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Objective: To construct and validate a nomogram prediction model based on 
clinical characteristics and intestinal flora distribution in patients with chronic 
hepatitis B.

Methods: Patients with chronic hepatitis B were divided into training set (n = 175) 
and verification set (n = 75) according to the ratio of 7:3 by complete random 
method. In the training set, multivariate logistic regression was used to analyze 
the risk factors for the failure of antiviral therapy and the nomogram prediction 
model was constructed. The ROC curve and calibration curve were drawn to 
evaluate the prediction efficiency of the nomogram model and were verified in 
the verification set.

Results: There was no significant difference in the incidence, clinical 
characteristics and distribution parameters of intestinal flora between the 
training set and the verification set (p > 0.05). Univariate analysis showed that the 
training set treatment ineffective group and the effective group had statistical 
differences in ALT, AST, hepatitis B virus DNA quantification, Shannon-Wiener 
index, Simpson index, Chao1 index, ACE index, relative abundance of Sclerotinia 
sclerotiorum, relative abundance of Bacteroides immitis, and PCA clustering 
separation (p < 0.05). Multivariate logistic regression analysis identified AST, 
hepatitis B virus DNA quantification, Shannon-Wiener index, Simpson index, 
and the relative abundance of Firmicutes and Bacteroides as independent risk 
factors for antiviral therapy failure (p < 0.05). Further, the nomogram prediction 
model was constructed, and the nomogram model had good calibration and 
fitting between prediction and reality in the training set and the verification set 
(ROC curves were shown in the training set and the verification set); AUC of the 
nomogram model for predicting the antiviral treatment effect was 0.869 and 
0.829.

Conclusion: The nomogram model shows good discriminative ability for 
predicting suboptimal antiviral response, requiring multicenter validation. It 
should complement, not replace, clinical judgment and virological monitoring, 
aiding early risk identification and targeted interventions.
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1 Introduction

Despite advances in antiviral therapy, heterogeneous treatment 
responses in CHB remain a clinical challenge, necessitating better 
predictive tools. According to the data of the World Health 
Organization, there are about 296 million people infected with chronic 
hepatitis B virus in the world, and about 820,000 people die from 
hepatitis B-related diseases every year (1). In China, the prevalence of 
chronic hepatitis B remains high. Although the new infection rate has 
decreased with the extensive vaccination of hepatitis B vaccine in 
recent years, the number of patients with chronic hepatitis B cannot 
be underestimated due to the large infection base (2, 3). The natural 
course of chronic hepatitis B is long and complex, which can progress 
to severe complications such as liver cirrhosis, liver failure and 
hepatocellular carcinoma, and poses a great threat to the life, health 
and quality of life of patients (4–6). At present, antiviral therapy is the 
key measure for the treatment of chronic hepatitis B. It can effectively 
inhibit hepatitis B virus replication, reduce liver inflammation and 
fibrosis, and reduce the risk of liver cirrhosis and liver cancer (7). 
However, it has been found in clinical practice that the therapeutic 
effects of different patients vary significantly even when receiving the 
same antiviral therapy. Some patients can achieve the ideal therapeutic 
goals such as virologic response, serological transformation and liver 
function improvement, while others have poor therapeutic effects 
with continuous virus replication and continuous progression of liver 
lesions (8, 9). The heterogeneity of treatment response impacts patient 
prognosis and complicates clinical decision-making.

In recent years, with the rapid development of microbiological 
technology, the role of intestinal flora in the pathogenesis and 
treatment of chronic hepatitis B has gradually attracted extensive 
attention. A study has shown that patients with chronic hepatitis B 
have an imbalanced intestinal flora, which is characterized by 
decreased intestinal microbial diversity, decreased beneficial bacteria, 
and increased harmful bacteria (10). Intestinal flora imbalance can 
affect the progression and therapeutic effect of chronic hepatitis B 
through a variety of ways. For example, impaired intestinal barrier 
function leads to bacterial translocation and aggravation of liver 
inflammation. Abnormal changes of metabolites of intestinal flora, 
such as short-chain fatty acids and endotoxin, can regulate the 
immune microenvironment of the liver and affect the antiviral 
immune response. In addition, the intestinal flora may interact with 
hepatitis B virus to directly or indirectly affect the replication and 
removal of the virus (11–13). Therefore, the distribution characteristics 
of intestinal flora is expected to become an important biomarker for 
predicting the effect of antiviral treatment for chronic hepatitis B.

