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Background: Postoperative acute kidney injury (PO-AKI) remains common after

surgery. Although risk prediction models for PO-AKI exist, it is still unknown

which intraoperative regime in terms of fluid and norepinephrine administration

is beneficial for a specific patient. We thus aim to investigate the potential

of uplift modeling—a framework combining causal inference and machine

learning—in identifying patients for which certain fluid and norepinephrine

regimes result in a PO-AKI-free recovery.

Methods: Data from a prospectively maintained cystectomy database at a single

tertiary center (N = 1,482, period 2000–2020) were used. Total intraoperative

fluid balance (TIFB) and norepinephrine (NE) administration were dichotomized

into a high TIFB/low NE and a low TIFB/high NE regime. Primary outcome

was PO-AKI. Confounding was addressed with inverse probability of treatment

weighting. Uplift was defined as the difference in likelihood of no PO-AKI with

a high TIFB/low NE versus low TIFB/high NE treatment regime. We modeled

uplift using logistic regression and random forests as outcome models. Model

performance was evaluated with the area under the Qini curve (AUQC).

Results: The uplift models demonstrated a higher ability (AUQC: 0.30, 95%-CI:

0.26–0.30) compared to a random sorting strategy (0.06, 95%-CI: 0.02–0.06)

or a traditional prediction model (AUQC: 0.06, 95%-CI: 0.03–0.06) for PO-AKI

in sorting patients according to the expected treatment benefit from either a

high TIFB / low NE or a low TIFB / high NE regime. The performance of the uplift

models is robust with respect to the fluid-NE dichotomization.

Conclusion: Uplift modeling provides a clinically relevant step toward

personalized medicine by considering the incremental benefit of an alternative

treatment versus a control treatment on a patient’s outcome, thus moving

from a predictive toward a prescriptive risk assessment. We demonstrated the

overall higher clinical utility of an uplift modeling approach compared to a
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prediction model of baseline PO-AKI risk in sorting patients according to the

expected treatment benefit from either a high total intraoperative fluid balance

/ low norepinephrine regime or a low total intraoperative fluid balance / high

norepinephrine regime with respect to postoperative acute kidney injury.

KEYWORDS

acute kidney injury, hemodynamic management, cystectomy, urinary diversion,
machine learning, prediction modeling, heterogeneous treatment effects

1 Introduction

Despite advances in perioperative safety over the past decades,
postoperative acute kidney injury (PO-AKI) remains a common
complication after major surgery (1, 2). A recent multinational
study highlighted that about one in five patients develops PO-
AKI (3). Importantly, PO-AKI is associated with worse patient
outcomes, e.g., with longer hospital stay and higher mortality
(4, 5). Thus, identifying patients at high risk of PO-AKI and
diagnosing it early remain major goals for a reduction of the
perioperative burden of AKI (6). Clinical prediction models, risk
scores and nomograms for the likelihood of PO-AKI exist and
provide valuable information for risk stratification (7–9). Despite
their clinical utility, these risk prediction frameworks do not allow
to provide decision support for the clinician in terms of suitable
treatment options for individual patients. Such causal decision-
support would require a consideration of the causal relationships
underlying treatment options, risk factors and the outcome of
interest (10).

To achieve this goal, however, one needs to move from a
purely predictive risk approach toward a prescriptive approach that
puts the causal effect of a treatment on the outcome of interest
and the heterogeneity of patients’ responses to treatments center
stage (11–13). The term prescriptive refers to the notion that one
actively considers the causal effects of different treatment options
on a patient’s outcome. In this context, the investigation and
modeling of heterogeneity of treatment effects (HTEs) using data
from randomized controlled trials (RCTs) has gained traction over
the past years to overcome the limitations of summary RCTs results
and subgroup analyses and to provide clinically relevant decision
support for patient-centered care (14, 15). The aim of predictive
HTE is to develop models that can be used to predict which of two
or more treatments will be best for individual patients when taking
into account multiple variables influencing the treatments’ benefits
or harms (16).

Initially coined in marketing research—where the term uplift
refers to the response rate difference between two randomized
groups—uplift modeling follows the spirit of predictive HTE and
focuses on the incremental effect of a treatment with respect to
a control treatment on the unit of interest (17). In the clinical
domain and in contrast to prognostic targeting of patients—where
the focus traditionally lies on patients with high baseline risks—
uplift modeling attempts to identify those patients who benefit from
a particular drug or intervention (18, 19).

Therefore, we aim to build and evaluate multiple uplift
models to identify patients who would benefit from a particular

perioperative fluid-norepinephrine regime. A short introduction
into uplift modeling is provided and differences in model
evaluation between predictive and prescriptive modeling are
illustrated. We describe how the traditional uplift approach based
on data from a randomized controlled trial was adapted to an
observational dataset. We conclude by highlighting the clinical
importance and applicability of such an uplift modeling approach
in clinical practice.

