 4), as defined by the 
2021 WHO Classification of Thoracic Tumors (5th edition). These 
entities typically present as sub-solid lung nodules on CT imaging, 
featuring both pure ground-glass and occasionally solid nodules 
appearance (3, 4).

The progression from AAH through AIS and MIA to IAC represents 
a continuum of increasing malignancy (3). Management strategies differ 
significantly across this spectrum; AIS/MIA typically necessitates wedge 
or segmental resection to conserve pulmonary function, whereas IAC 
usually necessitates lobectomy with lymph node dissection.

Clinical studies, including a multicenter prospective trial by Travis 
et  al., have demonstrated that intraoperative frozen section-guided 
sublobar resection achieves near 100% 5-year recurrence-free survival 
in patients with adenocarcinoma in situ (AIS) and minimally invasive 
adenocarcinoma (MIA), significantly outperforming outcomes in 
invasive adenocarcinoma (IAC) (sensitivity 94.3%, specificity 89.6%) (5). 
Accurately differentiating IAC from less invasive forms preoperatively is 
crucial for tailoring effective therapeutic strategies, although this remains 
challenging when relying solely on CT imaging (6, 7).

Radiomics, which involves extracting and analyzing quantitative 
features from medical images using machine learning techniques, 
reveals tumor characteristics like shape, texture, and intensity, and offers 
a promising solution by enhancing diagnostic accuracy and predictive 
capabilities (8–17). Recent advancements in radiomics, particularly 
within the domain of pulmonary adenocarcinoma, have focused on 
utilizing high-resolution imaging and sophisticated algorithms to 
elucidate the microstructural and biological characteristics of tumors. In 
recent years, research on radiomics has encompassed several aspects. 
For instance, the diagnostic efficacy of differentiating histological 
subtypes of lung adenocarcinoma using radiomics or deep learning 
networks has been reported to range from 73.0 to 91% (13–15). 
Additionally, studies have explored the prognostic and therapeutic 
implications of radiomics in lung adenocarcinoma. For example, a PET/
CT-based radiomics model demonstrated good performance in 
predicting intermediate-high risk growth patterns in early invasive 
adenocarcinoma (IAC), providing a valuable method for clinical 
management and personalized treatment (16). Furthermore, research 
has also focused on identifying the epidermal growth factor receptor 

(EGFR) gene mutation status in lung adenocarcinoma, which is crucial 
for determining the use of EGFR-tyrosine kinase inhibitors (EGFR-
TKIs) and thus beneficial for personalized patient care (17). While 
radiomics has been widely explored in pulmonary adenocarcinoma, our 
work uniquely integrates both intratumoral and peritumoral radiomics 
features with clinical data to predict invasiveness. This dual-region 
approach, coupled with clinical factors, offers a novel, holistic framework 
for preoperative decision-making, addressing a gap highlighted in 
recent literature.

2 Information and methods

2.1 General information

The retrospective analysis involved clinical and imaging data 
obtained from 107 patients with lung nodules who underwent 
preoperative conventional non-enhanced CT scanning at our hospital 
between January 2020 and December 2023. Patients were categorized 
into two groups based on pathological findings: 73 cases in the 
non-invasive group (comprising AAH, AIS and MIA), and 34 cases in 
the invasive group (IAC). The inclusion criteria were: lung nodules 
with a diameter of less than 30 mm; preoperatively isolated lung 
nodules confirmed through routine plain CT examination; CT images 
of diagnosable quality without significant artifacts; availability of 
complete pathological results after lung resection.

The exclusion Criteria included: incomplete CT imaging and 
clinical history data; nodule diameter exceeding 30 mm, and poor 
image quality hindering diagnostic assessment.

This retrospective study used anonymized data, ensuring 
compliance with patient privacy regulations. Therefore, it was deemed 
exempt from the requirement for informed consent and ethical review, 
as per the guidelines of our institutional ethical review board.