As a visual statistical tool, nomogram prediction model can 
integrate the information of multiple prediction factors, convert 
complex mathematical models into intuitive and understandable 
graphics, and provide convenient individual prediction tools for 
clinicians. By constructing the nomogram prediction model based on 
the clinical characteristics of patients with chronic hepatitis B and the 
distribution of intestinal flora, various information of the patients can 
be comprehensively considered, and the antiviral treatment effect can 

be predicted more accurately, so that clinicians can identify patients 
with possible poor treatment effect before treatment and formulate 
personalized treatment plans for the patients, such as adjusting the 
types and doses of antiviral drugs or combining other treatment 
means, improving the effectiveness and pertinence of treatment, better 
performing disease management and prognosis evaluation on the 
patients, and reducing unnecessary medical resource waste and 
economic burden of the patients.

Based on the above background, the purpose of this study was to 
collect clinical data and intestinal flora data of patients with chronic 
hepatitis B, screen out the key factors related to the effect of antiviral 
treatment using multi-factor analysis method, and construct 
nomogram prediction model, and evaluate the prediction efficiency 
and reliability of the model through strict internal verification and 
external verification, to provide a scientific basis and practical tool for 
the accurate treatment of chronic hepatitis B. To ensure the robustness 
of our prediction model, we  conducted comprehensive baseline 
comparisons between the training and validation sets, including 
demographic characteristics, clinical parameters, and intestinal 
microbiota distribution. These comparisons confirmed the 
homogeneity of the two sets, thereby enhancing the reliability and 
generalizability of our model.

2 Data and methods

2.1 Research objects

Two hundred and fifty patients with chronic hepatitis B in our 
hospital from 2021 to 2024 were selected as the research subjects, and 
they all informed consent and voluntarily participated in this study, 
which was approved by the Ethics Committee of our hospital. Patients 
with chronic hepatitis B were randomly divided into a training set 
(n = 175) and a validation set (n = 75) at a 7:3 ratio using complete 
randomization, and baseline data were collected synchronously.

2.2 Inclusion exclusion criteria

2.2.1 Inclusion criteria
Patients who are aged between 18 and 65 years old, both male and 

female, with hepatitis B surface antigen positivity lasting for more 
than 6 months and measurable hepatitis B virus DNA quantitation 
(lower limit of high sensitivity detection is 20 IU/mL); No antiviral 
treatment or drug discontinuation for more than 6 months before 
enrollment; Willing to cooperate to complete the research process and 
sign informed consent form; No drugs affecting the intestinal flora 
were used within 2 weeks before enrollment.

2.2.2 Exclusion criteria
Pregnant or lactating women; combined with other 

hepatophilic virus infections (confirmed by detection of 
corresponding viral markers); suffering from mental disease or 
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cognitive disorder and unable to cooperate; history of alcohol 
abuse (≥40 g pure alcohol per day for males and ≥20 g pure alcohol 
for females for more than 5 years) or drug abuse; has received a 
liver transplant; is allergic to or intolerant of test methods for 
intestinal flora (e.g., fecal sample collection process, high-
throughput sequencing reagents, etc.).

2.3 Clinical feature detection method

2.3.1 Degree of appetite loss
The degree of anorexia was assessed using the Visual Analogue 

Scale (VAS). A 10 cm straight line was drawn on the paper, with both 
ends marked as “normal appetite (0 point)” and “no appetite at all (10 
points)” respectively, for patients to mark a point on the straight line 
according to their appetite, so as to quantify the degree of anorexia. A 
score greater than 5 indicated a marked decrease in appetite.