2 Uplift modeling

2.1 Definition

In essence, uplift modeling features methods and notions both
from Causal Inference and Machine Learning as it comprises
the potential outcome framework as well as outcome prediction
methods (20, 21). The term uplift is defined as the likelihood
of a beneficial outcome with an alternative (or new) treatment
with respect to the control (or standard) treatment. The objective
of uplift modeling is to derive a sorting mechanism—or patient
identification model—that is able to sort patients according to the
expected benefit from the alternative treatment with respect to the
control (or standard) treatment. Such sorting mechanisms—and
the associated subgroups resulting from the sorting—are highly
relevant for clinical practice, e.g., in cases where the costs of a new,
superior drug or intervention are high or resources are limited
(12, 22).

We start by first considering the uplift modeling framework for
the case of a RCT. Subsequently, we illustrate how we extended the
RCT-based uplift framework to accommodate observational study
data.

2.2 Randomized controlled trial data

The case of a RCT is the standard case for the computation of
individualized treatment effects, which are at the center of uplift
modeling (21). Figure 1 illustrates the concept of uplift modeling
when data from a RCT is used—note that in contrast to the
standard convention often seen in the risk prediction literature,
the outcome is coded in such a way that a beneficial outcome is
coded as 1 and the adverse outcome as 0 (Figure 1A). The patients
participating in the trial can be classified according to four response
types: Sure Things, Lost Causes, Do-not-disturbs and Persuadables
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FIGURE 1

Illustration of the concept of uplift modeling for sorting patients according to expected treatment benefit. (A) Outcomes of a two-arm randomized
controlled trial with a control (C) and treatment group (T) and a binary outcome Y. Note that the outcome with label “1” refers to the beneficial
outcome. (B) Classification of possible response types into four categories: Sure things, Lost causes, Do-not-disturbs and Persuadables.
(C) Non-observable potential outcomes associated with the four response types. (D) Definition of the term upflift which refers to the incremental
treatment effect of the alternative treatment (denoted here as treatment T) with respect to the standard treatment (denoted here as control
treatment C) for a patient i with covariates xi. (E) Illustration of the so-called two-model approach to calculate the uplift for each patient. The
approach is based on fitting two prediction models (e.g., based on regression or machine learning methods) separately for the control and treatment
group. (F) Model evaluation of an uplift model based on sorting the predicted uplift values in a descending fashion. After the sorting, the relative
incremental uplift is calculated for different proportions of the population, resulting in the so-called Qini curve from which the area under the Qini
curve can be calculated (AUQC; see Materials and methods).

(Figure 1B). In epidemiology, these four types are also referred
to as Doomed, Saved, Harmed and Immune (i.e., when an adverse
outcome is considered) (11). For example, a patient labeled as Sure
Thing would experience a beneficial outcome irrespective of the
treatment. The clinically relevant concept of response types is based
on different values of the potential outcomes (Figure 1C). The
response types are not observable as only one of the two potential
outcomes can be observed for each patient, reflecting the so-called
fundamental problem of causal inference (23).

Figure 1D illustrates the definition of the term upflift: uplift
refers to the (unobserved) incremental treatment effect of the

alternative treatment (denoted here as treatment T) with respect
to the standard treatment (denoted here as control treatment C)
for a patient i with covariates xi (e.g., baseline characteristics
and comorbidities). A positive uplift value suggests a beneficial
treatment effect (with respect to the control treatment). In
contrast, a negative uplift value suggests that the patient benefits
from the control treatment. Uplift thus reflects the estimate of
Conditional Average Treatment Effect (CATE). The so-called two-
model approach to calculate the uplift for each patient is shown in
Figure 1E: the approach is based on fitting two outcome prediction
models (e.g., based on regression or machine learning methods)
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separately for the control and treatment group (22, 24). There are
other statistical approaches to uplift model building; however, we
focus here only on the two-model approach for simplicity and
we refer the reader to the literature for more advanced uplift
frameworks (13, 19).

Note that the four response types (Sure Things, Lost Causes, Do-
not-disturbs, and Persuadables) can be derived by dichotomizing
the probabilities of the two prediction models on which the two-
way uplift model is based (Figure 1). For example, setting the
likelihood of a beneficial outcome with the alternative treatment
to 1 if the likelihood is above 0.5 and similarly for the control
treatment, the response type for a patient can be derived. A detailed
example is illustrated in the Supplementary material. The focus in
the remaining part of the study, however, lies in continuous uplift
values as the full probabilistic information from the uplift model is
lost when only the four response types are investigated.

