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Objective: Developing and validating a simple and clinically useful dynamic 
nomogram for predicting early acute kidney injury (AKI) in patients with acute 
heart failure (AHF) admitted to the intensive care unit (ICU).

Methods: Clinical data from patients with AHF were obtained from the Medical 
Information Mart for Intensive Care IV database. The patients with AHF were 
randomly allocated into derivation and validation sets. The independent 
predictors for AKI development in AHF patients were identified through least 
absolute shrinkage and selection operator and multivariate logistic regression 
analyses. A nomogram was developed based on the results of the multivariable 
logistic regression to predict early AKI onset in AHF patients, which was 
subsequently implemented as a web-based calculator for clinical application. 
An evaluation of the nomogram was conducted using discrimination, calibration 
curves, and decision curve analyses (DCA).

Results: After strict screening, 1,338 patients with AHF were included in the 
derivation set, and 3,129 in the validation set. Sepsis, use of human albumin, age, 
mechanical ventilation, aminoglycoside administration, and serum creatinine 
levels were identified as predictive factors for AKI in patients with AHF. The 
discrimination of the nomogram in both the derivation and validation sets was 
0.81 (95% confidence interval: 0.78–0.83) and 0.79 (95% confidence interval: 
0.76–0.83). Additionally, the calibration curve demonstrated that the predicted 
outcomes aligned well with the actual observations. Ultimately, the DCA curves 
indicated that the nomogram exhibited favorable clinical applicability.

Conclusion: The nomogram that integrates clinical risk factors and enables the 
personalized prediction of AKI in patients with AHF upon admission to the ICU, 
which has the potential to assist in identifying AHF patients who would derive 
the greatest benefit from interventions aimed at preventing and treating AKI.
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Introduction

Acute heart failure (AHF) is a significant medical condition 
marked by the abrupt onset or exacerbation of symptoms and 
indicators of heart failure, necessitating immediate medical 
intervention. Given the ongoing trend of an aging population 
leading to a rise in hospitalizations for AHF, this condition has 
emerged as a prominent public health issue (1–3). It is worth 
noting that acute kidney injury (AKI) is very common to occur in 
the setting of AHF and this is referred to as cardiorenal syndrome 
type 1, resulting in prolonged hospital stays and high mortality 
rates (4, 5). There is an association between AKI and 58% of cases 
of congestive heart failure, and the severity of AKI can increase 
the risk of congestive heart failure (6). Emerging evidence 
indicates that cardiorenal syndrome is linked to a range of 
pathological mechanisms, including hemodynamics alterations, 
neurohormonal changes, hypervolemia, hypertension, 
hyperuremia, and hyperuricemia (7, 8). Given that the molecular 
mechanisms underlying cardiorenal syndrome have yet to be fully 
elucidated, no singular intervention has proven effective in its 
treatment (7, 9). Therefore, identifying high-risk groups for AKI 
and implementing targeted preventive measures are essential for 
improving the prognosis of patients with AHF (10). Consequently, 
the adoption of AKI prevention strategies is crucial for reducing 
mortality rates and mitigating the economic burden associated 
with AHF.

The current diagnostic criteria for AKI as outlined by the Kidney 
Disease Improving Global Outcomes (KDIGO) suggest that serum 
creatinine level and urinary volume are the primary clinical indicators 
(11). While some studies have suggested alternative biomarkers such 
as cystatin C, kidney injury molecule-1, neutrophil gelatinase-
associated lipocalin, and liver-type fatty acid binding protein (12), for 
early detection of kidney damage prior to serum creatinine elevation, 
these biomarkers are limited in their diagnostic accuracy (12–14). As 
a result, further research is needed on tools that can help predict AKI 
in patients with AHF early.

Acute kidney injury may arise from various etiological factors, 
rendering early detection challenging in individuals presenting 
with AHF (15). The timely identification of AKI based on a singular 
factor is arduous. Nomograms, as predictive instruments (16), 
construct graphical representations derived from statistical models 
to aid in clinical decision-making by estimating the likelihood of 
a clinical event through the consideration of multiple weighted 
factors (17, 18). This study was conducted with the objective of 
developing and validating a simple and clinically useful dynamic 
nomogram for predicting early AKI in AHF patients admitted to 
the intensive care unit (ICU).

Methods

The methodologies described in this article are consistent with the 
guidelines established in the Transparent Reporting of a Multivariable 
Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) 
statement (19).