2.2 Imaging procedures

All chest CT scans were conducted utilizing a 256-row CT scanner 
(Revolution Apex, GE Healthcare). Before scanning, patients received 
respiratory training to ensure optimal breath-holding at the end of 
inspiration. Scans covered the entire lung volume, from apex to base. 
The following scan protocol was set: tube voltage of 120 kV, noise 
index of 11HU, automatic tube current modulation, 5 mm scanning 
slice thickness and spacing, image reconstruction utilizing adaptive 
statistical iterative-Veo (ASIR-V) at 60% weighting with a slice 
thickness of 0.625 mm, and the lung kernel for reconstruction. The 
image display parameters were set to a window width of 1,600 HU and 
a window position of −550 HU.

2.3 CT image characterization

Two experienced attending radiologists (XXX and XXX) 
specializing in diagnostic chest imaging conducted blinded reviews of 
the CT images. The final imaging characteristics were confirmed 
through consensus and discussion, including nodule types (pure 
ground-glass density nodules, partially solid nodules, and solid 
nodules), lesion locations (upper, middle, and lower lobes of the right 

Abbreviations: AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma in 

situ; ASIR-V, adaptive statistical iterative-veo; CI, confidence interval; DCA, decision 

curve analysis; IAC, invasive adenocarcinoma; LASSO, least absolute shrinkage 

and selection operator; MIA, minimally invasive adenocarcinoma; PGL, precursor 

glandular lesions; pGGN, pure ground-glass nodules; ROI, region of interest; Rad, 

scoreradiomics score; Radiomic_intra, intratumoral model; Radiomic_peri, 

peritumoral model; Radiomic_IP, intra-peritumoral model; Radiomic_intra+clinic, 

intratumor-clinical model; Radiomic_peri+clinic, peritumor-clinical model; 

Radiomic_IP + clinic, intra-peri-clinical model.
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lung; upper and lower lobes of the left lung), average nodule diameter, 
nodule shape (round, irregular), Lobulation sign, nodule edges 
(smooth, irregular), nodule boundaries (clear, indistinct), presence of 
burr sign, pleural pulling sign, emphysema, air bronchus sign, air 
bubble sign andvascular type (low-grade indicating absence or normal 
morphology of vascular routes, high-grade indicating abnormal 
morphology or distortion).

A senior radiologist (XXX) with over 5 years of clinical expertise 
conducted precise manual segmentation of the lesion’s region of 
interest (ROI) based on scanned breast CT images, utilizing 
ITK-SNAP 3.8.0 software (refer to Figure 1). During segmentation, 
meticulous care was taken to avoid neighboring large blood vessels, 
bronchial tubes, and skeletal structures, thereby minimizing 
interference from anatomical structures in defining the lesion region. 
Subsequently, the ROIs derived from segmentation underwent 
thorough layer-by-layer correction to ensure accuracy.

Automated boundary expansion was then applied to the corrected 
ROIs using scripts written in the R programming language, expanding 
outward in 3 mm increments. This delineated the tumor’s peripheral 
region, laying the groundwork for subsequent radiomic feature analysis. 
Following image normalization and resampling, PyRadiomics 3.0.1 
software extracted radiomics features from all ROIs, encompassing first-
order, shape, texture, and higher-order statistical features.

All extracted features underwent normalization. Samples were 
randomly partitioned into training and test sets at a ratio of 7:3. 
Within the training set, sequential analyses including independent 
sample t-test, K-Best algorithm ANOVA, and recursive feature 
elimination were conducted to identify key features. Subsequently, a 
regression model employing the least absolute shrinkage and 
selection operator (LASSO) was applied for 10-fold cross-validation 

on training sets, facilitating the screening of optimal features and 
model training. The resulting radiomics score (Rad-score) was 
then computed.