2.3 Uplift model evaluation

The evaluation of an uplift model deserves special
consideration. In traditional response modeling, the probabilistic
predictions of a model can be compared to the actual observations
of an independent cohort, for example, within an internal cross-
validation framework or using an external validation cohort. Since
the uplift is not observable, traditional model evaluation metrics
are not feasible as there is no ground truth to which the uplift
predictions can be compared to (25). The solution is to resort to
aggregated (or group-level) metrics for uplift model evaluation as
illustrated in Figure 1F. First, patients are sorted in a descending
fashion according to the predicted uplift. After the sorting, the
relative incremental uplift is calculated for different (cumulative)
proportions of the population, resulting in the so-called Qini curve.
For a specific quantile p with respect to the sorted uplifts, the Qini
curve as a function of the (sorted) quantiles—denoted as q(p)—is
defined as (20, 26):

q
(
p
)
= YT

p −
YC
p N

T
p

NC
p

,

where YT
p refers to the sum of the beneficial outcomes in patients

in the treatment group (whose predicted uplift is part of the
specific quantile p), YC

p refers to the corresponding sum of the
beneficial outcomes in patients in the control group and NT

p and
NC
p refer to the number of patients in the treatment and control

group with respect to the specific quantile. The resulting Qini
curve and its associated area under the Qini curve (AUQC) are
illustrated in Figure 1F. Similar to the area under the receiver
operating characteristic curve (AUROC), the AUQC provides a
useful evaluation metric to compare different uplift models.

As the overall objective of uplift modeling is patient
identification by sorting the patients according to the expected
treatment benefit, there are two benchmark scenarios to which the
AUQC of a particular uplift model can be compared to. First, the
AUQC can be calculated for the case of random patient sorting.
An uplift model with actual clinical utility should feature an AUQC
larger than the AUQC derived from a random sorting strategy. The
second benchmark scenario refers to an idealized sorting strategy,
in which it is assumed that all those patients with a beneficial

outcome constitute the Persuadable response type and that these
patients are identified first (Figure 1F). Subsequently, this idealized
sorting mechanism would then identify subsequently the Sure
Things and Lost Causes, and finally the Do-not-disturbs. Although
idealized, this benchmark scenario gives an indication of how large
the AUQC for an actual uplift case could be—similar to the upper
boundary of 1 for the AUROC.

The so-called uplift by decile plot constitutes an additional
model evaluation tool (20). First, the uplift is predicted for each
patient. Second and for the control and treatment group separately,
patients are sorted with respect to the predicted uplift and grouped
according to deciles. Third, the average uplift is computed in each
decile and the difference between the control and treatment group
is calculated for each decile. Plotting the differences with respect to
the decile allows to examine if the model predicts a high uplift in the
top decile and a low uplift in the bottom deciles. In the ideal case,
the uplift by decile plot shows a monotonically decreasing curve
from the top decile (0–10%) to the bottom decile (90–100%) with
respect to predicted uplift (27).

2.4 Observational data

In observational data, the control and treatment group are
(potentially) non-exchangeable: that is, the potential outcomes
are not independent of the group assignment and the unadjusted
group difference in outcomes are potentially biased due to selection
bias and associated heterogeneous treatment effects (28, 29). In
this case, the uplift modeling framework needs to be extended to
accommodate confounding, which we illustrate for our case of
hemodynamic management presented in Figure 2. As our exposure
(hemodynamic management) comprises two joint (numerical)
treatment choices—the total intraoperative fluid balance and
norepinephrine administration—we first dichotomized the
treatment into a control and a treatment group to mimic the
two-arm design of a randomized controlled trial (Figure 2A;
see Materials and methods below). Next, the causal effect of the
dichotomized hemodynamic treatment (T) on PO-AKI (Y) is
illustrated in a causal graph and is identified by means of the
so-called back-door criterion (Figure 2B) (30).

The back-door criterion allows to derive the variable set
required to obtain an unbiased estimate of the causal treatment
effect. Based upon this variable set, inverse probability of treatment
weighting (IPTW) with associated weights allows to derive a pseudo
population in which the set of confounding variables are balanced
(Figure 2C). The size of the pseudo population is twice the size
of the original cohort and random samples from the pseudo
population can be drawn. Based on the sampled pseudo population,
outcome models for the control and treatment group are computed
to build an uplift model (Figure 2D).

3 Materials and methods

3.1 Cohort and ethics

Data from a prospectively maintained database of cystectomy
procedures at a single tertiary center was used. Patients and
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FIGURE 2

Illustration of deriving an uplift model relating hemodynamic management and the primary outcome (postoperative acute kidney injury) for an
observational dataset. (A) Dichotomization of the two continuous treatment variables [total intraopoerative fluid balance (TIFB) and norepinephrine
administration (NE)] into a binary treatment variable referring to the case of a high TIFB and low NE (referred to as treatment, T = 1) and low TIFB
with high NE (referred to as control, T = 0). (B) The causal effect of the dichotomized hemodynamic treatment (T) on postoperative acute kidney
injury (Y) is based on a causal graph and is identified by means of back-door criterion (30). (C) Using inverse probability of treatment weighting
(IPTW) and associated weights, a pseudo population is sampled in which the set of confounding variables identified by the backdoor-criterion are
balanced. (D) Based on the sampled pseudo population, outcome models for the control and treatment group are computed to build an uplift
model (see Figure 1 and Supplementary Figure SM1).

procedures from 1 January 2000 to 30 June 2020 were extracted
from the database and completed from the patients’ paper charts
and anesthetic protocols. Ethical approval was provided by the
Ethical Committee of Canton Bern, Switzerland (KEKBE 2016-
00660, Chairperson Professor C. Seiler) on 2 June 2016. The need
for informed consent was waived.