2.3.2 Degree of fatigue
The Fatigue Severity Scale (FSS) was used to quantify the 

symptoms of fatigue. The scale consisted of nine items, with each item 
graded from 1 (strongly disagree) to 7 (strongly agree), with a total 
score of 9–63.

2.3.3 Jaundice degree
The degree of jaundice was accurately assessed by measuring 

serum total bilirubin (TBIL) and direct bilirubin (DBIL).

2.4 Laboratory test methods

All biological samples were processed following standardized 
clinical laboratory protocols. Venous blood samples were collected in 
appropriate anticoagulant tubes (EDTA-K2 for virologic tests, sodium 
citrate for coagulation tests) and centrifuged (3,000 rpm, 10–15 min) 
to separate plasma/serum, which was either analyzed immediately or 
stored at recommended temperatures (2–8°C for ≤24 h; −20°C for 
long-term storage).

Liver function tests (ALT, AST, TBIL, and DBIL) and albumin/
globulin measurements employed automated biochemical analyzers 
using manufacturer-certified reagents. HBV DNA quantification used 
Roche Cobas TaqMan HBV Test (lower limit 20 IU/mL) with 
qPCR. Serological markers (HBsAg, HBeAg) were detected by 
ELISA. PT/INR measurements utilized fully automated 
coagulation analyzers.

2.5 Intestinal flora distribution detection 
method

Fecal samples were collected from patients under fasting 
conditions using sterile containers, with approximately 2–3 g of fecal 
material obtained from the central portion to avoid contamination. 
Samples were immediately stored at −80°C until processing. DNA 
extraction was performed using the QIAamp DNA Stool Mini Kit 
(Qiagen) following manufacturer’s protocols. DNA concentration and 
purity were verified using a Nanodrop spectrophotometer (A260/
A280 ratio 1.8–2.0; concentration 20–50 ng/μL).

The V3–V4 region of the 16S rRNA gene was amplified using 
338F-806R primers under standard PCR conditions (95°C for 5 min; 
30 cycles of 95°C/30 s, 55°C/30 s, 72°C/30 s; final extension at 72°C 
for 10 min). Purified amplicons were sequenced on the Illumina 
MiSeq platform (2 × 300 bp) with 50,000–100,000 reads per sample. 
Raw data were quality-filtered (Q30) using FastQC, and OTUs were 
clustered at 97% similarity with UPARSE. Taxonomic annotation was 
performed against the Silva database. Alpha-diversity indices 
(Shannon-Wiener, Simpson, Chao1, and ACE) and relative 
abundances at phylum/genus levels were calculated.

2.6 Antiviral treatment

Antiviral therapy with nucleoside (acid) analogs, including 
entecavir (ETV) and tenofovir disoproxil fumarate (TDF), has been 
used in patients with chronic hepatitis B in this study. For treatment-
naive patients, entecavir was given at a dose of 0.5 mg/ day and tenofovir 
disoproxil fumarate at 300 mg/day. During the treatment, the patients 
were required to take quantitative drugs strictly according to the 
prescribed timing to ensure the effectiveness and stability of the drugs. 
The treatment cycle should be  at least 48 weeks. The adverse drug 
reactions of the patients should be  closely observed during the 
treatment. For example, entecavir may cause adverse reactions such as 
headache, fatigue and vertigo, and tenofovir disoproxil fumarate may 
cause renal impairment and hypophosphatemia. Medical staff regularly 
carry out relevant examinations on patients, such as renal function tests, 
in order to timely detect and deal with possible adverse drug reactions.

2.7 Treatment effect evaluation method

Treatment effectiveness was evaluated through a composite 
endpoint incorporating both clinical and objective measures: (1) 
symptom improvement (resolution of fatigue, jaundice, and liver 
discomfort), (2) virological response (≥2 log10 IU/mL decrease in 
HBV DNA or undetectable levels), (3) biochemical response (ALT 
normalization ≤40 U/L), and (4) serological response (HBeAg loss or 
seroconversion where applicable). Patients meeting ≥3 criteria were 
classified as having effective treatment.

