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Background: Machine learning technology that uses available clinical data to

predict diabetic retinopathy (DR) can be highly valuable in medical settings

where fundus cameras are not accessible.

Objective: This study aimed to develop and compare machine learning

algorithms for predicting DR without fundus image.

Methods: We used data from Korea National Health and Nutrition Examination

Survey (2008–2012 and 2017–2021) and enrolled individuals aged ≥ 20 years

with diabetes who received fundus examination. Predictive models for

DR were developed using logistic regression and three machine learning

algorithms: extreme gradient boosting, decision tree, and random forest.

Model performance was evaluated using area under the receiver operating

characteristic curve (AUC) and accuracy for the diagnosis of DR, and feature

importance was determined using Shapley Additive Explanations (SHAP).

Results: Among the 3,026 diabetic participants (male, 50.7%; mean age,

63.7 ± 10.5 years), 671 (22.2%) had DR. The random forest model, using 16

variables, achieved the highest AUC of 0.748 (95% confidence interval, 0.705–

0.790) with a sensitivity 0.669, specificity of 0.729 and an accuracy of 0.715. As

interpreted by SHAP, HbA1c, fasting glucose levels, duration of diabetes, and

body mass index were identified as common key determinants influencing the

model’s outcomes.

Conclusion: The DR prediction models using machine learning techniques

demonstrated reliable performance even without fundus imaging, with the

random forest model showing particularly strong results. These models could

assist in managing DR by identifying high-risk patients, enabling timely

ophthalmic referrals.
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Introduction

Diabetes mellitus is one of the major chronic diseases, and
its prevalence is rapidly increasing worldwide. One of the severe
complications of diabetes is diabetic retinopathy (DR), a leading
cause of blindness among working-age adults worldwide (1).
Globally, it is estimated that approximately one-third of patients
with diabetes have some form of DR, with the prevalence ranging
from 35 to 40% (2). In 2019, it was reported that around
146 million people were affected by DR, and this number is
projected to increase to 191 million by 2030 (3). Early detection
and intervention are crucial in preventing severe vision loss and
improving the quality of life for diabetic patients, as DR often
presents without symptoms even in late stages (4). However,
non-adherence to DR examination is common among diabetic
patients globally, and thus, a better way to screen high-risk patients
for DR is required (5–8). Recently, the evolution of machine
learning technology has sparked significant interest and gained
popularity, particularly for enhancing clinical decision-making (9).
Machine learning techniques enable clinicians to leverage complex
datasets to predict outcomes such as disease progression, treatment
response, and patient outcomes with high accuracy and efficiency
(10, 11). In medical settings without access to a fundus camera,
machine learning technology that utilize available clinical data to
predict DR can be highly beneficial.

This study aims to develop a machine learning model to
predict the risk of DR in diabetic patients using clinical variables
from Korea National Health and Nutrition Examination Survey
(KNHANES) data to provide an efficient and accurate diagnostic
support system for DR in clinical settings.

Materials and methods

Study design and participants

This study was conducted using the KNHANES data (2008–
2012 and 2017–2021) (12). Based on self-reported questionnaire-
based information, the participants who answered, “yes” to the
question “Have you ever been diagnosed with diabetes by a
doctor before?” were classified as diabetic patients. Participants
were selected based on the following criteria: age over 20,
diagnosed with diabetes, having fundus examination results,
and no missing data in the variables used for analysis. The
final study sample included 3,026 participants. To develop and
evaluate a predictive diagnostic model for DR, the sample was
split into a training set (2,420 participants) and a test set
(606 participants) in an 8:2 ratio (Figure 1). DR was identified
based on the presence of any characteristic lesions defined by
the Early Treatment Diabetic Retinopathy Study severity scale
using a non-mydriatic fundus camera. Grading was performed by
experienced retinal specialists, with DR diagnosed in the presence
of microaneurysms, hemorrhages, hard exudates, cotton wool
spots, intraretinal microvascular abnormalities, venous beading, or
retinal neovascularization (12). DR grading was not additionally
assessed in all years, whereas the presence or absence of DR was
determined.