3.2 Surgical technique, perioperative
management, and outcomes

Over the past two decades, open cystectomy procedures with
urinary diversions have been performed following a standardized
surgical technique (31, 32). Induction of anesthesia—consisting of
a fentanyl 2 µg·kg−1 bolus, propofol 2 mg·kg−1 and rocuronium
0.6–0.9 mg·kg−1 administration—was performed after insertion
of an epidural catheter at the low thoracic level. Maintenance of
anesthesia was performed with halogenics.

With respect to the fluids, lactated Ringer’s solution
combined with 4% gelatin or 6% hydroxyethyl starch 130/0.4 was
administered before the year 2007. Afterward, a protocol-driven
restrictive fluid administration was aimed, using a pre-emptive
continuous administration of norepinephrine (NE) (around
1–2 µg·kg−1

·h−1) combined with a fluid maintenance rate of
approximately 1–3 mL·kg−1

·h−1 of lactated Ringer’s solution
beginning after initiation of the epidural segmental blockade
and anesthesia induction. Blood loss was primarily replaced

with lactated Ringer’s solution. Additional fluid administration
(albumin, lactated Ringer’s) could be administered at the discretion
of the anesthesiologist in charge in case of severe hemorrhage
(>20% of the estimated blood volume). Packed red blood cells
(PRBCs) were transfused if hemoglobin values decreased below
80 g·L−1. Assessment of urinary output was not feasible during
surgery because of external derivation of the ureter. Postoperative
intravenous hydration consisted of 1,000 mL of crystalloids
and 500 mL of glucose 5% daily until resumption of normal
food intake (33). In case of hypotension, an additional bolus
of 250–500 mL of lactated Ringer’s solution was administered.
Immediately after surgery, the patients were offered oral clear
fluids. A peroral liquid diet and active mobilization were started on
postoperative day (POD) 1.

The primary endpoint was the incidence of PO-AKI defined
according to the Kidney Disease: Improving Global Outcomes
(KDIGO) classification based on changes in plasma creatinine
levels (34).

3.3 Treatment dichotomization, inverse
probability of treatment weighting and
causal inference

To account for the observed inverse relationship between
total intraoperative fluid balance (TIFB, defined as the amount
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of fluid administered (IN) minus blood loss (OUT)) and NE
administration, the joint TIFB-NE regime was dichotomized
according to a line with a fixed slope (0.02 µg·kg−1 min−1

per mL·kg−1
·h−1) and varying offsets in NE administration

(ranging from −0.12 to 0.08 µg·kg−1
·min−1 by increments of

0.04 µg·kg−1
·min−1) as shown in Figure 3A. The validity of

the dichotomization approach was examined by means of the
overlap between the propensity scores (Figure 3B) for different
dichotomization choices. A logistic regression was used as method
for propensity score estimation. Based on the derived propensity
scores, we consider the offset choice of −0.04 µg·kg−1

·min−1

in NE administration as the primary dichotomization choice—
other dichotomization choices are only considered for sensitivity
analyses. The results of these sensitivity analyses are provided in
Supplementary material.

The set of conditioning variables for the IPTW were based on
a clinically derived causal directed acyclic graph and application
of the backdoor criterion (Figure 3C). Note that the variable year
accounts for a possible causal effect of the treatment changes
in 2007 on both the fluid-norepinephrine treatment and the
primary outcome. Assuming no unmeasured confounding, the
positivity of treatment assignment (Figure 3B), exchangeability by
means of the backdoor criterion (Figure 3C) and consistency (that
the potential outcome for a given dichotomized hemodynamic
treatment corresponds to the observed outcome), the causal of
effect of the dichotomized fluid-norepinephrine treatment on PO-
AKI can be identified.

3.4 Uplift and prediction modeling

Based on the IPTW-derived weights, a pseudo-population can
be calculated in which the confounding variables are balanced:
we achieve so by multiplying the IPTW-weights by a factor of
10,000 and add each patient multiple times according to the 10,000-
multiplied weight to a super population. This step is required as
the weights are not integers but real numbers. From this super
population, a sample can be randomly drawn for the treatment and
control group separately—each the size of the original cohort such
that the sampled confounder-balanced pseudo-population has the
size twice of the original cohort.