Effective: (1) HBV DNA reduction ≥2 log10 IU/mL or 
undetectable levels (<20 IU/mL); (2) ALT normalization (<40 U/L for 
males, <35 U/L for females); (3) Improvement in clinical symptoms 
(e.g., fatigue, jaundice).

Invalid: (1) HBV DNA reduction <2 log10 IU/mL; (2) Persistent ALT 
elevation; (3) Worsening symptoms or new complications (e.g., ascites).

2.8 Statistical methods

SPSS 26.0 software was used for statistical analysis. Categorical 
data were analyzed using the chi-square test, and continuous data were 
analyzed using the Student’s t-test or Mann–Whitney U test, as 
appropriate. For multivariate analysis, logistic regression was employed 
to identify independent risk factors for antiviral treatment failure. 
Variables with a significance level of p < 0.05 in univariate analysis were 
included in the multivariate logistic regression model. The nomogram 
prediction model was constructed based on the results of multivariate 
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TABLE 1 Comparison of clinical characteristics and intestinal flora distribution parameters between the training set and the verification set.

Project Training set 
(n = 175)

Verification set 
(n = 75)

Statistical values p-value

Age (years) 46.09 ± 10.11 45.57 ± 10.03 0.368 0.713

Gender Male 104 40 0.799 0.371

Female 71 35

BMI (kg/m2) 23.44 ± 3.78 24.01 ± 3.67 1.085 0.279

Course of disease (years) 7.47 ± 4.15 7.34 ± 5.02 0.196 0.845

Degree of appetite loss 5.82 ± 4.93 6.01 ± 4.53 0.287 0.774

Degree of fatigue 37.20 ± 6.39 36.34 ± 6.57 0.975 0.332

TBIL (µmol/L) 16.96 ± 7.04 16.43 ± 6.64 0.557 0.578

DBIL (µmol/L) 6.38 ± 3.13 6.66 ± 3.56 0.601 0.548

ALT (U/L) 48.22 ± 20.55 47.64 ± 18.34 0.211 0.833

AST (U/L) 42.14 ± 15.10 45.64 ± 16.34 1.638 0.103

ALB (g/L) 41.77 ± 4.19 42.49 ± 4.17 1.251 0.212

GLB (g/L) 28.78 ± 5.25 29.06 ± 5.03 0.395 0.693

Hepatitis B virus DNA quantification (IU/

mL × 10)

0.18 ± 0.10 0.16 ± 0.08 0.838 0.403

HBsAg (S/CO) 12.74 ± 4.77 11.64 ± 5.12 1.629 0.105

HBeAg (S/CO) 8.55 ± 3.54 7.69 ± 4.65 1.433 0.155

PT (seconds) 12.57 ± 2.83 11.84 ± 3.64 1.717 0.087

INR 1.13 ± 0.17 1.16 ± 0.19 1.535 0.126

Shannon-Wiener index 3.47 ± 0.60 3.61 ± 0.87 1.345 0.181

Simpson index 0.37 ± 0.12 0.41 ± 0.24 1.666 0.099

Chao1 index 148.07 ± 29.64 155.24 ± 30.21 1.742 0.083

ACE index 157.09 ± 34.92 152.24 ± 33.61 1.017 0.310

Relative abundance of Chlamydoma 36.50 ± 9.01 37.65 ± 10.21 0.888 0.375

Relative abundance of Bacteroides 39.30 ± 10.16 40.54 ± 10.32 0.878 0.381

PCA clustering 

separation

Clear 90 42 0.440 0.507

Not obvious 85 33

Further analyses were performed to compare additional baseline characteristics, such as comorbidities (e.g., diabetes, hypertension) and medication history (e.g., prior use of probiotics or antibiotics), 
between the training and validation sets. No significant differences were observed (all p > 0.05), confirming the comparability of the two groups and supporting the validity of the model.

logistic regression using the “rms” package in R software (version 
4.2.1). The predictive performance of the nomogram was evaluated 
using the area under the receiver operating characteristic curve (AUC-
ROC), calibration curves, and the Hosmer–Lemeshow test. Decision 
curve analysis (DCA) was performed to assess the clinical utility of the 
model. A two-tailed p < 0.05 was considered statistically significant.