Database

Study data was retrieved from the Medical Information Mart for 
Intensive Care IV (MIMIC-IV) database (version 2.2), a 
comprehensive critical care database that is publicly accessible and 
based in the United  States (20). The MIMIC IV database collects 
clinical data from more than 190,000 patients and 450,000 
hospitalizations admitted to Beth Israel Deaconess Medical Center 
from 2008 to 2019. The database records detailed information such as 
patient demographic information, laboratory tests, medication, vital 
signs, surgical procedures, disease diagnosis, drug management, and 
follow-up survival status. The Institutional Review Boards of Beth 
Israel Deaconess Medical Center (Boston, MA) and Massachusetts 
Institute of Technology (Cambridge, MA) granted approval for the 
establishment of the IV database, resulting in a waiver of informed 
consent for this study. Author L-H F completed the National Institutes 
of Health online training course (certification number 35897462) to 
access the MIMIC-IV database (version 2.2).

Participants

Adult patients aged 18 years or older, who were admitted to the 
ICU with a diagnosis of acute heart failure (including both acute 
systolic heart failure and/or acute diastolic heart failure), based on the 
International Classification of Diseases (ICD), 9th or 10th revision 
codes, were selected from the MIMIC-IV database. This cohort 
includes both patients who had AHF on ICU admission and those 
who developed AHF during their ICU stay. Patients who had acute 
kidney injury prior to admission to the intensive care unit were 
excluded in the study. In cases where a patient had multiple admissions 
to the ICU, only data from their initial admission was included in 
the analysis.

A pre-seeded random number generator (123) in R software 
version 4.3.3 was employed to allocate patients into groups, which 
were subsequently divided into derivation and validation sets at a 
ratio of 7:3.

Data extraction

Data extraction was performed using PostgreSQL tools (V.1.13.1). 
The following information was extracted directly or calculated using 
data from the database: Age, sex, laboratory variables, chronic medical 
conditions, comorbidities, mechanical ventilation records, the time of 
AKI, and administration of drugs. Laboratory variables including 
hemoglobin (Hb), glucose, serum creatinine (Scr), and albumin (Alb) 
were extracted and analyzed. Chronic medical conditions such as 
chronic obstructive pulmonary disease (COPD), chronic kidney 

Abbreviations: AKI, acute kidney injury; AHF, acute heart failure; MIMIC-IV, Medical 

Information Mart for Intensive Care IV; SCr, Serum creatinine; COPD, chronic 

obstructive pulmonary disease; CKD, chronic kidney disease; intensive care unit; 

ICU, LASSO, least absolute shrinkage and selection operator; DCA, decision curve 

analyses; KDIGO, Kidney Disease Improving Global Outcomes; TRIPOD, Transparent 

Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis; 
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disease (CKD), diabetes, chronic liver disease, and hypertension were 
identified in the study population. Malignancies were not identified as 
a comorbidity in our cohort, and therefore, were not included in the 
analysis. Conditions such as acute pancreatitis and sepsis, which are 
known to contribute to the development of acute heart failure, were 
documented based on recorded ICD-9 or ICD-10 codes in the 
MIMIC-IV database. Treatment regimens for patients consisted of 
vasoactive drugs, diuretics, aminoglycosides, and human albumin. 
Science-based, clinically important, and already-identified predictors 
were used to assess a priori risk factors for AKI (21–23).

For all laboratory test result parameters, were measured during 
the first 24 h in the ICU. And the use of diuretics and aminoglycosides 
was categorized as any administration of these medications prior to 
the occurrence of AKI during the ICU stay for any indication.

Missing data handling

Within the MIMIC-IV database, the prevalence of missing data is 
notable. Nevertheless, the exclusion of patients with incomplete data 
poses a risk of introducing substantial bias into the study. To address 
missing data, all variables utilized in the analyses were carefully 
considered. It was observed that less than 10% of missing values were 
present across all variables. Consequently, imputation was performed 
by substituting missing values with means for continuous variables 
exhibiting normal distributions and with medians for continuous 
variables displaying skewed distributions (24). Furthermore, our study 
also did not include any missing dichotomous variables.

Definitions and outcomes

The primary outcome was the occurrence of AKI during ICU stay. 
The KDGIO criteria were used to define AKI (11). Twenty-four urine 
output criteria to define AKI were not used because urine output was 
not reliably collected. Vasoactive drugs, diuretics, and aminoglycosides 
were classified as any instances of their administration during the 
patient’s ICU stay for any indication. Triglyceride glucose (TyG) index 
was computed using the following formula: Ln (Triglycerides [mg/
dl] × Glucose [mg/dl]/2) (25).