An uplift model based on the two-model approach is
computed using the sampled pseudo population. Note that
for the uplift models, all available predictors can be used
(Supplementary Table SM1)—not only the predictors relevant
for causal inference. With respect to model formulation, we
chose logistic regression and a random forest as underlying
statistical models. As benchmark, we further built traditional
prediction models for PO-AKI and examined their utility in sorting
patients according to expected treatment benefits. The prediction
models were based on a logistic regression model and a random
forest and included all available variables (Table 1). Given the
observational study data, we emphasize that the prediction models
are based on the random samples from the IPTW-derived pseudo-
population to allow a comparison between the two modeling
frameworks.

The models’ clinical utility for patient selection are examined
by means of uplift by decile plot and the area under the Qini curve.

The model evaluation is based on a random cross-validation in
which 60% of the IPTW-pseudo population are used for model
building and the remaining 40% for model evaluation. Overall,
500 bootstrap samples of the original data were taken. A super
population for each bootstrap sample was derived, from which
five random samples were taken. For each of those samples,
two random cross-validation samples were drawn to build and
evaluate the uplift and prediction models. This large, nested
bootstrap framework results in a robust, computationally intensive
model evaluation and model metrics are illustrated with mean
and 95%-CI. The modeling framework is illustrated in detail in
Supplementary Figure SM1.

3.5 Summary statistics, missing values,
and statistical software

Categorical variables were summarized with counts and
frequencies. Numerical variables were summarized with mean
and standard deviation in case of normally distributed variables
and with median and interquartile range (IQR) otherwise. The
analysis was based on a complete-case analysis (N = 1,482 from
N = 1,489).

All computations were performed with R versions 4.2.1 (35).
The selection of confounding variables by means of the back-
door criterion was performed with the ggdag and dagitty packages
(36, 37). The area under the Qini curve was computed with the
tools4uplift package (38). The random forest was calculated with
the randomForest package (39).

4 Results

4.1 Cohort description

Baseline characteristics and details regarding drug
administration, procedure and hemodynamic management
are shown in Table 1. Median age was 69 years (IQR: 61–76 years).
Most patients had ASA physical status 2 and 3 and the median
Charlson Comorbidity Index was 4. Stage 2 chronic kidney disease
(CKD) was present in 41%. Median TIFB was 2.9 mL·kg−1

·h−1

(IQR: 1.6–4.9 mL·kg−1
·h−1). Median NE administration was

0.02 µg·kg−1
·min−1 (IQR: 0–0.05 µg·kg−1

·min−1). Incidence of
PO-AKI was 21.7% (95%-CI: 19.6–23.8%).

4.2 Average treatment effect

For our primary dichotomization choice, 835 patients were
allocated in the control group and 647 patients in the treatment
group (Table 2). The incidence of PO-AKI was 25.4% (control
group) and 16.8% (treatment group), respectively. Based on
IPTW, we derive an ATE of 12.4% (95%-CI: 5.2–19.4%) in
favor of a high TIFB / low NE treatment. However, the
ATE is sensitive to the choice of hemodynamic treatment
dichotomization and the mean estimate can vary from 2.5 to 12.4%
(Supplementary material SM2).
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FIGURE 3

(A) Observed and dichotomized hemodynamic treatment in the cohort of this study. Different colors denote different thresholds for treatment
dichotomization with a fixed slope (0.02 µg/kg/min per mL/kg/h) and varying offset in norepinephrine administration (ranging from -0.12 to 0.08
µg/kg/min by increments of 0.04 µg/kg/min). (B) Propensity scores for different treatment dichotomization choices to assess overlap between
patients in the control and treatment group according to the hemodynamic treatment dichotomization. (C) Clinically derived causal graph relating
the dichotomized fluid-norepinephrine to postoperative acute kidney injury (refer to Figure 2B). Colors denote the set of adjustment variables
identified by the backdoor criterion.

4.3 Identification of patients with
beneficial treatment effects

The discrimination performances of the prediction models

involved in the identification of patients with a beneficial

hemodynamic treatment effect (a high TIFB/low NE regime) on

PO-AKI are shown in Table 2C. The random forest prediction

model demonstrates a significantly higher AUROC than the logistic
regression model, both in the traditional prediction case (AUROC
of 0.98, 95%-CI: 0.97–0.99, versus 0.70, 95%-CI: 0.63–0.77) and
the uplift modeling case. For example, the outcome prediction
models for the control group in the two-model uplift model feature
an AUROC of 0.62 (95%-CI: 0.52–0.71) and 0.85 (95%-CI: 0.79–
0.89) for the logistic regression and the random forest model,
respectively. Supplementary Table SM3 illustrates the average

Frontiers in Medicine 07 frontiersin.org

https://doi.org/10.3389/fmed.2025.1542797
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1542797 June 7, 2025 Time: 16:55 # 8

Huber et al. 10.3389/fmed.2025.1542797

TABLE 1 Cohort characteristics stratified according to postoperative
acute kidney injury (PO-AKI; primary outcome).