3 Results

3.1 Comparison of antiviral treatment effects, 
clinical characteristics and intestinal flora 
distribution parameters between the training 
set and the verification set

Forty-five patients (25.71%) in the training set were ineffective, 
and 19 patients (25.33%) in the verification set were ineffective. The 
training (n = 175) and verification (n = 75) sets showed no significant 

differences in demographic (age, gender, BMI), clinical (liver function 
tests, viral load), or microbiota parameters (all p > 0.05), confirming 
their comparability. Notably, key predictors like AST (42.14 ± 15.10 
vs. 45.64 ± 16.34 U/L, p = 0.103) and Shannon-Wiener index 
(3.47 ± 0.60 vs. 3.61 ± 0.87, p = 0.181) were well-balanced, supporting 
the validity of subsequent model development and validation, as 
shown in Table 1.

3.2 Comparison of clinical characteristics 
and distribution parameters of intestinal 
flora between the ineffective and effective 
groups in the training set

In the training set, the results of single factor analysis showed that 
the treatment ineffective group and the effective group had statistically 
significant differences in ALT, AST, hepatitis B virus DNA quantification, 
Shannon-Wiener index, Simpson index, Chao1 index, ACE index, 
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relative abundance of Firmicutes, relative abundance of Bacteroides and 
PCA clustering separation (p < 0.05), as shown in Table 2.

3.3 Analysis of risk factors for the effect of 
antiviral treatment

Treatment effect was taken as the dependent variable (0 = effective, 
1 = ineffective), and the factor with p < 0.05 in single factor analysis 
was taken as the covariate. Further multivariate logistic regression 
analysis showed that AST, hepatitis B virus DNA quantification, 
Shannon-Wiener index, Simpson index, the relative abundance of 
Firmicutes and Bacteroides were the independent risk factors for the 
ineffectiveness of antiviral therapy (p < 0.05), as shown in Table 3.

3.4 Establishment of nomogram prediction 
model for antiviral treatment effect

Based on the independent risk factors identified by multivariate 
logistic regression analysis, a nomogram prediction model for the 

effect of antiviral treatment was constructed. Each independent risk 
factor in the model was scored, and the total score for predicting the 
effect of antiviral treatment was calculated, which was reflected in the 
prediction of the incidence of ineffective antiviral treatment. The 
higher the total score was, the higher the accuracy was in predicting 
the effect of antiviral treatment, as shown in Figure 1.

3.5 Evaluation and validation of predictive 
models for the effect of antiviral therapy

In the training and validation sets, the nomogram model C-index 
was 0.866 and 0.816, respectively, the calibration curve showed mean 
absolute errors of 0.125 and 0.122, respectively, for the predicted and 
actual values, and the Hosmer–Lemeshow test was χ2 = 5.937, 
p = 0.654 and χ2 = 4.886, p = 0.770, respectively. The ROC curves 
were displayed in the training and validation sets, and the AUC of the 
nomogram model for predicting the effect of antiviral therapy was 
0.869 (95% CI: 0.801–0.938) and 0.829 (95% CI: 0.700–0.957), 
respectively, with sensitivity and specificity of 0.771, 0.841, and 0.600 
and 0.786, respectively. The calibration curves are shown in Figure 2 

TABLE 2 Comparison of clinical characteristics and distribution parameters of intestinal flora between the ineffective and effective groups.