Statistical analysis

SPSS version 26.0 (IBM, Armonk, NY, United  States) and R 
version 4.2.1 were used for statistical analyses. Two-sided p-values 
were used throughout, and p < 0.05 was considered statistically 
significant. A categorical variable is presented as a percentage, while a 
continuous variable is presented as a mean ± SD, median, or range, 
depending on their distribution normality. A chi-square test was used 
for categorical variables and a t-test or Wilcoxon rank sum test for 
continuous variables based on their distributions.

To improve both the precision of predictions and the clarity of 
interpretation, the study utilized least absolute shrinkage and selection 
operator (LASSO) regression analysis to select and regulate variables (26). 
The variables chosen in the LASSO regression model within the 
derivation set were subsequently evaluated through univariate logistic 
regression to assess their significance in predicting AKI (27). Variables 

with p < 0.05 in the initial univariate logistic analyses were subsequently 
evaluated through multivariable logistic regression utilizing a backward 
stepwise selection approach. Following the development of a predictive 
model using multivariable logistic regression, a clinical prediction 
nomogram and an interactive web-based application for estimating the 
probability of AKI were created using Shiny apps.

Nomogram performance was assessed in both the derivation 
and validation sets using discrimination and calibration (28). The 
nomogram’s discrimination was evaluated using the C-index, which 
varies from 0.5 (indicating no discrimination) to 1.0 (indicating 
perfect prediction). Calibration of the nomogram was assessed 
through a visual calibration plot comparing the predicted and 
actual probability value of AKI occurrence. Additionally, 1,000 
bootstrap resamples were performed for internal validation to 
evaluate the predictive accuracy of the nomogram. In addition, the 
clinical value of the nomogram was assessed by decision curve 
analysis (DCA), which can determine the net benefit of predictors 
and models (29).

Results

Characteristics of patients

A total of 4,467 patients with acute heart failure was included in the 
study, and their characteristics are presented in Table 1. As part of the 
derivation set, 3,129 patients were enrolled, and 1,338 patients were 
included in the validation set. The incidence of AKI did not show a 
significant difference (p = 0.256) between the derivation (14%) and 
validation (15.3%) datasets. Despite the patients being categorized based 
on admission timing, their clinical characteristics and laboratory results 
were similar, suggesting that they could serve as both derivation and 
validation data.

Model development and specifications of 
AKI

The LASSO regression analysis was employed to simplify the 
model by reducing the number of features from 22 to 12 potential 
predictors within the derivation set, as depicted in Figures 1A,B. The 
predictors linked to AKI identified by the LASSO regression method 
are outlined in Table  2 (lambda = 0.003353464). Subsequently, a 
multivariable logistic regression analysis was conducted to further 
investigate the variables that passed through both univariate logistic 
regression and LASSO analyses.

The ultimate multivariable logistic model revealed five predictors 
(sepsis, use of human albumin, mechanical ventilation, use of 
aminoglycosides, and Scr levels measured in μmol/L). The nomogram 
(Figure 2A) illustrates the model that integrates independent predictors 
and is accessible online1, as depicted in a screenshot in Figure 2B. To 
utilize the interactive online nomogram, users are required to choose 
between “Yes” or “No” in the respective options, input the relevant 

1 https://dynamicnomogram6666.shinyapps.io/Acute-heart-failure/
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TABLE 1 Characteristics of patients in the derivation and validation sets.

Variable Validation set
(n = 1,338)

Derivation set
(n = 3,129)

p-value

AKI, n(%)

  No 1,133 (84.7) 2,692 (86.0) 0.256

  Yes 205 (15.3) 437 (14.0)

Race, n(%)

  White 872(65.2) 2037 (65.1) 0.762

  Black 320 (23.9) 729 (23.3)

  Other 146 (10.9) 363 (11.6)

Sex, n(%)

  Female 636 (47.5) 1,516 (48.4) 0.597

  Male 702 (52.5) 1,613 (51.6)

Age, years (median [IQR]) 75 [64,85] 76 [64,86] 0.429

CKD, n(%)

  No 1,224 (91.5) 2,803 (89.6) 0.058

  Yes 114 (8.5) 326 (10.4)

COPD, n(%)