Model development and performance
evaluation

We developed prediction models using logistic regression and
three machine learning algorithms: extreme gradient boosting
(XGB), Decision Tree (DT), and random forest (RF). These
algorithms employ various approaches to map predictor values to
probabilities between zero and one. The evaluation of predicted
performance was carried out using the area under the receiver
operating characteristic curve (AUC) along with 95% confidence
intervals (CI) for each prediction model (13). A comparison
was made between the performance of the logistic regression
and the machine learning models. Additionally, performance was
measured using sensitivity, specificity, positive predictive value,
and negative predictive value, all of which were determined based
on a single cut-off value designed to maximize the Youden index
(calculated as sensitivity + specificity - 1). Model calibration
was assessed by comparing the observed event probabilities with
the predicted ones.

To enhance the random forest model’s performance, we applied
hyperparameter tuning using RandomizedSearchCV, a method that
efficiently samples a wide range of hyperparameter combinations
to identify the optimal settings. This approach is particularly
advantageous when dealing with large datasets or numerous
hyperparameters, as it reduces computational cost compared to
exhaustive methods like GridSearchCV.

For the random forest model, we tuned hyperparameters
including the number of trees (n_estimators: [100, 150, 173,
200, 250, 600]), maximum tree depth (max_depth: [10, 15, 20,
None]), minimum samples to split a node (min_samples_split:
[2, 4, 6, 10]), minimum samples at a leaf (min_samples_leaf:
[1, 2, 4, 6]), features considered for splitting (max_features:
[’auto’, ’sqrt’, ’log2’]), sampling method (bootstrap: [True, False]),
and splitting criterion (criterion: [’gini’, ’entropy’]). The optimal
parameters identified were n_estimators = 173, max_depth = None,
min_samples_split = 6, min_samples_leaf = 4, max_features = ’sqrt’,
bootstrap = True, and criterion = ’entropy’.

For the Logistic Regression model, hyperparameter
optimization focused on the regularization strength (C:
np.logspace(−4, 4, 20)), penalty type (penalty: [’l1’, ’l2’] for
Lasso and Ridge regularization), and solver algorithm (solver:
[’liblinear’, ’saga’]). These parameters helped improve model
generalization and prevent overfitting.

For the Decision Tree model, the grid search evaluated the split
criterion (criterion: [’gini’, ’entropy’]), split strategy (splitter: [’best’,
’random’]), maximum depth (max_depth: [None, 5, 10, 15, 20]),
minimum samples for node splitting (min_samples_split: [2, 5, 10]),
minimum samples at leaf nodes (min_samples_leaf: [1, 2, 4]), and
features for splitting (max_features: [’sqrt’, ’log2’]). These settings
enhanced model complexity control and interpretability.

For the XGBoost model, tuning focused on the learning
rate (learning_rate: [0.1, 0.01, 0.001]), tree depth (max_depth:
[3, 5, 7]), minimum child weight (min_child_weight: [1, 3, 5]),
training data subsampling (subsample: [0.8, 0.9, 1.0]), features
used per tree (colsample_bytree: [0.8, 0.9, 1.0]), and boosting
rounds (n_estimators: [100, 200, 300]). The grid search approach
optimized the model’s ability to learn complex patterns while
maintaining generalization.
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FIGURE 1

Flow diagram for the training and testing sets of the logistic regression and the three machine learning systems. KNHANES, Korea National Health
and Nutrition Examination Survey; DR, diabetic retinopathy.

Feature selection techniques

Recursive Feature Elimination with Cross-Validation (RFECV)
was used with 5-fold cross-validation. RFECV is a robust method
for feature selection that iteratively removes the least important
features based on model performance until the optimal subset is
found. By using 5-fold cross-validation, the model’s performance
is validated across different subsets of data, reducing the risk of
overfitting. This approach ensures that only the most relevant
features contribute to the predictive model, enhancing both
accuracy and interpretability.

