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Leg length discrepancy (LLD) refers to a condition where the lower limbs are of 
unequal length, which can result from various underlying causes. Inflammatory 
conditions in children, such as monoarticular, pauciarticular or polyarticular juvenile 
idiopathic arthritis (JIA), can lead to the development of LLD when predominantly 
affecting one leg. To date, no review has addressed inflammation-induced LLD. 
Depending on the localization of the inflammation and age of onset, bone growth 
can be either locally retarded or accelerated in the affected leg. The resulting LLD can 
range from mild forms, where treatment is not necessary, to severe forms, leading 
to premature growth plate fusion and/or an LLD of 5 cm or more. The overall aim 
of this review is to provide an overview of inflammation-induced LLD and to discuss 
the possible underlying mechanisms at the growth plate level. In addition, this review 
offers guidance regarding the natural course of the disease and explores potential 
new treatment strategies for patients with inflammation-induced LLD.
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1 Introduction

Leg length discrepancy (LLD) is defined as a difference in length between the two legs (1). It 
can be either acquired or congenital and affects approximately one-third of the population when 
defined as an LLD exceeding 1 cm (2, 3). Acquired LLD can develop due to the growth-modulating 
effects of local underlying conditions such as infection, trauma, or inflammation. These factors 
may either reduce or stimulate the growth of one leg, eventually leading to LLD (4). This review 
aims to fill a gap in the existing literature by providing an overview of inflammation-induced LLD 
and its underlying mechanisms, including effects at the growth plate level.

Longitudinal bone growth occurs at the growth plate, a thin layer of cartilage located between 
the epiphysis and metaphysis of most long bones (5). The process by which the embryonic 
cartilaginous model of long bones is replaced by calcified bone is called endochondral ossification 
(6). In humans and other mammals, the growth plate is highly organized and composed of three 
different zones: resting, proliferative, and hypertrophic zones (7, 8). Chondrocytes are recruited 
from the resting zone to the hypertrophic zone, where they proliferate and eventually undergo 
hypertrophy and increase their volume dramatically. At the same time, they also secrete 
extracellular matrix, which thereafter becomes mineralized. Matrix secretion between 
chondrocytes and chondrocyte proliferation causes the elongation of long bones. The hypertrophic 
chondrocytes then allow the invasion of blood vessels and other bone cell precursors, leading to 
the remodeling of the hypertrophic zone cartilage into bone (6, 7). The multi-step process of 
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longitudinal bone growth is regulated by various signaling pathways such 
as the Indian hedgehog (Ihh), the parathyroid-related protein (PTHrP), 
and the growth hormone (GH)-insulin-like growth factor 1 (IGF-1) axis. 
In addition to local factors, chondrocytes also respond to external cues 
such as mechanical loading, nutrition, and inflammation that may affect 
bone elongation (9).

During childhood, longitudinal bone growth can be  either 
suppressed or accelerated by chronic inflammatory conditions (10–
13). If the inflammation is systemic, bone growth is often equally 
affected in both legs. In contrast, if the inflammatory process 
predominantly affects only one leg, the growth of that leg can be either 
promoted or inhibited, leading to the development of LLD (10, 11).

2 Search strategy and selection 
criteria

The literature search was conducted in October 2021 and updated 
in March 2024. References supporting the core sections 4 and 5, which 
addresses LLD and inflammation-induced LLD, respectively, were 
identified through searches of Medline (Ovid) and Embase using the 
search terms “leg length discrepancy,” “leg length inequality,” “leg length 
difference,” and “limb length” in combination with “inflammation” and 
“arthritis.” The identified records were then imported into Covidence 
software (Covidence systematic review software, Veritas Health 
Innovation, Melbourne, Australia)1. Studies were included if they met 
the following criteria: (1) the paper was published in English and (2) the 
studied population consisted of pediatric patients. Abstract and title 
screening was performed independently by two investigators (T. A. and 
Z. Z.), who also reviewed the full texts of potentially relevant studies. 
Any discrepancies in the selection of papers were resolved through 
discussion (T. A. and Z. Z.). A flow diagram of studies included in this 
review is provided in Figure 1. The references for section 3 (Effects of 
chronic inflammation on the growth plate level) were identified based 
on the authors’ knowledge (one of the key fields of expertise) and 
searches of Medline and Embase using the search terms “growth plate” 
and “inflammation” or “arthritis.” The final reference list was generated 
based on originality and relevance to the broad scope of this review.