  No 1,315 (98.3) 3,066 (98.0) 0.591

  Yes 23 (1.7) 63 (2.0)

Coronary, n(%)

  No 1,240 (92.7) 2,876 (91.9) 0.421

  Yes 98 (7.3) 253 (8.1)

T2DM, n(%)

  No 1,216 (90.9) 2,866 (91.6) 0.472

  Yes 122 (9.1) 263 (8.4)

Hypertension, n(%)

  No 1,149 (85.9) 2,675 (85.5) 0.773

  Yes 189 (14.1) 454 (14.5)

Sepsis, n(%)

  No 1,261 (94.3) 2,964 (94.7) 0.562

  Yes 77 (5.8) 165 (5.3)

Chronic liver disease, n(%)

  No 1,330 (99.40) 3,113 (99.5) 0.889

  Yes 8 (0.6) 16 (0.5)

Use of human albumin, n(%)

  No 1,308 (97.8) 3,074 (98.2) 0.334

  Yes 30 (2.2) 55 (1.8)

Acute pancreatitis, n(%)

  No 1,334 (99.7) 3,127 (99.9) 0.129

  Yes 4 (0.3) 2 (0.1)

Use of diuretic, n(%)

  No 272 (20.3) 594 (19.0) 0.317

  Yes 1,066 (79.7) 2,535 (81.0)

Use of vasoactive drug, n(%)

  No 1,258 (94.0) 2,967 (94.8) 0.311

  Yes 80 (6.0) 162 (5.2)

(Continued)
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laboratory test results, and subsequently select “Predict” to ascertain 
the likelihood of AKI occurrence during patients’ ICU admission.

Nomogram performance in the derivation 
set

The C-index of the prediction nomogram was determined to 
be 0.81 [95% confidence interval (CI): 0.78–0.83] for the derivation 
set. The calibration curve depicted in Figure  3A demonstrates a 
favorable alignment between the predicted and observed outcomes for 
the probability of AKI in the derivation set. The non-significant result 

(p = 0.540) of the Hosmer–Lemeshow test suggests that the model did 
not exhibit over-fitting.

Nomogram performance in the validation 
set

In the validation set, the nomogram demonstrated a C-index of 
0.79 (95%CI: 0.76–0.83) for predicting AKI. Additionally, the 
calibration curve (Figure 3B) indicated acceptable consistency like the 
derivation set, between the observed and nomogram-predicted. 
Probabilities of AKI.

TABLE 1 (Continued)

Variable Validation set
(n = 1,338)

Derivation set
(n = 3,129)

p-value

Mechanical ventilation, n(%)

  No 627 (46.9) 1,525 (48.7) 0.264

  Yes 711 (53.1) 1,604 (51.3)

Use of aminoglycosides, n(%)

  No 1,304 (97.5) 3,065 (98.0) 0.355

  Yes 34 (2.5) 64 (2.0)

Hb, g/L (median [IQR]) 104 [99, 110] 104 [98, 109] 0.847

Scr, μmmol/L(median [IQR]) 123.8 [88.4, 187.9] 123.8 [97.2, 176.8] 0.423

BUN, mmol/L(median [IQR]) 11.1 [7.5, 18.2] 10.7 [7.1, 16.8] 0.085

Alb, g/L (median [IQR]) 38.0 [33.0, 41.0] 38.0 [34.0, 41.0] 0.261

TyG index (median [IQR]) 8.8 [8.3, 9.2] 8.8 [8.3, 9.3] 0.012

Lactate, mmol/L 2.3(1.7,2.9) 2.1(1.6,2.9) 0.135

AKI, acute kidney injury; COPD, chronic obstructive pulmonary disease; CKD, chronic kidney disease; ALB, albumin; BUN, Blood urea nitrogen; TyG index, triglyceride glucose index.

FIGURE 1

LASSO regression analysis for variables selection in predicting AKI in AHF patients. Panel A shows the deviance (binomial) as a function of the log of the 
regularization parameter λ. The red dots represent the deviance at each λ value, with vertical dotted lines indicating the selected λ values based on 
cross-validation. Panel B illustrates the evolution of coefficients as a function of the log of λ, with each line representing a feature. As λ increases, the 
coefficients shrink, with some becoming exactly zero, indicating feature selection.
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Clinical use of nomogram

Figure 4 displays the results of decision curve analysis for the 
nomogram, indicating the high-risk threshold probability at which a 
clinician may determine a patient’s risk of AKI and potential benefit 
from intervention. The decision curve suggests that utilizing the 
nomogram for AKI prediction can provide significant benefit when a 
clinician’s threshold probability >5%, with the nomogram 
demonstrating superior predictive power compared to a single 
predictor within this range.