Feature Analysis using SHapley Additive
exPlanations (SHAP)

SHAP interprets machine learning models by showing feature
importance and their impact on predictions. It uses values from
game theory to quantify each feature’s contribution to the model’s
output. This helps data scientists and stakeholders understand
and trust the model, enhancing transparency and enabling model
refinement (14).

We used a broad spectrum of patient characteristics and
health indicators as variables in our analysis, including age,

sex, duration and treatment of diabetes mellitus, smoking
status, comorbidities, waist circumference, systolic blood
pressure, diastolic blood pressure, body mass index (BMI),
and laboratory results.

Statistical analysis

The continuous variables were analyzed using the independent
t-test, and the categorical variables were analyzed and compared by
the Chi-squared or Fisher’s exact tests. All statistical analysis was
conducted with Python (version 3.12.2). The statistical significance
criterion was set to be two-sided, and p-values < 0.05 were
considered statistically significant.

Ethical adherence

This study was reviewed and approved by the Institutional
Review Board (IRB) of Seoul National University Bundang
Hospital (IRB No: X-2212-796-901). Informed consent was waived
by the IRB due to the anonymized data and retrospective
design of the study. The study followed the principles of the
Declaration of Helsinki.
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TABLE 1 Comparison of training and test data between DR and no DR.

Feature Total data set (n = 3026) Train data set (n = 2420) Test data set (n = 606)

DR
(n = 671)

No DR
(n = 2355)

P-value DR
(n = 523)

No DR
(n = 1897)

P-value DR
(n = 148)

No DR
(n = 458)

P-value

Male, sex, no. (%) 347 (51.7) 1188 (50.5) 0.583 275 (52.6) 956 (50.4) 0.373 72 (48.7) 232 (50.7) 0.673

Age, years, no. (%) 62.9 (10.3) 63.9 (10.5) 0.033 63.0 (10.4) 64.0 (10.4) 0.039 62.7 (10.0) 63.3 (10.9) 0.559

< 40 10 (1.5) 34 (1.4) 0.847 7 (1.3) 25 (1.3) 1.000 3 (2.0) 9 (1.9) 0.939

40∼50 62 (9.2) 215 (9.1) 0.937 51 (9.8) 163 (8.6) 0.393 11 (7.4) 52 (11.4) 0.167

50∼60 169 (25.2) 516 (21.9) 0.072 130 (24.9) 417 (22.0) 0.161 39 (26.4) 99 (21.6) 0.227

60∼70 237 (35.3) 779 (33.1) 0.287 178 (34.0) 626 (33.0) 0.667 59 (39.9) 153 (33.4) 0.150

> 70 193 (28.8) 811 (34.4) 0.007 157 (30.0) 666 (35.1) 0.029 36 (24.3) 145 (31.7) 0.088

DM duration, years 12.4 (9.3) 8.0 (7.7) <0.001 12.0 (8.4) 8.1 (7.8) <0.001 12.1 (8.7) 7.8 (7.3) <0.001

Smoking, current, No. (%) 128 (19.1) 398 (16.9) 0.185 99 (18.9) 315 (16.6) 0.216 29 (19.6) 83 (18.1) 0.683

Co-morbidity, No. (%)

Hypertension 373 (55.6) 1455 (61.8) 0.004 288 (55.1) 1175 (61.9) 0.005 85 (57.4) 280 (61.1) 0.424

Hyperlipidemia 302 (45.0) 1135 (48.2) 0.143 239 (45.7) 900 (47.4) 0.491 63 (42.6) 235 (51.3) 0.066

Stroke 48 (7.2) 121 (5.1) 0.036 34 (6.5) 95 (5.0) 0.176 14 (9.5) 26 (5.7) 0.107

Myocardial infarction 24 (3.6) 70 (3.0) 0.431 18 (3.4) 61 (3.2) 0.819 6 (4.1) 9 (2.0) 0.156