3 Effects of chronic inflammation at 
the growth plate level

Bone growth occurs at the growth plate level and is a result of the 
cartilage being replaced with bone tissue (14). Growth plate 
chondrocytes hereby drive the growth of skeletal elements and also 

1 Available at www.covidence.org

later form a scaffold, which is thereafter mineralized (14). The growth 
plate is highly organized and composed of three different zones: the 
resting zone, the proliferative zone, and the hypertrophic zone (7, 8). 
The resting zone chondrocytes serve as reserve cells and proliferate 
slowly, providing a continuous supply of chondrocytes for the whole 
growth plate. In addition, they have self-renewal capacity, can form 
columns of chondrocytes (15, 16), and play a crucial role in organizing 
and coordinating the proliferative zone (8). Chondrocytes in the 
proliferative zone slightly increase in volume and number, exhibit a 
higher proliferation rate, and start to create and organize into columns 
(17). In the hypertrophic zone, chondrocytes increase their volume 
dramatically and increase the production of collagen type X (18). At 
the same time, they also secrete the extracellular matrix, which 
subsequently becomes mineralized and produces vascular endothelial 
growth factor (VEGF), which promotes vascular invasion (19). The 
cartilage matrix provides the foundation for osteoblast invasion and, 
together with blood vessels, produces a true bone matrix, leading to a 
remodeling of the hypertrophic zone cartilage into bone (6, 7). The fate 
of hypertrophic chondrocytes remains unclear; however, some studies 
suggest autophagy (20), transdifferentiation (21), or apoptosis (22).

In chronic inflammatory conditions, immune cells are activated, 
leading to the production of cytokines, interleukins, chemokines, and 
interferons (10). The presence of the aforementioned may lead to a 
disturbance within the growth plate, thereby affecting longitudinal 
bone growth (23). The important cytokines that are upregulated in 
conditions of chronic inflammation are tumor necrosis factor α 
(TNFα), interleukin-6 (IL-6), and interleukin-1β (IL1-β) (24). The 
cytokines can also act individually or in synergy to suppress 
longitudinal bone growth, as shown in ex vivo studies (11, 24, 25) as 
well as in vivo animal studies (23).

TNFα exerts its growth suppressive effect by acting both locally at 
the growth plate level and systemically at the pituitary level, suppressing 
the GH/IGF-1 axis (26). Locally, TNFα has been reported to increase 
chondrocyte apoptosis and decrease chondrocyte proliferation and 
hypertrophy (11, 25, 27). Furthermore, it also reduces the synthesis of 
important cartilage matrix components (27). In a recent study, femur 
bone length and growth plate height were found to be significantly 
decreased in human TNFα-overexpressing mice (huTNFTg) when 
compared to healthy controls (23). In Figure 2, we present representative 
growth plate images of wild-type and huTNFTg mice illustrating the 
aforementioned differences in growth plate height. Furthermore, 
huTNFTg mice showed decreased chondrocyte hypertrophy, 
suppressed Indian hedgehog expression, and disorganized chondrocyte 
columns (Figure  2). In addition, increased apoptosis was noted in 
huTNFTg mice, as assessed by the expression of caspase-3 (28). If TNFα 
leads to increased apoptosis in resting zone chondrocytes, a decreased 
supply of chondrocytes will be  provided to the growth plate, 
compromising longitudinal bone growth.

Another important inflammatory cytokine that has been shown 
to have a local effect at the growth plate level is IL-6. IL-6 has been 
described to inhibit early chondrocyte differentiation, cartilaginous 
nodule formation in vitro, type II and X collagen expression, and 
aggrecan expression (29). Furthermore, when fetal rat metatarsal 
bones were cultured ex vivo with IL-6 in combination with its soluble 
receptor, IL-6 Rα, bone growth was found to be decreased (30).

In addition to the growth-inhibitory effect of individual cytokines, 
a synergistic effect has been described when two or more cytokines are 
combined (25). In an ex vivo culture model, fetal rat metatarsal bones 
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were co-treated with TNFα and IL1-β, and longitudinal bone growth 
was then suppressed to a much larger degree compared to when the 
bones were exposed to TNFα or IL1-β separately (25). In this study, the 
concentration of the respective cytokine was shown to be a crucial 
factor, as the negative effects of TNFα and IL1-β alone on chondrocytes 
can only be observed at higher concentrations (30). Interestingly, both 
TNFα and IL1-β are also produced locally by growth plate chondrocytes, 
indicating a critical role in the physiological regulation of bone growth.