2.4 Statistical analysis

Statistical analyses were conducted using SPSS 25.0 and Python 
3.7 software. Count data were presented as frequencies, and differences 
between groups were assessed using the χ2-test. Measurement data 
were expressed as mean ± standard deviation, and differences between 
groups were analyzed using independent samples t-test. Subsequently, 
univariate and multivariate logistic regression were utilized to obtain 
the independent factors associated with infiltrative nature, and the 
clinical model was constructed by utilizing those independent factors.

LASSO regression was employed to establish three imaging 
models: the intratumor model, the peritumor model, and the intra-
peritumor model, focusing on intratumoral, peritumoral, and 
combined intratumoral and peritumoral features, respectively. 
Additionally, logistic regression was utilized to establish the intratumor-
clinical model, peritumor-clinical model, and intra-peritumor model 
based on clinical imaging, intratumor, and peritumor features.

Subsequently, logistic regression was applied to develop an intra-
peri-clinical model by integrating key clinical imaging features with 
intratumor and peritumor radiomics scores. Receiver operating 
characteristic (ROC) curves were plotted for each model, and the 
corresponding area under the curve (AUC) was calculated to assess 
the models’ effectiveness in evaluating the invasiveness of pulmonary 
adenocarcinoma. A nomogram was used to visualize interrelationships 
between variables in the intra-peri-clinical model. Additionally, 

FIGURE 1

Delineation of Tumor and Peritumoral Regions. (a) CT image of a subsolid lesion (encircled in yellow) with pathological confirmation of invasive 
pulmonary adenocarcinoma. (b) The region of interest (ROI) within the tumor is manually demarcated layer by layer, adhering to the inner boundary of 
the neoplastic mass. (c) Three-dimensional (3D) model of the intratumoral volume rendered in ITK-SNAP, showcasing the volumetric configuration of 
the tumor’s interior. (d) The peritumoral region is displayed based on an automated segmentation program with dilation, ensuring the exclusion of all 
proximal large blood vessels to mitigate potential analytical interference. (e) Construction of the peritumoral volume’s 3D model within ITK-SNAP, 
illustrating the morphological and dimensional attributes of the area circumambient to the tumor, essential for an exhaustive radiomic assessment.
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calibration curves were plotted to evaluate the calibration performance 
of the model, while decision curve analysis (DCA) was employed to 
assess its clinical benefit. A significance level of p < 0.05 was 
considered statistically significant.

3 Results

3.1 Clinical data and CT image 
characterization

According to pathological findings, 107 eligible patients were 
divided into a group without invasiveness - 22 males and 51 females 
with a mean age of (49.73 ± 13.92) years, and an invasive group with 
14 males and 20 females with a mean age of (57.53 ± 12) years. The 
between-group difference in sex and age was statistically significant 
(p < 0.001 and 0.006, respectively).

The parameters between the two groups including nodule type, 
lesions location, the average nodules diameter, nodule shape, nodule 
edge, nodule boundary, burr sign, pleural pulling sign, emphysema 
background, air bronchus sign, air bubble sign, vascular type, were 
statistically significant (all p < 0.05, Table 1).

Univariate and multivariate analyses revealed that average nodule 
diameter and vascular type were independent risk factors for 
pulmonary adenocarcinoma invasiveness (both p = 0.025 and 0.002, 
respectively), as presented in Table 2.

The clinical model alone attained an AUC of 0.89 in training and 
0.91 in testing, with a sensitivity of 0.74 and specificity of 0.92 in training, 
and a perfect sensitivity of 1.00 with a specificity of 0.86 in testing.

3.2 Radiomics feature selection

Following regression modeling using the LASSO algorithm, the 
study identified specific features from intratumor, peritumor, and 
peritumor-peritumor models.

For the intratumor model, five features were selected: original_gIrlm_
LongRunLowGrayLevelEmphasis, original_glcm_MCC, original_glcm_
MaximumProbability, original_glszm_SizeZoneNonUniformity, and 
original_ngtdm_Coarseness. For the peritumor model, four features were 
identified: original_ngtdm_Strength, original_glcm_InverseVariance, 
original_firstorder_Median, and original_ngtdm_Coarseness.