Diabetic nephropathy 11 (1.6) 18 (0.76) 0.047 10 (1.9) 12 (0.63) < 0.001 1 (0.68) 6 (1.3) 0.539

Other eye disease, No (%)

Glaucoma 100 (14.9) 355 (15.1) 0.898 84 (16.1) 293 (15.5) 0.738 16 (10.8) 62 (13.5) 0.394

AMD 98 (14.6) 368 (15.6) 0.527 77 (14.7) 293 (15.5) 0.653 21 (14.2) 75 (16.4) 0.525

WC, cm 88.0 (8.8) 88.3 (9.4) 0.463 88.3 (8.9) 88.4 (9.6) 0.814 87.2 (8.4) 88.1 (8.8) 0.276

SBP, mmHg 127.8 (17.2) 125.9 (16.3) 0.011 127.8 (17.4) 126.2 (16.5) 0.050 127.6 (16.5) 124.7 (15.5) 0.059

DBP, mmHg 73.8 (10.3) 74.6 (9.9) 0.059 73.6 (10.6) 74.6 (10.0) 0.064 74.5 (9.1) 75.0 (9.3) 0.570

FBG, g/dL 153.5 (49.9) 133.0 (36.1) <0.001 150.8 (46.9) 132.7 (35.2) <0.001 163.1 (58.7) 134.1 (39.5) <0.001

HbA1c,% 7.9 (1.6) 7.1 (1.2) <0.001 7.8(1.5) 7.1 (1.2) <0.001 8.1(1.7) 7.1 (1.2) <0.001

BMI, kg/m2 24.7 (3.3) 25.1 (3.4) 0.008 24.7 (3.3) 25.1 (3.5) 0.032 24.6 (3.3) 25.1 (3.1) 0.093

TC, mg/dL 171.3 (41.8) 171.3 (38.4) 0.976 171.5 (41.0) 171.6 (38.0) 0.958 170.6 (44.9) 170.3 (39.8) 0.943

TG, mg/dL 164.7 (125.6) 154.5 (110.2) 0.056 163.1 (118.1) 153.5 (105.6) 0.093 170.5 (149.4) 158.6 (127.4) 0.386

HDL-c, md/dL 45.0 (11.2) 45.9 (11.2) 0.083 44.9 (10.5) 45.9 (11.2) 0.083 45.4 (13.5) 45.9 (11.6) 0.673

(Continued)
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Results

A total of 3,026 diabetic participants aged ≥ 20 years
were included in the analysis. All the participants had fundus
examination results, with a prevalence of DR of 22.2% (n = 671).
The baseline characteristics of the training and test datasets are
shown in Table 1.

The predictive performances and test characteristics of the
models derived using logistic regression analysis and machine
learning models are summarized in Table 2. In the validation
using the test dataset, RF demonstrated the highest predictive
performance achieving an AUC of 0.748 (95% CI, 0.705–0.790)
with a sensitivity 0.669, specificity of 0.729 and an accuracy of 0.715.
The AUC was 0.744 (95% CI, 0.701–0.788) in the logistic regression
model, 0.731 (95% CI, 0.684–0.776) in the XGB model, and 0.651
(95% CI, 0.597–0.702) in the DT model (Figure 2).

As depicted in Figure 3 and Table 3, key features for prediction
across all models were HbA1c levels, fasting blood glucose levels,
duration of diabetes mellitus, and BMI among the top eight
variables in each model. HbA1c (SHAP value, 0.044; effects,
0.183) was the most influential factor in the RF model outcomes,
followed by fasting glucose levels (SHAP value, 0.043; effects,
0.180), duration of diabetes mellitus (SHAP value, 0.040; effects,
0.168), insulin usage (SHAP value, 0.018; effects, 0.074), age (SHAP
value, 0.016; effects, 0.068), and other factors.