Project Ineffective group 
(n = 45)

Effective group 
(n = 130)

Statistical values p-value

Age (years) 48.49 ± 12.35 45.25 ± 9.12 1.862 0.064

Gender Male 28 76 0.196 0.658

Female 17 54

BMI (kg/m2) 24.36 ± 4.25 23.12 ± 3.56 1.910 0.058

Course of disease (years) 8.45 ± 5.67 7.13 ± 3.45 1.472 0.147

Degree of appetite loss 7.03 ± 5.56 5.40 ± 4.65 1.926 0.056

Degree of fatigue 38.80 ± 6.24 36.64 ± 6.37 1.969 0.051

TBIL (µmol/L) 18.72 ± 10.56 16.34 ± 5.23 1.452 0.152

DBIL (µmol/L) 7.14 ± 4.67 6.12 ± 2.34 1.393 0.170

ALT (U/L) 55.62 ± 20.44 45.67 ± 20.34 2.857 0.005

AST (U/L) 47.34 ± 13.54 40.34 ± 15.23 2.730 0.007

ALB (g/L) 40.75 ± 5.34 42.13 ± 3.67 1.597 0.116

GLB (g/L) 30.05 ± 6.78 28.35 ± 4.56 1.565 0.123

Hepatitis B virus DNA quantification (IU/mL × 10) 0.23 ± 0.12 0.15 ± 0.08 4.308 0.001

HBsAg (S/CO) 13.92 ± 5.24 12.34 ± 4.56 1.928 0.055

HBeAg (S/CO) 9.45 ± 3.65 8.25 ± 3.45 1.925 0.058

PT (seconds) 13.27 ± 3.45 12.34 ± 2.56 1.660 0.102

INR 1.17 ± 0.23 1.12 ± 0.15 1.395 0.168

Shannon-Wiener index 3.22 ± 0.67 3.55 ± 0.56 3.225 0.002

Simpson index 0.43 ± 0.13 0.35 ± 0.12 3.832 0.001

Chao1 index 140.56 ± 25.34 150.67 ± 30.65 1.987 0.048

ACE index 146.45 ± 30.56 160.78 ± 35.67 2.405 0.017

Relative abundance of Chlamydoma 39.56 ± 10.23 35.45 ± 8.34 2.690 0.008

Relative abundance of Bacteroides 35.34 ± 8.56 40.67 ± 10.34 3.101 0.002

PCA clustering 

separation

Clear 30 60 5.631 0.018

Not obvious 15 70
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TABLE 3 Logistic regression analysis of risk factors for the effect of antiviral therapy.

Project B S.E. Wald p OR 95% CI

ALT 0.024 0.012 3.782 0.052 1.024 1.000–1.050

AST 0.051 0.018 8.036 0.005 1.052 1.016–1.090

Hepatitis B virus DNA quantification 10.103 2.542 15.799 0.001 24414.630 167.5–35,578

Shannon-Wiener index −1.103 0.404 7.461 0.006 0.332 0.150–0.732

Simpson index 4.126 1.984 4.325 0.038 61.913 1.268–3022.869

Chao1 index −0.011 0.009 1.424 0.233 0.989 0.971–1.007

ACE index −0.013 0.007 3.192 0.074 0.987 0.973–1.001

Relative abundance of Chlamydoma 0.056 0.028 3.895 0.048 1.058 1.000–1.118

Relative abundance of Bacteroides −0.058 0.024 5.895 0.015 0.944 0.901–0.989

PCA clustering separation 1.018 0.525 3.761 0.052 2.767 0.989–7.738

Constant −1.196 2.566 0.217 0.641 0.302

and the ROC curves are shown in Figure 3. While the nomogram 
demonstrated good discrimination (AUC >0.8) in both training and 
validation sets, the validation cohort was derived from the same 
single-center population, which may limit generalizability. Further 
multi-center studies with larger cohorts are needed to confirm the 
model’s robustness across diverse clinical settings.