Additionally, seven features were selected from the intra-
peritumor model: original_ngtdm_Strength, original_firstorder_
Median, original_ngtdm_Coarseness.1, original_glcm_MCC, 
original_glcm_MaximumProbability, original_ngtdm_Coarseness, 
and original_glszm_SizeZoneNonUniformity (refer to Figure 2).

The Rad-score was calculated as the weighted sum of selected 
features and their corresponding coefficients for the intra-peritumoral 
radiomic model.

3.3 Radiomics model evaluation

The intra-peritumor model exhibited performance comparable 
with the intratumor model, with both achieving an AUC of 0.92 in the 
training and test sets. The intra-peritumor model achieved a sensitivity 
of 0.89 and specificity of 0.86 in training, while in the test set, sensitivity 
remained at 0.89, and specificity slightly decreased to 0.85. Similarly, the 

intratumor model exhibited a sensitivity of 0.89 and specificity of 0.81 in 
training, with test set values of 0.84 and 0.85, respectively.

The peritumor model showed an AUC of 0.89 in training and 
0.90 in testing, with relatively lower sensitivity (0.67 in training) but a 
sensitivity of 1.00 in the test set. However, its specificity declined from 
0.95 in training to 0.69 in testing.

The intratumor-clinical and peritumor-clinical models also 
exhibited strong predictive capabilities, both yielding an AUC of 
0.95  in training and 0.93 and 0.92  in testing, respectively. The 
intratumor-clinical model achieved a sensitivity of 0.73 and specificity 
of 0.96 in training, improving to 1.00 sensitivity and 0.83 specificity in 
testing. Similarly, the peritumor-clinical model reported a sensitivity 
of 0.69 and specificity of 0.98  in training, while in the test set, it 
reached 1.00 sensitivity and 0.86 specificity.

Among the models evaluated, the intra-peri-clinical model 
achieved the best performance, with an AUC of 0.96 in the training set 
and 0.93 in the test set. It exhibited a sensitivity of 0.76 and specificity 
of 0.96  in the training phase, while in the test set, sensitivity and 
specificity were 0.91 and 0.86, respectively, with an overall accuracy of 
0.89 in training and 0.88 in testing (see Table 3 and Figure 3).

This Nomogram of intra-peri-clinical model enabled the calculation 
of an overall invasiveness risk score based on factors including the patient’s 
average nodule diameter, vascular pattern, and intra-peritumoral radiomics 
scores (Figure 4). The model demonstrated excellent fit across both the 
training and testing datasets, as evidenced by the well-aligned calibration 
curves (Figure 5). Furthermore, DCA outcomes highlighted that the intra-
peri-clinical model yielded superior clinical net benefits compared with 
alternative models (Figure 6).

4 Discussion

The treatment approach for different pathological types of nodular 
pulmonary adenocarcinoma varies significantly. AIS and MIA are 
characterized by slow growth and can remain stable for extended 
periods. In contrast, IAC often presents with a poor prognosis and rapid 
infiltration, necessitating prompt surgical intervention. Despite the 
reliance on preoperative CT scans for diagnosis, subjective factors can 
influence accuracy. In this study, we explored the potential of modeling 
to predict the invasiveness of pulmonary adenocarcinoma using a 
combination of clinical data, CT imaging characteristics, intratumoral 
and peritumoral radiomics features. Our findings highlighted that the 
intra-peri-clinical model achieved superior diagnostic performance.

CT scans are crucial for identifying the invasiveness of pulmonary 
adenocarcinoma, emphasizing morphological and quantitative features. 
The study identified significant differences between the invasive and 
non-invasive groups regarding age, gender, nodule types, the location of the 
lesions, the average diameter of nodules, the shape of the nodule, nodule 
edge, nodule boundary, burr sign, pleural pulling sign, emphysema 
background, air bronchus sign, air bubble sign, vascular type, were 
statistically significant according to Table 1 (all p < 0.05). In contrast, no 
differences were found in the lobulation sign (p > 0.05).