Discussion

This study aimed to develop an optimized machine learning
model to predict the diagnosis of DR among adults with
diabetes using the KNHANES data, a nationwide survey database
representative of the South Korean population.

In this study, we developed various models for the prediction
of DR diagnosis and compared the performance of XGB, DT,
and RF models with that of the conventional logistic regression
model. Among the models developed for predicting DR diagnosis
using machine learning algorithms, the RF model showed the
best performance.

Previous studies have developed deep learning systems that can
detect and classify DR using fundus images. Dai et al. reported
an average AUC of 0.955 for DR grading, while Bhimavarapu
et al. achieved 99.41% accuracy using fundus images (15, 16).
Fundus image-based DR prediction offers the advantage of high
accuracy by directly capturing retinal pathology, enabling precise
assessment of DR diagnosis and severity. However, in many
regions, access to regular fundus imaging is limited due to various
challenges (6–8). Additionally, AI-based fundus image analysis
faces issues such as inconsistent image quality, poor pupil dilation,
patient compliance, and suboptimal acquisition techniques, all of
which require specialized equipment and trained personnel (17,
18). In such cases, identifying patients in need of DR screening
using easily obtainable clinical data becomes clinically important.
Our model leverages clinical information to facilitate early DR
screening without requiring specialized equipment or personnel,
making it more practical for routine clinical use. Furthermore,
clinical variables are readily available and cost-effective. However,
a limitation of our model is that its accuracy is lower compared
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TABLE 2 Discrimination and test characteristics of diabetic retinopathy prediction models.

Algorithm AUC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

Optimal
threshold

Logistic regression 0.744
(0.701, 0.788)

0.595
(0.556, 0.634)

0.784
(0.746, 0.821)

0.738
(0.702, 0.772)

0.471
(0.430,
0.510)

0.857
(0.823, 0.890)

0.257

Extreme gradient
boosting

0.731
(0.684, 0.776)

0.622
(0.583, 0.660)

0.764
(0.726, 0.803)

0.729
(0.693, 0.764)

0.460
(0.420, 0.499)

0.862
(0.829, 0.896)

0.235

Decision tree 0.651
(0.597, 0.702)

0.662
(0.624, 0.699)

0.576
(0.531, 0.621)

0.597
(0.559, 0.637)

0.336
(0.299, 0.373)

0.841
(0.800, 0.881)

0.185

Random forest 0.748
(0.705, 0.790)

0.669
(0.631, 0.706)

0.729
(0.689, 0.769)

0.715
(0.679, 0.750)

0.444
(0.404, 0.483)

0.872
(0.839, 0.906)

0.247

AUC, area under the receiver operating characteristic curve; NPV, negative predictive value; PPV, positive predictive value. In the validation using the test dataset, random forest model
demonstrated the highest predictive performance.

FIGURE 2

Receiver operating characteristic curves of models. AUC, area under the receiver operating characteristic curve.

to fundus imaging-based DR prediction. Additionally, the model’s
performance may vary depending on the availability of the clinical
variables included in the analysis.

There have also been several non-image-based machine
learning studies for DR prediction. Islam et al. conducted a study
using clinical information from a Chinese cohort and achieved an
accuracy of 90.01% with an XGBoost-based model (19). Similarly,
Zhao et al. validated a DR prediction model using baseline
demographic and clinical characteristics in patients with type 2
diabetes mellitus, with the XGBoost model demonstrating the
highest predictive performance (accuracy: 88.9%) (20). These two
studies likely achieved higher accuracy due to their larger sample
sizes compared to our study, because similar studies with relatively
smaller sample sizes have reported results comparable to ours
(accuracy, 73.5–79.5%) (21–23).