Discussion

We have created and confirmed the accuracy of a nomogram 
designed to forecast the likelihood of AKI in ICU patients with AFH 
through a straightforward and feasible method. This nomogram, which 
includes variables such as sepsis, use of human albumin, mechanical 

ventilation, use of aminoglycosides, and Scr levels, can predict the 
occurrence of AKI in AHF patients upon their admission to the ICU, 
aligning with the current emphasis on personalized medicine. Our 
model demonstrated consistent performance in both the derivation and 
validation groups, showing strong discrimination and calibration 
capabilities. When comparing the approach of categorizing all patients 
as either non-AKI or AKI, the nomogram demonstrates superior 
clinical utility by yielding a net benefit exceeding that of any individual 
factor for a risk threshold greater than 5%.

As the kidneys are particularly sensitive to abrupt changes in 
cardiac output, acute renal hypoperfusion results in a decrease in 
glomerular filtration rate, urine output, and parenchymal oxygenation, 
resulting in acute kidney injury. Therefore, on the basis of acute heart 
failure, any factor affecting renal hypoperfusion or renal parenchymal 
damage increases the risk of AKI. The circulatory system links the 
heart and kidneys, meaning that primary dysfunction in one often 
leads to secondary dysfunction or damage in the other (7). Oxidative 
stress, inflammation, and an overactive renin-angiotensin-aldosterone 

TABLE 2 Univariate and multivariate logistic regression analyses of variables relating to AKI in the derivation set.

Variable Univariate analysis Multivariate analysis

OR (95% CI) P-value OR (95% CI) P-value

Sex

  Female Reference
0.858

  Male 1.02(0.83,1.25)

Sepsis

  No Reference
<0.001

Reference
<0.001

  Yes 19.4(13.7,27.8) 28.5(19.0,42.8)

Chronic liver disease

  No Reference
0.581

  Yes 1.4(0.4,5.0)

Use of human albumin

  No Reference
<0.001

Reference
<0.001

  Yes 16.4(9.1,29.6) 15.3(7.6,30.4)

Acute pancreatitis

  No Reference
0.198

  Yes 6.2(0.4,98.9)

Use of vasoactive drug

  No Reference
0.552

  Yes 831410.0(0, inf)

Mechanical ventilation

  No Reference
<0.001

Reference
<0.001

  Yes 4.5(3.5,5.7) 5.1(3.8,6.8)

Use of aminoglycosides

  No Reference
<0.001

Reference
<0.001

  Yes 7.5(4.5,12.4) 4.0(2.2,7.3)

Scr 1.1(1.1,1.2) <0.001 1.1(1.0,1.2) <0.001

BUN 1.2(1.0,1.3) 0.008 1.1(0.9,1.2) 0.363

Alb 0.8(0.7,0.9) <0.001 0.9(0.8,1.0) 0.166

TyG index 1.2(1.0,1.4) 0.008 1.1(1.0,1.3) 0.114
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system are key contributors to cardiorenal syndrome. Heart-kidney 
interactions are often influenced by factors such as obesity, metabolic 
syndrome, cachexia, diabetes, hypertension, proteinuria, uremia, and 
anemia, which predispose individuals to AKI and heart failure (7, 8). 
Moreover, sepsis, a well-established cause of AKI, further complicates 

this interaction. In sepsis, the kidney is often one of the first organs 
affected, with up to two-thirds of septic shock patients developing AKI 
(30). Here, microcirculatory dysfunction and systemic inflammation 
are pivotal in driving AKI, highlighting the intricate relationship 
between heart and kidney dysfunction in critically ill patients (31).

FIGURE 2

Nomogram for predicting the probability of AKI in AHF patients. (A) Nomogram for estimating the risk of AKI. Points are assigned for each variable, 
including sepsis, use of human albumin, mechanical ventilation, use of aminoglycosides, and serum creatinine (Scr) levels. The total points correspond 
to the probability of AKI. (B) An example of using the nomogram: input values for sepsis (No), use of human albumin (No), mechanical ventilation (No), 
use of aminoglycosides (No), and Scr (60 μmol/L). The predicted probability of AKI during ICU stay is 2.8%.