3.6 Analysis of decision curve of 
nomogram prediction model for antiviral 
treatment effect

The decision curve showed that when the threshold probability 
was within the range of about 0.05–0.95, the nomogram model 

FIGURE 1

Nomogram of antiviral treatment effect prediction model. X1–X6 were: AST, hepatitis B virus DNA quantification, Shannon-Wiener index, Simpson 
index, relative abundance of Sclerotinia wall and relative abundance of Bacteroides immitis, respectively.
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constructed in this study would have more clinical benefits for 
predicting the prognosis of chemotherapy, as shown in Figure 4.

4 Discussion

Chronic hepatitis B treatment remains a major focus in clinical 
research. Although antiviral therapy is the key measure, the significant 
difference in the treatment effect has prompted researchers to explore 
more accurate prediction indicators and methods (14). In recent years, 
the correlation between intestinal flora and chronic hepatitis B has been 

gradually deepened, opening a new perspective for the diagnosis and 
treatment of diseases. In this study, we  successfully constructed a 
nomogram prediction model based on the clinical characteristics of 
patients with chronic hepatitis B and the distribution of intestinal flora. 
The model showed good prediction performance in both the training set 
and the verification set, and it had many important meanings and values.

From the perspective of clinical characteristics, we found that such 
indicators as AST and hepatitis B virus DNA quantification were 
independent risk factors for the failure of antiviral treatment. AST is a 
sensitive indicator of hepatocyte injury, and its elevated level reflects 
severe hepatic inflammatory activity, which may affect the effect of 

FIGURE 2

Calibration curve in the training set (A) and the verification set (B).

FIGURE 3

ROC curve in the training set (A) and the verification set (B).
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FIGURE 4

Decision curve in the training set (A) and the verification set (B).

antiviral therapy (15). Hepatitis B virus DNA quantification directly 
reflects the virus replication activity, and high viral load often means 
that the virus is difficult to be effectively inhibited, which is closely 
related to the ineffective treatment (16). These findings align with prior 
evidence, underscoring the critical role of closely monitoring liver 
function indicators and viral load in the treatment process of chronic 
hepatitis B, and providing a key basis for the adjustment of clinical 
treatment options. For example, patients with persistently high levels of 
hepatitis B virus DNA quantification and abnormally high AST may 
need to consider replacing more effective antiviral drugs or other 
treatment modalities in combination to increase the success rate of 
treatment. The distribution of intestinal flora also plays an important 
role in the prediction of the efficacy of antiviral treatment for chronic 
hepatitis B. The Shannon-Wiener index and Simpson index determined 
in this study reflected the diversity of intestinal flora, while the Chao1 
index and ACE index reflected the richness, as well as the relative 
abundance of Firmicutes and Bacteroides were related to the treatment 
effect. Although our study identified associations between intestinal 
flora (e.g., Firmicutes/Bacteroides ratio) and treatment response, the 
observational design precludes causal inferences. Mechanistic studies 
are warranted to explore whether microbiota alterations directly 
influence antiviral efficacy or merely reflect disease severity. Patients 
with chronic hepatitis B have an imbalanced intestinal flora, with 
decreased diversity and abundance, and an imbalanced ratio of 
beneficial to harmful bacteria. For example, the increase in the relative 
abundance of Firmicutes and the decrease in the relative abundance of 
Bacteroides may interfere with the normal process of antiviral therapy 
by affecting the intestinal barrier function, immune regulation, and 
interaction with hepatitis B virus (17). The intestinal barrier is damaged 
due to the imbalance of intestinal flora, and the bacterial translocation 
causes the aggravation of liver inflammatory reaction, leaving the liver 
in a state of continuous injury, which is not conducive to the effect of 
antiviral therapy. At the same time, abnormal changes in the metabolites 
of the intestinal flora can regulate the immune microenvironment of the 
liver and inhibit the effective antiviral immune response of the body 

(18). This suggests that besides the treatment for the virus itself, the 
regulation of intestinal flora may become a new adjuvant treatment 
strategy in the treatment of chronic hepatitis B. In the future, the 
feasibility of improving the intestinal flora and thus the antiviral 
treatment effect by means of probiotics, prebiotics or fecal bacteria 
transplantation will be further explored.