PO-AKI No PO-AKI

N = 321
(21.7%)

N = 1,161
(78.3%)

Demographics and comorbidities

Age (years) 69.1 [63.5;76.0] 68.4 [60.3;75.6]

Body Mass Index (kg/m2) 27.1 [24.3;30.4] 25.2 [22.6;28.4]

ASA physical status

1 2 (0.6%) 29 (2.5%)

2 131 (40.8%) 601 (51.8%)

3 176 (54.8%) 506 (43.6%)

4 12 (3.8%) 25 (2.1%)

Charlson Comorbidity Index 4 [2;6] 4 [0;5]

Chronic kidney disease

Stage 1 80 (24.9%) 341 (29.4%)

Stage 2 136 (42.4%) 472 (40.7%)

Stage 3 91 (28.3%) 294 (25.3%)

Stage 4 11 (3.4%) 42 (3.6%)

Stage 5 3 (0.93%) 12 (1.03%)

COPD (Yes) 67 (20.9%) 231 (19.9%)

Heart disease and failure (Yes): 125 (38.9%) 338 (29.1%)

Arterial hypertension (Yes) 206 (64.2%) 550 (47.4%)

Hydronephrosis (Yes) 70 (21.8%) 247 (21.3%)

Neoadjuvant chemotherapy (Yes) 58 (18.1%) 172 (14.8%)

Drugs

Oral anticoagulants (Yes) 17 (5.30%) 43 (3.70%)

Statins (Yes) 100 (31.2%) 246 (21.2%)

Antihypertensives (Yes) 192 (59.8%) 467 (40.2%)

Beta-blockers (Yes) 89 (27.7%) 218 (18.8%)

Platelet aggregation inhibitor:

None 258 (80.4%) 1016 (87.5%)

Mono or dual 63 (19.6%) 145 (12.5%)

Procedure

Year of procedure 2012
[2007;2016]

2010
[2006;2015]

Orthopic ileal bladder substitute or
continent ileal reservoir (Yes)

157 (48.9%) 593 (51.1%)

Ileal conduit, ureterosigmoidostomy,
ureterocutaneostomy (Yes)

166 (51.7%) 575 (49.5%)

Preoperative nephrostomy or DJ
stent (Yes)

47 (14.6%) 163 (14.0%)

Hemodynamic management

Intraoperative fluid balance (IN
minus OUT; mL/kg/h)

2.4 [1.2;4.1] 3.1 [1.7;5.2]

Norepinephrine (µg/kg/min) 0.03 [0.00;0.05] 0.02 [0.00;0.05]

Further details regarding the cohort are provided in the primary publications.

distribution of the four response types predicted by the uplift
models. Around 80% of the patients are predicted to be of the Sure
Thing type. Around 10–15% are predicted to be of the Persuadable
type, that is, benefitting from a high TIFB and low NE treatment.

TABLE 2 Estimates of the average treatment effect and performance
metrics of traditional prediction models and uplift models.

(A) Cohort and treatment

Control
group

Treatment
group

Number of patients N = 835 N = 647

Postoperative Acute Kidney Injury
(PO-AKI)

212 (25.4%) 109 (16.8%)

Total intraoperative fluid balance
(mL/kg/h)

1.74 [1.04;2.55] 5.19 [3.93;6.69]

Norepinephrine (µg/kg/min) 0.04 [0.03;0.06] 0.00 [0.00;0.01]

(B) Causal inference

Average treatment effect
(treatment—control)

12.4% (95%-CI: 5.2–19.4%)

(C) Discrimination performance (AUROC)

Prediction models

Logistic regression 0.70 (95%-CI: 0.63–0.77)

Random forest 0.98 (95%-CI: 0.97–0.99)

Uplift models Control group Treatment
group

Logistic regression 0.62 (95%-CI:
0.52–0.71)

0.63 (95%-CI:
0.55–0.71)

Random forest 0.85 (95%-CI:
0.79–0.89)

0.82 (95%-CI:
0.77–0.86)

(D) Uplift modeling (AUQC)

Benchmark

Random patient allocation 0.06 (95%-CI: 0.02–0.06)

Optimal patient allocation 0.48 (95%-CI: 0.43–0.48)

Prediction models

Logistic regression 0.06 (95%-CI: 0.03–0.06)

Random forest 0.06 (95%-CI: 0.03–0.06)

Uplift models

Logistic regression 0.13 (95%-CI: 0.08–0.13)

Random forest 0.30 (95%-CI: 0.26–0.30)

(A) Description of the cohort, hemodynamic treatment and incidence of postoperative
acute kidney injury (PO-AKI) when hemodynamic treatment is dichotomized (see Materials
and methods: shown here is the case for an offset with respect to norepinephrine of −0.4
µg/kg/min.). (B) Discrimination performance of both standard prediction models and uplift
models with respect to the primary outcome PO-AKI. Note that the uplift models feature a
prediction model separately for the control and the treatment group (Figure 1). (C) Estimate
of the average treatment effect of the dichotomized hemodynamic treatment on PO-AKI
based on inverse probability of treatment weighting (IPTW; see Materials and methods).
(D) Performance of different model types (e.g., prediction models and uplift models) in
sorting patients according to treatment benefit as measured by the area under the Qini curve
(AUQC; see Materials and methods). The AUQC is also shown for two benchmark scenarios
where patients are sorted randomly and in a theoretical, optimal fashion (see Materials and
methods). AUROC, Area under the receiver operating characteristic curve; AUQC, Area
under the Qini curve (see Materials and methods).