The pathophysiology of the growth-promoting effect of cytokines 
remains unclear. Hyperemia due to the juxtaposed growth plates has 
been discussed to be  a mechanism for overgrowth, although a 
scientific explanation does not yet exist for this proposed notion (11). 
Another possible mechanism discussed is that TNFα may induce 
neo-vascularization in  vivo, therefore stimulating growth plate 
vascular invasion (31). Furthermore, IL1-β and TNFα have also been 
shown to increase DNA synthesis in growth plate chondrocytes 
in vitro, which may be a possible explanation for a growth stimulatory 
effect (11). Interestingly, Mårtensson et al. (25) demonstrated using an 
in vitro rat metatarsal model that TNFα and IL1-β have a stimulatory 
effect on bone growth at lower concentrations compared to an 
inhibitory effect at higher concentrations. In line with the 
aforementioned dose–response effect, there is also a study in humans 
(32), where TNFα and IL-1β levels in children with different subforms 
of juvenile idiopathic arthritis (JIA) were assessed. Interestingly, 

patients with a systemic disease exhibited the highest values of soluble 
interleukin-2-receptor (sIL-2R), soluble tumor necrosis factor 
receptor (sTNFR), IL-6, and c-reactive protein (CRP) in comparison 
to polyarticular or pauciarticular arthritis. Depending on the subtype 
of JIA, TNFα and IL-1β levels were variably elevated, suggesting that 
the concentration of various cytokines may determine whether 
inflammation will promote or suppress bone growth. Furthermore, 
some studies also report an age-dependent effect of inflammation on 
growth, leading to a growth-stimulatory effect in younger children 
and a growth-suppressive effect in older children above 9 years of age 
(33, 34). However, studies for the reasoning behind this age-dependent 
difference are lacking. One can speculate that sex steroids may play a 
role, as children usually enter puberty around that time, leading to the 
production of estrogen in girls and testosterone in boys (35, 36).

4 Leg length discrepancy: definition, 
epidemiology, and etiology

To assess and quantify leg length in children, long leg radiographs 
are performed and serve as an important diagnostic tool (37). Leg 
length can be  measured manually or, for example, by artificial 
intelligence (AI)-based algorithm measurements, as recently reported 
(38). LLD can be classified into functional and anatomical types (39). 

FIGURE 1

Flow diagram of included studies in this review.
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Anatomical LLD is characterized by a difference in bone length of the 
thigh and/or legs, whereas functional LLD occurs when the length of 
the bones is the same, but there is a joint and/or soft-tissue abnormality 
that leads to a difference in leg length (39, 40). In this review, we will 
only focus on anatomical LLD. An illustrative figure of leg length 
discrepancy where a wooden block is used to achieve a level pelvis, 
allowing for the measurement of the extent of LLD, is presented in 
Figure 3. The prevalence of LLD varies depending on the definition. 
Studies from the US and Sweden have shown that approximately 
one-third of the population has an LLD greater than 1 cm (2, 3), while 
90% have a leg length difference of 1 mm or more (1). When the 
threshold of the leg length difference is set higher, a French 
epidemiological study revealed that approximately 1 in 1,000 individuals 
use a corrective orthopedic apparatus for LLD exceeding 2 cm (41). 
Often, compensatory strategies are used to protect the lumbar spine by 
functionally lengthening the shorter leg and shortening the longer leg 
during gait (42, 43), which may, in turn, result in long-term pathologies 
such as hip, knee, and lower back problems (40, 44, 45). In a recent case 
report, the development of synovial osteochondromatosis of the knee, 
complicated by LLD, was even reported (46). Some recent studies (47, 
48) have reported compensation mechanisms in patients with mild 
LLD, defined as < 3 cm. Adaptations include a lateral tilt of the pelvis, 
counterbalanced by lowering the longer leg. These compensation 
strategies have been shown to correlate with LLD severity, suggesting 
that even mild forms may have negative long-term effects on the spine 
and the longer limb (48). Therefore, any asymmetries in the lower 
extremities as well as patients with LLD require a referral to an 
orthopedic specialist (49).