Females were more prevalent in both groups, and the invasive 
group had an older average age. However, some studies suggest that 
gender differences are not statistically significant, indicating gender 
has minimal impact on the disease (9, 18). Gu et al. found significant 
differences in the proportion of lobulation signs between groups (18–
20), which is inconsistent with our findings; other imaging features 
align with our results. In our study, the lobulation sign showed no 
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significant difference among pulmonary nodule subgroups with 
varying invasiveness, whereas Gu et al. (18) reported statistically 
significant differences. This discrepancy suggests that the lobulation 
sign may not be a decisive discriminative feature [as implied by Wang 
et al. (19), who did not prioritize it] or that its diagnostic value is 
context-dependent [consistent with the Fleischner guidelines’ 
emphasis on multiparametric assessment (20)]. Differences between 
some study results and previous research might be due to single-center 
research, small sample sizes, and lack of further classification of 
nodule types, introducing some selection bias.

The clinical model in this study indicated that average nodule diameter 
and vascular type are independent risk factors for the invasiveness of 
pulmonary adenocarcinoma (p = 0.025; 0.002), which had an AUC of 

0.891, with a 95% confidence interval (CI) of 0.816–0.956, sensitivity of 
0.706, and specificity of 0.808, and the cutoff value for average nodule 
diameter is 9.75 mm. Previously, Bu et al. found that the long diameter of 
pure ground-glass nodules (pGGN) could significantly predict the 
invasiveness of pulmonary adenocarcinoma (p = 0.001), with a cutoff value 
of 12.5 mm (21). Other studies have found that when the long diameter of 
ground-glass nodules exceeds 15.37 mm, it usually indicates invasive 
pulmonary adenocarcinoma (p < 0.001), with an AUC of 0.886 for 
predictive accuracy (22). Hang and Wu’s study showed that the long 
diameter of the maximum section could independently predict the 
invasiveness of pulmonary adenocarcinoma (OR = 1.275, p < 0.001), with 
a cutoff value of 11.545 mm and an AUC of 0.776 (23). Zhu et al. found that 
the short and long diameters of pulmonary nodules had optimal diagnostic 

TABLE 1 Parameters for comparison of clinical and imaging characteristics between the two groups.

Parameter Non-invasive group (n = 73) Invasive group (n = 34) t/χ2 P

Age/years 49.73 ± 13.92 57.53 ± 12 2.816 0.006

Gender/case 11.449 <0.001

Males 22 14

Females 51 20

Nodule type/case 22.51 <0.001

Pure ground-glass nodules 44 7

Pure ground-glass nodules 25 18

Solid nodules 4 9

Location of the lesion 15.477 0.004

Right lung suprakane 23 14

Middle lobe of the right lung 9 5

Right lower lobe 15 5

Left upper lobe 15 5

Left lower lobe 11 5

Average diameter of nodules 7.5 (6, 9.5) 11.75 (9, 16.5) 5.421 <0.001

Shape 4.944 0.026

Round, quasi-circular 55 10

Irregular shapes 18 24

Lobulation sign 29 31 1.579 0.209

Edge 74.03 <0.001

Irregular 66 32

Smooth 7 2

Boundary/case 32.53 <0.001

Clear 59 24

Indistinct 14 10

Burr sign/case 7 21 24.31 <0.001

Pleural traction sign/case 21 21 4.944 0.026

Emphysema background/case 6 8 58.33 <0.001

Air bronchial signs/cases 7 14 39.49 <0.001

Air bubble sign/case 17 8 30.36 <0.001

Vascular type/case 6.81 0.009

Low level 61 6

High level 12 28
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values of 9.06 mm and 11.14 mm for predicting invasive pulmonary 
adenocarcinoma (24). Our cutoff value for nodule diameter differed from 
previous studies because we calculated the average of the long and short 
diameters of the nodule. Furthermore, this study included pure ground-
glass nodules, partially solid nodules, and solid nodules with diameters not 
exceeding 30 mm, without separate analysis of cutoff values by nodule type, 
differing from previous research methods.