There are only few patients (∼1%) predicted to suffer from PO-AKI
independent of treatment choice (Lost Causes).

The uplift by decile plots for the different models are shown
in Figure 4A. In contrast to the traditional prediction models, the
uplift models demonstrate ability in sorting the patients according
the expected treatment benefit as they demonstrate a monotonically
decreasing uplift from the decile with highest predicted uplift
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(0–10%, left part of each uplift by decile panel) to the decile
with lowest predicted uplift (90–100%, right part of each uplift
by decile panel). The uplift models feature higher AUQCs than
the traditional prediction models (Table 2D): the random forest
uplift model features an AUQC of 0.30 (95%-CI: 0.26–0.30), thus
providing a clinical benefit when compared to the random sorting
strategy with an AUQC of 0.06 (95%-CI: 0.02–0.06). The AUQC of
the traditional prediction models is close the AUQC of the random
sorting strategy.

The corresponding Qini curves are illustrated in Figure 4B
and reveal an interesting pattern with respect of the relative
performance of traditional prediction models and uplift models.
A prediction model for PO-AKI based on a random forest is able
to identify the top 15% patients of the underlying population with
the highest expected treatment benefit. In this case, the model
predicts the highest likelihood for a PO-AKI-free recovery for
patients in the treatment group and the Qini curve is identical to the
optimal Qini curve for these patients. However, the random forest
prediction model fails to sort the remaining patients according to
expected treatment benefit and the uplift models provide larger
clinical benefit. While the clinical benefit of the uplift models—in
particular when based on a random forest—is robust with respect to
the choice of fluid-norepinephrine dichotomization, the ability of
traditional prediction models in identifying patients with the largest
benefit strongly depends on the way patients are allocated to the
control and treatment group (Supplementary Figures SM3–SM7).

5 Discussion

In the search for new, personalized approaches to tailor
clinical decision-making and associated treatments closer to each
patient, the domain of individualized treatment effect modeling
(or uplift modeling) has gained increasing interest over the past
years, both in terms of theoretical developments and practical
implementations (11, 16, 40–44). While traditional prediction
models (or so-called response models) predict the probability (or
risk) of the outcome Y for each patient, uplift models compute
the incremental change in outcome of an alternative treatment
with respect to some control treatment (1Y/1T) for each unit
(25). Uplift modeling thus provides a clinically relevant addition
to traditional risk stratification by involving the potential impact
of actual treatment decisions on the outcome of an individual
patient—thus moving from predictive to so-called prescriptive
analytics (13). This prescriptive clinical reasoning involves the
consideration of causal inference notions, in particular the potential
outcome framework and heterogeneous treatment effects (11).

In this context, the Predictive Approaches to Treatment
effect Heterogeneity (PATH) Statement was recently published to
promote the conduct of, and provide guidance for the predictive
analyses of heterogeneity of treatment effects (HTE) in clinical
trials (45). In particular, the PATH statement introduces the notion
of predictive HTE. A recent article highlighted the common
objectives shared by HTE and uplift modeling (19). A systematic
benchmarking study recently suggested to use multiple methods
for estimating individualized treatment effects from both research
streams (46).

Here, we briefly introduced the key concepts of uplift modeling
with an emphasis on the evaluation of the uplift models by means

of the Qini curve and its associated AUQC. The AUQC provides
a valuable metric familiar to the AUROC in standard prediction
modeling for binary outcomes. Importantly, the AUQC provides
an intuitive benchmark scenario where patients are randomly
allocated to either the control or the alternative treatment of
interest. We note that traditional clinical prediction modeling
plays in integral part in the so-called two-way modeling approach
to uplift modeling (Figures 1, 2). In this approach, traditional
prediction models constitute the knots and bolts of an uplift
model. Table 1 demonstrates that the underlying prediction models
feature an adequate discriminatory performance for the application
considered here, in particular the models based on a random forest.

In this study, we presented the first application of uplift
modeling for a cohort of patients scheduled for cystectomies and
urinary diversions with PO-AKI as outcome. The model building
process involved several technical steps as the available data
derived from an observational study and not from a randomized
controlled trial (the usual standard for the computation of
individualized treatment effects) (21). In addition, we considered
a joint treatment of two continuous variables (TIFB and NE)
and performed a clinically comprehensible—yet still subjective—
treatment dichotomization.