The etiology of LLD varies and can be  categorized as either 
congenital or acquired. Examples of congenital LLD include hemiatrophy 

or hemihypertrophy (50) and fibular hemimelia (51), in which long 
bones do not form normally during pregnancy, leading to a discrepancy 
in leg length. Furthermore, foot deformities, such as equinovarus foot, 
may lead to the development of LLD (52). Acquired causes of LLD 
include idiopathic, trauma, infection, inflammation, and Legg-Calvé-
Perthes (40). LLD can be as severe as the partial or complete absence of 
one limb. Furthermore, it can be present due to a shortening of one leg, 
which is more frequently the case, or due to a growth-promoting effect 
leading to a longer limb. Understanding the underlying etiology of LLD 
is important in determining which leg is pathological (4).

Severe LLD is commonly present in children with motor and 
muscle disorders, which lead to atypical bone development during the 
fetal period and also throughout childhood, as bone development and 
muscle activation are inextricably linked (53). Additionally, several 
studies in children with cerebral palsy also describe an association 
between bone deformities and atypical muscle tone (54–57).

To better understand and classify LLD, it is important to understand 
the normal regulation of lower extremity growth in humans. At skeletal 
maturity, the femur contributes approximately 54% to the total length of 
the lower extremity, whereas the tibia contributes 46% (58). The majority 
of the growth occurs around the knee (proximal tibia and distal femur 
growth plate), accounting for approximately 71% of the femur growth and 
57% of the tibia growth (58).

5 Inflammation-induced LLD

Longitudinal bone growth can either be promoted or inhibited by 
inflammation (10–13). An overview of all studies focusing on 
inflammation-induced LLD is provided in Supplementary Table 1, 

FIGURE 2

Growth plate morphology of wild type (WT) and huTNFTg mice. Representative hematoxylin–eosin stained femur growth plate sections in (A) wildtype 
and (B) huTNFTg mice at × 5 (left) and × 20 magnification (right), indicating the resting (R), proliferative (P), and hypertrophic (H) zone.
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and the disease progression of inflammation-induced LLD is 
illustrated in Figure 4. As only a few studies are available to date, all of 
them were included in this review, although potential heterogeneity 
in study designs and patient populations exists between the studies 
(Supplementary Table 1). In addition, other factors, such as genetic 
background, nutrition, or concomitant medication (26), may also 
affect bone growth, therefore influencing the outcome. However, as 
most of these factors are systemic, both legs will be equally affected, 
thereby most likely not causing LLD.

5.1 Inflammatory diseases and their role in 
the development of LLD

Chronic inflammatory diseases, such as inflammatory bowel 
disease and some forms of JIA, are systemic inflammatory conditions. 
As a result, both legs and growth plates are equally exposed to 
inflammation. This, in turn, may not lead to LLD but rather to a 
general impairment of bone growth. Its degree varies from a mild 
decrease in growth velocity to severe short stature (12, 13). The 
pathogenesis of the growth-inhibiting effect is a combination of 
several factors, such as elevated levels of pro-inflammatory cytokines, 
malnutrition, hypercortisolism, and disease-related treatments (e.g., 
glucocorticoids), which may further inhibit bone growth (26).

However, when inflammation is present unilaterally in a leg or 
joint, it may lead to the development of LLD. Only a few inflammatory 
conditions are associated with LLD (Supplementary Table  1), 
including various subgroups of juvenile idiopathic arthritis (JIA), such 
as monoarthritic, oligoarticular polyarthritis, and pauciarticular 
JIA. In these conditions, arthritis is most often asymmetric, with the 
knee and/or ankle being the most frequently affected joints, leading to 
the development of LLD.

Interestingly, unilateral inflammation can result in either a growth-
promoting or suppressive effect, which may lead to LLD (10, 11, 33, 34, 
40, 59–63). Examples of conditions that may increase leg length include 
oligoarthritis and monoarticular/pauciarticular JIA (10, 34). Accelerated 
growth in the involved leg in monoarticular/pauciarticular JIA seems 
typical, as the ankle and knee are the most frequently affected joints, and 
arthritis is often asymmetric (60). We  have created a flowchart to 
provide an overview illustrating the effects of inflammation on bone 
growth and the development of LLD (Figure 5).

5.2 Prevalence and extent of 
inflammation-induced LLD

The prevalence of LLD in children with JIA is largely unknown and 
depends on the specific condition, its treatment, and the availability of 
different treatment regimens. Therefore, making statements and 
comparisons is difficult. Overall, when considering all forms of JIA, 
LLD appears to develop relatively rarely, affecting approximately 5% of 
patients (64–66). However, when examining the different subgroups of 
JIA, the development of LLD seems most prevalent in oligoarthritic, 
monoarthritic, polyarthritic, and pauciarticular JIA.