FIGURE 3

Calibration curves for the nomogram predicting AKI in AHF patients. (A) Calibration curve in the derivation set. The x-axis represents the nomogram-
predicted probability of AKI, and the y-axis represents the actual probability of AKI. The diagonal dashed line represents a perfect prediction by an ideal 
model. The solid line shows the performance of the nomogram, where a closer fit to the diagonal line indicates better predictive accuracy. The dotted 
line indicates apparent predictions without bias correction. (B) Calibration curve in the validation set. The axes and lines are the same as in (A). The solid 
line represents the bias-corrected performance of the nomogram, showing the agreement between predicted and actual outcomes in the validation 
cohort.
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Albumin combined with diuretics (such as furosemide) is a 
common treatment for acute heart failure (32), however, there is 
insufficient evidence to support widespread use of furosemide and 
albumin in clinical practice for the benefit of patients with acute heart 
failure (32, 33). In individuals presenting with AHF and fluid overload, 
diuretic therapy aimed at decongestion often results in elevated serum 
creatinine levels and AKI. Nonetheless, in the long term, effective 
decongestion is associated with improved survival rates and a 
reduction in hospital admissions, despite the initial increase in serum 
creatinine and occurrence of AKI (34). Additionally, tolvaptan has 
been shown to decrease the incidence of AKI in patients with acute 
decompensated heart failure and advanced chronic kidney disease 
(35).The association between the administration of human blood 
albumin and the incidence of acute kidney injury is a topic of debate 
(36, 37). Our study found a positive correlation between albumin use 
and the risk of AKI in individuals with acute heart failure. However, 
it is important to note that albumin is typically administered to more 
critically ill patients, and it is possible that the observed association 
reflects the underlying severity of the patients’ condition rather than 
a direct effect of albumin itself. In other words, sicker patients may 
be more likely to receive albumin, and it is this illness severity, rather 
than the albumin administration itself, that may contribute to the 
higher risk of AKI.

Additionally, while our model highlights Scr as a predictor, 
we acknowledge that the lower creatinine values in some patients 

appear counterintuitive, as patients with CKD are typically more 
susceptible to AKI due to impaired autoregulation. The role of 
creatinine in AKI prediction may therefore be more complex and 
warrants further investigation. Furthermore, the use of mechanical 
ventilation, which we  also found to be  associated with AKI, can 
influence AKI risk through several mechanisms, including changes 
in hemodynamics, alterations in neurohormonal levels, and 
induction of systemic inflammation (38, 39), a number of studies 
have shown that mechanical ventilation is associated with the 
occurrence of AKI in intensive care unit patients (40–42), and our 
study also obtained similar results. Heart failure often involves 
systemic inflammation, with immune dysregulation and oxidative 
stress being a key factor in its progression and AKI development (9). 
These processes play a crucial role in cardiorenal interactions, 
especially concerning inflammation-induced tubular damage and 
microcirculatory disturbances. Research indicates that the SH2D2A 
gene is instrumental in regulating T cell activation and immune 
response through the T cell-specific adaptor protein it encodes (43), 
this gene is implicated in the activation of inflammatory pathways, 
including the NF-κB signaling pathway and cytokine regulation. 
Dysfunction in SH2D2A may elevate the risk of AKI in the context 
of heart failure, underscoring the necessity to investigate its 
mechanisms for the development of targeted therapeutic 
interventions. It is no doubt that aminoglycoside antibiotics are 
associated with the development of acute kidney injury as a result of 

FIGURE 4

Decision curve analysis for the nomogram predicting AKI in AHF patients. Decision curve analysis comparing the net benefits of the nomogram and 
individual predictors across a range of high-risk thresholds. The x-axis represents the high-risk threshold for predicting AKI, and the y-axis represents 
the net benefit. The red line represents the nomogram, showing the highest net benefit across most thresholds compared to individual predictors such 
as sepsis, use of human albumin, mechanical ventilation, use of aminoglycosides, and Scr.
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renal toxicity. The administration of aminoglycoside antibiotics to 
patients with acute heart failure represents a high-risk population for 
AKI. Our findings further demonstrate a positive correlation between 
the use of aminoglycoside antibiotics and the risk of 
AKI. Consequently, a nomogram was constructed incorporating 
sepsis, human albumin administration, mechanical ventilation, and 
aminoglycoside usage, utilizing serum creatinine levels as a predictor 
for assessing the likelihood of AKI in individuals with AHF. This 
nomogram addresses the issue of inadequate sensitivity of serum 
creatinine and offers a foundation for early AKI intervention in 
AHF patients.