Additionally, this study showed that high-grade vascular types are 
more common in the invasive group, while low-grade vascular types 
predominate in the non-invasive group, consistent with previous research 
findings (25–27). The growth and proliferation status of tumors may 
be closely related to tumor angiogenesis; the higher the malignancy, the 
richer the blood supply and the more complex the vascular aggregation, 
which might be one of the mechanisms.

Radiomics research has made significant progress and 
achievements in various fields (28–30). Weng et al. demonstrated 
that radiomics has higher differentiation efficiency than 
traditional CT morphology in distinguishing IAC from MIA (31). 
Qiu et al. found that the diagnostic efficiency of conventional CT 
morphology, radiomics, and their combined model is comparable 
(32). Heng et al. studied the radiomics model of 182 pulmonary 
adenocarcinoma cases and found that peritumoral radiomics 
features are extremely important in predicting the pathological 
classification of pGGN pulmonary adenocarcinoma. Combining 
intratumor radiomics and clinical factors significantly improved 
diagnostic performance (training set AUC was 0.958; validation 
set AUC was 0.895), similar to our results, with good clinical 
application value (33).

TABLE 2 Logistic regression analysis revealed independent predictors associated with the aggressiveness of adenocarcinoma.

Variable Univariate analysis Multivariate analysis

β OR p-value β SE Wald χ2 P-value OR (95%CI)

Age/years 0.045 1.046 0.008 0.029 0.031 0.913 0.339 1.03 (0.97,1.093)

Gender/case −0.48 0.616 0.262

Males

Females

Nodule type/case 1.367 3.924 <0.001 −0.15 0.564 0.071 0.79 0.861 (0.285,2.599)

Pure ground-glass nodules

Partial solid nodules

Solid nodules

Lesion location/case −0.13 0.877 0.358

Right lung suprakane

Middle lobe of the right lung

Right lower lobe

Left upper lobe

Left lower lobe

Average diameter of nodules 0.386 1.471 <0.001 0.258 0.115 5.037 0.025 1.294 (1.033,1.621)

shape/case −1.99 0.136 <0.001 −0.46 0.697 0.444 0.505 0.629 (0.16,2.463)

Round, quasi-circular

Irregular

Edge/case 0.529 1.697 0.524

Irregular

Smooth

Boundary/case −0.56 0.569 0.24

Clear

indistinct

Burr sign/case 2.723 15,231 <0.001 0.494 0.87 0.322 0.57 1.639 (0.298,9.024)

Pleural traction sign/case 1.386 4 0.002 0.075 0.668 0.013 0.91 1.078 (0.291,3.997)

Emphysema background/case 1.234 3.436 0.036 −0.57 1.084 0.273 0.601 0.567 (0.068,4.746)

Air bronchial signs/cases 1.887 6.6 <0.001 −0.02 0.853 0.001 0.985 0.984 (0.185,5.232)

Air bubble sign/case 0.013 1.014 0.978

Vascular type/case 3.166 23.722 <0.001 2.355 0.751 9.833 0.002 10.537 (2.418,45.91)

Low level

High level
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Due to its high invasiveness, pulmonary adenocarcinoma can 
invade surrounding small blood vessels, lymphatic vessels, and 
bronchioles, destroying their normal structure and leading to 
pathological changes such as tumor microvascular formation and 
bronchiolar obstruction (34). Therefore, the peritumor 
microenvironment plays a crucial role in disease prediction. 
Micropathological studies have shown that the average width of the 
peritumor transition zone in pulmonary adenocarcinoma is about 
3.5 mm (35). Including too much normal lung tissue in the analysis 
can dilute the representativeness of the peritumor microenvironment, 
thereby reducing predictive accuracy. Based on this, this study 
extended the edge of the lesion outward by 3 mm as the peritumor 
ROI to improve predictive performance.