In two cohort studies of patients with oligoarticular JIA (59, 67) 
the prevalence of LLD was found to be 22–24%. However, the degree 
of LLD was not stated; therefore, it is not clear whether significant 
LLD developed. In another study focusing on pauciarticular JIA with 
the involvement of a single knee, the prevalence of LLD was 
age-dependent. When the disease onset was below 3 years, 92% of 
patients with pauciarticular JIA developed LLD. In contrast, when the 
disease onset was after 3 years, only 47% showed an LLD (33).

In a study focusing on monoarthritic JIA with the involvement of 
a single knee, an LLD of up to 3.2 cm developed in two-thirds of the 
patients (68). However, this study was conducted in 1967 and used a 
treatment regimen that differs from current practices.

Furthermore, the prevalence of LLD in children with JIA 
receiving different treatments has been investigated. One study (60) 
tested the use of intraarticular steroids in patients with pauciarticular 
JIA and found that it could prevent the development of 
LLD. Specifically, no patients developed LLD in the treatment group, 
whereas in the untreated control group, 50% were found to have an 
LLD. However, a published systematic review found weak and overall 
inconclusive evidence for a decrease in the development of LLD when 
intraarticular steroids were used (62). In addition, the use of 
methotrexate and biologics has been compared in terms of acquiring 
an LLD (69). In oligoarthritis, 11% of patients treated with biologics 
developed LLD compared to 8.8% who were treated with 
methotrexate. This finding is in contrast to patients with polyarthritis, 
where an opposite effect was observed, with 6.6% of the patients in 
the methotrexate group who developed LLD compared to 4.5% 
with biologics.

FIGURE 3

Illustrative figure of leg length discrepancy with a shorter left limb. A 
level pelvis is achieved by a wooden block.
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5.3 Age of disease onset, course, and 
dynamics of inflammation-induced LLD

Simon et  al. (34) show an association between the age of 
monoarticular and pauciarticular JIA onset and the effect of 
inflammation on leg growth. When unilateral disease was present in 
patients with an onset of the disease below 9 years of age, 97% showed 
a growth acceleration on the pathological side. In contrast, when the 

disease onset was >9 years, a growth arrest due to a premature closure 
of the growth plate of the involved side was present in 80%, leading 
to a shortening of the affected leg.

In another study (33), all patients with pauciarticular arthritis 
showed a growth-promoting effect on the affected leg [mean age of 
onset of the two groups (>3y and <3y): 1.7 and 7 years; n = 32]. 
Unfortunately, only the mean age of the two comparison groups is 
provided, not the age range. In all other studies, it remains unclear 

FIGURE 5

Effect of inflammation on bone growth and the development of leg length discrepancy. IBD = inflammatory bowel disease, y = years.

FIGURE 4

Overview of disease progress in inflammation-induced leg length discrepancy.
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whether growth acceleration or inhibition was observed, as they only 
report leg length discrepancy without specifying the actual effect on 
the affected leg. Therefore, making a definitive statement regarding 
the relationship between the age of onset and the effect of 
inflammation on bone growth is difficult, although an age-dependent 
effect seems plausible.

Regardless of the age of onset of inflammation, the major leg 
length discrepancy normally develops within the first 4 years after 
disease onset (34). Thereafter, a different dynamic between 
individuals could be observed so that LLD either remained at level, 
decreased, or slowly increased, except for a rapid, premature growth 
plate closure. Interestingly, in some patients, LLD decreased so that 
there was a gradual inhibition of growth in the pathological leg (33% 
of patients) (34). In patients diagnosed at an early age (<3 years), an 
association between the duration of the first episode of joint swelling 
and the development of LLD could be found (33).

Few studies are available in the literature assessing the extent of 
inflammation-induced LLD. When an acceleration of growth was 
present in the affected leg, the LLD described in published papers did 
not exceed 3.5 cm, indifferent of JIA subgroup (33, 34, 60, 63, 68, 70). 
It is not surprising that LLD was greater in patients where a premature 
growth plate fusion occurred, reaching up to 5.9 cm (34).

5.4 General treatment of LLD

Available treatment options for LLD, irrespective of its etiology, 
include non-surgical and surgical treatment. The treatment choice 
depends on various factors such as the degree of LLD, age of the child, 
and severity of symptoms.