Stratified AKI risk management in patients with AHF is 
necessary because of the wide variation in patient outcomes. The 
Forman risk score (44), originally introduced in 2004 with a focus 
on hospitalized heart failure patients, underwent external validation 
in AHF patients and has since become widely recognized as a 
prominent predictive model on a global scale. Subsequent to the 
development of the Basel risk score, additional prediction models 
were introduced by Wang et al. and Zhou et al. between 2011 and 
2016 (45–47). Nevertheless, variations in the definition of AKI or 
worsening renal function are evident across these studies, 
attributable to changes in AKI classification from the RIFLE and 
AKIN criteria to the KDIGO guidelines in recent years (48). 
Therefore, most of the models are no longer applicable to the current 
AKI diagnostic criteria, and it is necessary to develop a new clinical 
prediction model based on the current AKI diagnostic criteria to 
provide personalized treatment for patients with AHF. While the 
AKI prediction model created by Wang et al. adheres to KIDGO’s 
diagnostic criteria for AKI (46), it is limited by its reliance on manual 
calculation methods. In contrast, our model offers automated risk 
value calculations for AKI upon input of relevant variables, 
streamlining the process and enhancing the efficiency of clinical 
services. Preoperatively, physicians and patients can use this easy-
to-use scoring system to predict their risk of AKI, a move in line 
with personalized medicine’s current trend (49).

The primary and concluding rationale for utilizing the 
nomogram lies in the necessity to assess the specific requirements 
for additional treatment or care on an individual basis. Nevertheless, 
the predictive accuracy, discriminatory ability, and calibration of the 
nomogram may not fully encompass the clinical implications of a 
given level of discrimination or extent of miscalibration (50–52). 
Hence, in order to validate the clinical utility of our nomogram, 
we conducted an evaluation to determine if decisions aided by the 
nomogram would lead to enhanced patient outcomes. Given the 
challenges associated with conducting a multi-institutional 
prospective validation due to the complexities of collecting clinical 
data from various institutions, decision curve analysis was employed 
as an alternative approach in this study. This innovative methodology 
provides a means to assess the clinical implications of decisions 
based on threshold probability, ultimately allowing for the 
calculation of net benefit (49, 53). The decision curve analysis in this 
study demonstrates that utilizing a nomogram for predicting AKI is 
more beneficial when the threshold probability for patients or 
physicians exceeds 5%, compared to either treating all patients or 
treating none.

There are certain limitations to this study. First, this study is 
conducted in a monocentric manner within a single ICU, despite 
its large cohort size. As a result, the generalizability of the findings 

and the dynamic online nomogram could be limited in Europe 
and other settings different from US. Further research is necessary 
to validate this model in diverse settings. Second, due to the 
absence of novel biomarkers, including cystatin C, neutral gelatin-
associated lipocalcin, N-terminal pro B-type natriuretic peptide, 
urinary neutrophil gelatinase-associated lipocalin, and urinary 
angiotensinogen, in the MIMIC database, we  were unable to 
enhance the predictive capacity of the model and substantiate the 
evaluation of current models. Third, due to the retrospective 
nature of the study, inherent biases such as selection bias and 
confounding factors cannot be fully eliminated. While stringent 
inclusion criteria were implemented to ensure that both the 
control and case groups accurately represented real-world 
conditions, potential biases still exist, particularly in the selection 
of medications (e.g., aminoglycosides) and conditions like sepsis, 
which may not be  representative of all clinical settings. 
We acknowledge these biases and recommend further prospective 
studies to confirm the robustness of the model. Finally, a key 
limitation of this study is that it does not reflect the severity of 
acute heart failure, which is an important factor in the 
development of AKI. Clinicians often consider the severity of 
heart failure when managing AKI, as more severe heart failure is 
associated with a higher likelihood of developing 
AKI. Unfortunately, the MIMIC database does not include 
comprehensive information on heart failure severity, and thus, 
this limitation should be  considered when interpreting 
our findings.

Conclusion

Our research introduces a novel online nomogram that integrates 
clinical risk factors and enables the personalized prediction of AKI in 
patients with AHF upon admission to the ICU. This tool has the 
potential to assist in identifying AHF patients who would derive the 
greatest benefit from interventions aimed at preventing and 
treating AKI.
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