The potential integration of our optimized RF model into
clinical decision support systems (CDSS) used by primary care
physicians, such as those in internal medicine and family practice,
offers several notable advantages. By utilizing relatively stable
predictive outcomes, a CDSS can enhance diabetes management
through more accurate and targeted referrals for ophthalmological
evaluation. This could lead to significant reductions in healthcare
costs by preventing unnecessary consultations and focusing
resources on those most in need of specialized care (24,
25). Additionally, timely and accurate referrals can significantly
improve patients’ quality of life by preventing vision loss and
enabling better management of their condition (26, 27). This
advantage could be maximized if this system is applied to
large-scale populations, such as those in corporations, schools,
and the military.
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FIGURE 3

Feature importance score of logistic regression (A), XGB (B), decision tree (C), and random forest (D) models.

This study has several limitations. First, DR grading was
not additionally assessed in all years, and only the presence or
absence of DR was determined, making subanalysis based on DR
grading not possible. Additionally, this model was confirmed an
Asian ethnic group, requiring generalizability. To address these
limitations, future research should include larger, more diverse
patient groups and utilize detailed datasets to develop models
that can more accurately identify individuals in need of hospital
referrals for DR.

However, this study also has several strengths. First, it utilizes
nationwide community-based data to ascertain the prevalence
and risk factors of DR. This data provides a representative
sample of the South Korean population. Second, the information

was collected, examined, and interpreted using standardized
protocols, ensuring objectivity and reliability of the data. Third,
we developed an optimized model for DR risk assessment
using various algorithms, enhancing the predictive accuracy
and applicability of our findings. Our approach is convenient
for the use in hospitals during routine health check-ups or
diabetes management visits even without fundus examination.
Furthermore, this method could effectively complement existing
fundus photography-based models, providing a comprehensive
and resource-efficient diagnostic tool for DR. As the next
step, we have developed software to integrate this model into
practical clinical use, and it is currently in the commercialization
preparation stage.

Frontiers in Medicine 07 frontiersin.org

https://doi.org/10.3389/fmed.2025.1542860
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1542860 May 27, 2025 Time: 16:31 # 8

Kim et al. 10.3389/fmed.2025.1542860

TABLE 3 The Shapley Additive Explanations (SHAP) values of the top
eight variables of corporate risk-taking.

Algorithm Feature SHAP
value

Effects

Logistic regression DM duration 0.052 0.164

Age 0.046 0.144

HbA1c 0.041 0.128

BMI 0.033 0.104

FBG 0.032 0.101

SBP 0.031 0.099

Insulin usage 0.029 0.093

WC 0.027 0.086

Extreme gradient
boosting

DM duration 0.049 0.192

HbA1c 0.043 0.168

FBG 0.041 0.158

Age 0.025 0.096

Insulin usage 0.017 0.066

BMI 0.017 0.064

SBP 0.014 0.056

DBP 0.012 0.048

Decision tree DM duration 0.064 0.221

HbA1c 0.050 0.172

WC 0.034 0.118

Creatinine 0.032 0.110

BMI 0.031 0.106

HDL 0.029 0.101

SBP 0.028 0.096

FBG 0.022 0.078

Random forest HbA1c 0.044 0.183

FBG 0.043 0.180

DM duration 0.040 0.168

Insulin usage 0.018 0.074

Age 0.016 0.068

BMI 0.011 0.047

TC 0.010 0.041

BUN 0.009 0.037

BMI, body mass index; WC, waist circumference; SBP, systolic blood pressure; DBP,
diastolic blood pressure; HbA1c, glycosylated hemoglobin; FBG, fasting blood glucose; TC,
total cholesterol; DM, diabetes mellitus; BUN, blood urea nitrogen.

Conclusion

The prediction models for DR with machine learning
techniques using nationwide survey data have the potential to be
utilized as CDSS. Our results suggest that these models can aid
in the management of DR by identifying patients at high risk,
thereby facilitating timely ophthalmic referrals. Consequently, we
believe this approach will be able to significantly contribute to the
prevention of vision loss through improved DR risk management
in people with diabetes.
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