Table  1 provides an overview of different treatment options 
depending on the extent of LLD. When it comes to the treatment of 
LLD, different treatment options should be  considered on an 
individual basis, with careful consideration of the risks and benefits. 
An LLD less than 2 cm is usually not treated (45). However, internal 
shoe lifts may be used when the LLD ranges from 0.5 to 1.5 cm, while 
patients are more comfortable with external shoe lifts when the LLD 
is between 1.5 and 2 cm (71) (Figure 6A). Physical therapy, such as 
stretching the muscles of the lower extremity, is also a non-surgical 
treatment option for LLD, but it is only used for functional scoliosis. 
There, the LLD is due to pelvic obliquity from adaptive soft-tissue 
changes, muscle contracture, or ligamentous laxity (71). When an 

TABLE 1 Different treatment options depending on the extent of leg 
length discrepancy.

Extent of leg length 
discrepancy

Treatment

< 2 cm Usually, no treatment is required

Between 0.5 and 1.5 cm: internal shoe lifts

1.5 and 2 cm: external shoe lifts

2–5 cm Conservative

Epiphysiodesis (open or closed)

Physeal stapling

Shortening osteotomy

6–10 cm Consider leg lengthening

> 15 cm Lengthening of the shorter leg and shortening of 

the longer leg

> 20 cm Usually treated with prostheses

FIGURE 6

Different treatment options in patients with leg length discrepancy. (A) External shoe lift. (B) Leg lengthening by the Ilizarov procedure. 
(C) Intramedullary lengthening nail.
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LLD exceeds 2 cm, surgical treatment, for examples, leg shortening or 
lengthening may be considered. However, conservative treatment with 
a shoe lift is a valuable alternative, where the LLD may be corrected to 
1–2 cm residual inequality (4, 72). In a patient with an LLD between 
2 and 5 cm, open or closed epiphysiodesis as well as stapling before 
skeletal maturity exist as possible treatment options. However, surgical 
treatment requires the exact timing of surgery and complications after 
epiphysiodesis, such as joint pain, knee stiffness, angular deformities, 
and altered proximal tibial articular surface, may develop (73, 74).

For an LLD ranging between 6 and 10 cm, leg lengthening of the 
shorter leg should be considered. The traditional Ilizarov procedure 
(Figure 6B) (75) using callus distraction histogenesis is the mainstay 
of all new lengthening treatment modalities used in recent times. 
When using an external fixator, possible complications include skin 
infection, pain, delayed bone union or non-union, joint stiffness, and 
deformities. The preference is currently shifting toward motorized 
intramedullary lengthening nails (Figure 6C), which do not require 
rotation for distraction (76). With the intramedullary nails, stiffness 
of the surrounding joints may still occur, but skin infections are rare.

An LLD greater than 15 cm usually requires lengthening of the 
shorter leg combined with shortening of the longer leg. An internal or 
external lift may also be  used if equalization is not achieved 
postoperatively. An LLD of more than 20 cm is usually treated with 
prostheses (77).

5.5 Treatment of inflammation-induced LLD

Few studies are available in the literature specifically addressing 
the treatment of inflammation-induced LLD. In Finnish studies, 
Skyttä et al. (63, 70) investigated the long-term results of temporary 
epiphyseal stapling in patients who developed LLD due to JIA. The 
indication for the procedure was an LLD exceeding 10 to 15 mm 
(depending on the age and therefore growth potential of the child). 
The mean age at the time of surgery was 11 years, and the mean 
duration of the disease was 7 years. The procedure was quite effective, 
reducing the median leg length discrepancy before surgery from 
17.5 mm to 5 mm by the time of the removal of the staples. The 
method had a complication rate of 10%, and complications included 
peroneal paralysis, infection, premature loosening, physeal plate 
perforation, breakage of the staple, and mislocation (63).

6 Conclusion

Patients with monoarticular, pauciarticular, or polyarthritic JIA are 
at risk of developing LLD when inflammation is predominantly present 
in one limb. Inflammation may lead to the acceleration or inhibition of 
bone growth in the affected leg, most likely depending on the age of 
onset. The LLD extent ranges from mild forms, where treatment is not 
necessary, to severe forms, leading to premature growth plate fusion and 
LLD of 5 cm or more. It is, therefore, important to identify patients at 
risk of developing LLD early, enabling early treatment initiation.
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