For lung adenocarcinoma, the 3 mm peri-tumoral margin 
provided the highest AUC (0.94) in malignancy discrimination, 
compared to 0.85 for 5 mm margins (36). Heng et al. divided patients 
with pure ground-glass nodular pulmonary adenocarcinoma into 

IAC and non-IAC groups, sequentially extracted intratumor 
radiomics features and peritumor 5 mm radiomics features for 
modeling, and found that the combined model reached an AUC of 
0.85 in the validation set (33). Our study constructed models based 
on intratumor, peritumor 3 mm, and their combined radiomics 
features, selecting the combined intratumor and peritumor radiomics 
model with better diagnostic performance. The model was then 
integrated with independent factors related to CT imaging features, 
further improving diagnostic performance (both training and test set 
AUCs were 0.96). DCA showed that the combined model has greater 
clinical net benefit in identifying the invasiveness of pulmonary 
adenocarcinoma compared to the clinical model and traditional 
radiomics models. While our study focuses on CT-based radiomics, 
PET/CT remains a valuable tool for metabolic characterization of 
lung nodules (37). The proposed model could be  integrated into 
preoperative planning workflows by combining automated radiomics 
analysis with clinical parameters in diagnostic software. For instance, 

FIGURE 2

The optimal radiomics characteristics and corresponding coefficients based on the intratumor model (a), peritumor model (b), and intra-peritumor 
model (c).

TABLE 3 The performance of each model in the training group and the test group.

Models AUC Sensitivity Specificity Accuracy

training Test training Test training Test training Test

Intratumor model 0.92 0.92 0.89 0.84 0.81 0.85 0.87 0.84

Peritumor model 0.89 0.90 0.67 1.00 0.95 0.69 0.75 0.88

Clinical model 0.89 0.91 0.74 1.00 0.92 0.86 0.87 0.91

Intra-peritumor model 0.92 0.92 0.89 0.89 0.86 0.85 0.88 0.88

Intratumor-clinical model 0.95 0.93 0.73 1.00 0.96 0.83 0.88 0.88

Peritumor-clinical model 0.95 0.92 0.69 1.00 0.98 0.86 0.87 0.91

Intra-peri-clinical model 0.96 0.93 0.76 0.91 0.96 0.86 0.89 0.88
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FIGURE 3

ROC curve of each predictive model in raining set (a) and test set (b). Radiomic_intra, intratumoral model; Radiomic_peri, peritumoral model; 
Radiomic_IP, intra-peritumoral model; Radiomic_intra+clinic, intratumor-clinical model; Radiomic_peri+clinic, peritumor-clinical model; Radiomic_
IP + clinic, intra-peri-clinical model.

FIGURE 4

The nomogram of intra-peri-clinical model in training set (a) and test set (b).

FIGURE 5

Intra-peri-clinical model calibration curves-training set (a) and test sets (b).
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radiologists could input nodule diameter, vascular type, and CT 
images into a tool that generates an invasiveness risk score, guiding 
surgical decisions (e.g., sublobar vs. lobar resection). Future work 
should focus on developing user-friendly interfaces and validating 
real-world clinical utility.

This study still has the following limitations: (1) As a retrospective 
study, selection bias was unavoidable; (2) This study was a single-
center study. Future research should consider including multi-center 
and larger sample data to demonstrate the generalization ability of the 
comprehensive model. While our model demonstrated strong 
performance in internal validation, future multi-center studies with 
external datasets are necessary to confirm generalizability.

In summary, the combined model based on CT imaging features 
and CT radiomics features had high predictive performance for the 
invasiveness of pulmonary nodules, facilitating accurate preoperative 
assessment of the invasiveness of pulmonary nodules, benefiting patients.
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