The nomogram prediction model developed in this study 
integrated clinical characteristics and multidimensional intestinal flora 
data, demonstrating significant advantages over single-index 
predictions. Its visual characteristics enable clinicians to more 
intuitively and quickly accurately predict the effect of antiviral 
treatment according to the indicators of patients, which is conducive 
to the development of personalized treatment. For example, for 
patients with poor therapeutic prediction, tighter monitoring plans can 
be planned in advance, therapeutic drugs can be adjusted, or other 
treatment measures can be  combined, so as to avoid unnecessary 
treatment delay and resource waste. For patients with good predictive 
therapeutic effects, the follow-up procedure can be  appropriately 
simplified to reduce the economic and psychological burden on 
patients. To address potential concerns regarding the representativeness 
of our sample, we expanded our baseline comparisons beyond the 
initially reported parameters. The inclusion of additional variables, 
such as lifestyle factors (e.g., smoking, alcohol consumption) and 
detailed medication histories, further validated the similarity between 
the training and validation sets. This comprehensive approach 
strengthens the reliability of our nomogram model and its applicability 
to diverse clinical settings. While this study provides valuable insights, 
several limitations should be acknowledged. First, as a single-center 
study, the generalizability of our findings may be limited. Although 
we rigorously controlled for confounding factors and ensured internal 
validity through randomized training/validation sets, external 
validation in multi-center cohorts with diverse populations is necessary 
to confirm the model’s broader applicability. Second, while our 
references cover key aspects of CHB and gut microbiota, future studies 
could benefit from citing more high-impact journals to strengthen 
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theoretical foundations. Lastly, although we employed standardized 
protocols for microbiota analysis, functional metagenomics or 
metabolomic profiling could provide deeper mechanistic insights in 
future research. Third, while we  incorporated both clinical and 
microbial variables, the predictive performance might be improved by 
including serial measurements of HBV DNA and liver enzymes during 
treatment. Fourth, our symptom-based effectiveness assessment could 
be  strengthened by adding quantitative measures like the Chronic 
Liver Disease Questionnaire (CLDQ) to standardize symptom 
reporting. Finally, the observational nature of our microbiota data 
cannot establish whether microbiome alterations are drivers or 
consequences of treatment outcomes. Second, although the commonly 
used 16S rRNA gene sequencing technology is adopted for the 
detection of intestinal flora, it may not fully and accurately reflect the 
functional status of intestinal flora and its complex interaction with the 
host (19). Future studies may consider the combination of 
metagenomics, metabolomics and other multi-omics technologies to 
further explore the mechanism of intestinal flora in the antiviral 
treatment of chronic hepatitis B and further optimize the prediction 
model. While our study identified significant associations between 
specific microbiota features (e.g., Shannon-Wiener index, Firmicutes/
Bacteroides ratio) and treatment outcomes, we acknowledge that the 
causal relationships between gut microbiome composition and 
antiviral response remain to be fully elucidated (20). These findings 
should be interpreted as preliminary evidence requiring validation 
through mechanistic studies. Future research combining metagenomic 
sequencing with metabolomic profiling may help clarify whether these 
microbial signatures play active roles in modulating treatment response 
or simply reflect underlying host-pathogen interactions. In addition, 
in this study, the antiviral effect of nucleoside (acid) analogs was only 
predicted, and the applicability of other antiviral drugs or combination 
therapy was not clear, which needs further research and development.

In summary, the nomogram prediction model constructed in this 
study provides a new and effective tool for predicting the effect of 
antiviral treatment for chronic hepatitis B and powerful support for 
clinical personalized treatment. However, it still needs further 
in-depth study and improvement in many aspects to better serve the 
clinical treatment and management of patients with chronic hepatitis 
B and promote the development of precision medical treatment of 
chronic hepatitis B.
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