A key result is that we found evidence of the uplift model’s
ability to sort patients according to the expected benefit from either
a high TIFB and low NE regime or vice versa. This finding derives
from the models AUQC values, which were significantly higher
than those derived from a random sorting strategy (Figure 4).
Our analysis further allowed us to compare traditional prediction
modeling approaches with the uplift framework. This comparison
is of clinical importance as one could also simply sort the
patients according to their baseline PO-AKI risk—irrespective of
consideration of possible hemodynamic treatment choices. In this
study, a random forest prediction model identified the 15% of
patients with the lowest PO-AKI risk: these patients were treated
with a high TIFB/Low NE regime and showed a PO-AKI free
recovery, thus following the optimal Qini curve. However, for the
remaining patients, the choice of treatment does matter—and for
these patients the uplift modeling framework is clinically more
useful for patient identification than the prediction model.

Of interest is the finding that the models based on a random
forest demonstrated higher prediction ability both in terms of
AUROC and AUQC, which could not be expected a priori given
the limited number of predictors and moderate sample size,
warranting further sensitivity analyses (47). Thus, conditional on
the cohort and modeling approaches of this study, the uplift
framework provides an overall higher clinical benefit in examining
optimal fluid-norepinephrine treatment choices for the entire
patient cohort than prediction models for baseline PO-AKI risk.

Despite the depth and variety of statistical methods involved in
building an uplift model from an observational dataset, the models
derived here have a strong applicability and potential in clinical
practice. For example, the uplift models’ capacity to guide fluid-
norepinephrine treatment allocation with respect to PO-AKI could
be validated in a prospective study. In addition, the output of an
uplift model can be interpreted in a straightforward fashion with
respect to the four response types. Positive uplift values close to
1 indicate that a patient is likely to be of the Persuadable type,
whereas an uplift values close to −1 designates a Do-not-disturb
type. However, there is ambiguity for uplift values close to zero
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FIGURE 4

Evaluation of outcome prediction models and uplift models with (A) decile plot (mean, 95% confidence interval and a locally estimated scatterplot
smoothing (LOESS) estimate of the relationship of uplift versus decile) and (B) area under the Qini curve (AUQC), where the solid line denotes the
mean value and the shading corresponding the 95% confidence interval derived from a large bootstrap sample (see Materials and methods and
Supplementary Figure SM1).

as these values can relate to both a Lost-cause and a Sure Thing
type of patient. We emphasize here again these response types are
unobservable and that group-level performance metrics such as the
AUQC are required to evaluate an uplift model.

5.1 Limitations

This study features inherent limitations. First, only data from a
single center was used and future multi-center studies are required
to examine the external validity and robustness of our findings.
Second, the uplift framework as implemented here features only
a simple, two-model approach. In the future, more complex

frameworks including Bayesian, Machine and Deep Learning
approaches would be possible (41, 48). Third, the causal inference
analysis (e.g., the causal graph) was based on available data and not
a pre-defined collection of variables specifically chosen for causal
analysis. Ideally, the causal graph with the application-relevant
variables should be clinically derived prior to the study. Thus,
future studies with broader population characteristics and different
types of intervention would define the clinical variables relevant
for causal inference by involving the subject-matter knowledge
of different clinical specialties. Fourth, the clinical utility of the
uplift models was examined by means of uplift by decile plots
and Qini curves. Future studies could employ more advanced
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metrics, e.g., with reduced variance (49). Fifth, the TIFB is the
sum of sequential decision making which likely results in time-
dependent treatment-confounder feedback. In these circumstances,
dedicated methods beyond the scope of the study are required (28).
Sixth, the uplift framework as featured in this study considers only
treatment benefits and does not incorporate possible treatment-
related harms, which could potentially alter the sorting of patients.
Finally, the uplift framework does not systematically incorporate
risk preferences expressed as probabilistic treatment thresholds
for clinical decision making such as featured in a decision curve
analysis (50).

6 Conclusion

Uplift modeling provides a clinically relevant step toward
personalized medicine by considering the incremental treatment
benefit of a specific patient, thus moving from a predictive
toward a prescriptive risk assessment. In this study, we applied
the uplift framework to an observational cohort of patients
scheduled for cystectomy and urinary diversion procedures and
demonstrated its clinical utility in sorting patients according
to the expected treatment benefit from either a high total
intraoperative fluid balance / low norepinephrine regime or
a low total intraoperative fluid balance / high norepinephrine
regime. The uplift modeling approach provided higher clinical
utility than a traditional prediction modeling framework in
examining the optimal hemodynamic treatment (combining fluid
and vasopressor) allocation with respect to a PO-AKI free recovery
in the overall cohort. However, the ability of the uplift models to
optimize hemodynamic treatment allocation choices needs to be
evaluated in future, prospective studies.
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