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Background: Osteoporosis (OP), marked by reduced bone density and structural 
decay, poses a heightened risk of fractures. Our study formulates a predictive 
diagnostic model for OP by analyzing differential gene expression, thereby 
improving early diagnosis and therapeutic approaches.

Methods: Using GSE62402, GSE56815, and GSE35958 datasets from the Gene 
Expression Omnibus (GEO) database, we identified differentially expressed genes 
(DEGs) via R packages, and evaluated the underlying molecular mechanisms 
by network analysis. Immune checkpoint and drug sensitivity were analyzed 
to construct and validate diagnostic models. The single-sample gene-set 
enrichment analysis (ssGSEA) was used to assess immune cell infiltration; the 
CIBERSORT algorithm was used to evaluate immune cells within the different 
subtypes of OP.

Results: The study identified 1,297 DEGs, with 14 DEGs related to autophagy, 
osteogenesis, and adipogenesis (AP&OG&AGRDEGs) showing significant 
expression differences between OP and control groups, including seven 
upregulated and seven downregulated genes (p-value < 0.05). The analysis 
results from gene ontology (GO), gene set enrichment analysis (GSEA), and 
the Kyoto encyclopedia of genes and genomes (KEGG) indicated that oxidative 
stress and inflammation-related signaling pathways are closely connected to 
OP. Immune checkpoint analysis identified differential expression of eight genes 
between OP patients and controls (p-value < 0.05). The ssGSEA findings showed 
significant variations in immune cell infiltration levels, particularly of natural 
killer cells, Th2 cells, mast cells, and plasmacytoid dendritic cells (p-value < 
0.05). The diagnostic model, developed utilizing logistic regression, support 
vector machine (SVM), and the least absolute shrinkage and selection operator 
(LASSO), pinpointed nine pivotal genes—AKT1, NFKB1, TNF, CTNNB1, LMNA, 
BHLHE40, BMP4, WNT1, and COPS3—and confirmed their diagnostic efficacy 
through validation. In further subgroup analysis, eight types of immune cells 
were found to be differentially expressed across various risk groups. Subtype 
analysis based on ConsensusClusterPlus revealed differential expression of six 
key genes in distinct subtypes of OP.
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Conclusion: This comprehensive study established a network of OP-associated 
genes, and provides insights into the molecular mechanisms involving immune 
responses in OP. It identified key diagnostic genes and analyzed immune cell 
infiltration to better understand OP pathogenesis. The study underscores 
the importance of personalized treatment and the potential role of immune 
modulation in managing OP.
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Introduction

Osteoporosis (OP) is a systemic skeletal disorder characterized by 
reduced bone density and the deterioration of bone microstructure, 
resulting in increased bone vulnerability and an elevated propensity for 
fractures (1). Dual-energy X-ray absorptiometry (DXA) remains the 
gold standard for diagnosis; however, DXA primarily detects changes in 
bone mineral density (BMD), exhibits limited predictive power for early-
stage OP, and cannot provide molecular-level information. Annually, 
there are approximately 8.9 million osteoporotic fractures worldwide (2). 
Mortality rates for osteoporotic hip fractures vary widely over 5 years 
post-fracture, ranging from 38 to 64% depending on age, and ranging 
from 29 to 50% for vertebral fractures (3). A variety of therapeutic 
interventions have been developed for treating OP, including 
bisphosphonates, estrogen therapy to selective estrogen receptor 
modulators (SERMs), calcitonin, denosumab, and teriparatide (4). 
Though current treatments can improve bone loss, long - term use may 
cause adverse reactions. Thus, there’s an urgent need for novel molecular 
markers and diagnostic models to boost the accuracy of early diagnosis 
and supply a basis for personalized treatment.

As an insidious chronic disease, OP is influenced by numerous 
genetic and extrinsic factors, including autophagy activation (5), chronic 
inflammation (6), oxidative stress (7), autoimmunity (8), and bone 
metabolism imbalance. Enhancing autophagy within bone marrow 
mesenchymal stem cells (BMSCs) could promote bone formation. In 
older individuals, the osteogenic potential of BMSCs diminishes, while 
their propensity for adipogenic differentiation increases (9). 
Additionally, older individuals’ BMSCs exhibit significantly reduced 
autophagy levels compared to younger individuals, with the potential 
for autophagy activation to mitigate age-induced cellular decline (10). 
Based on previous findings, immune checkpoint molecules play a role 
in skeletal system inflammation resulting in OP. Chronic low-grade 
inflammation state could be influenced by estrogen deficiency (11). In 
ovariectomized mice (OVX), the proliferation of TNF-producing T cells 
increases the bone marrow (12). RANKL, a member of the TNF 
superfamily, facilitates the genesis and functionality of osteoclast (OC) 
through its binding to the RANK receptor present on OC progenitor 
cells (13). Moreover, the immune checkpoint molecule programmed cell 
death protein 1 (PD-1) could enhance osteoclastic activity and promote 
osteoclastogenesis, while programmed cell death 1 ligand 2 (PD-L2) 
could reduce the number of OC (14). Overall, current studies on OP 
molecular mechanisms predominantly focus on isolated pathways. 
However, integrative analyses bridging autophagy, osteogenesis, 
adipogenesis, and immune infiltration remain scarce. Our study 
pioneers a multi-omics approach to construct a molecular network 
encompassing these four dimensions, offering novel insights into OP 
diagnosis and immunomodulatory therapies.

In the past few years, using previous data, a vast number of genetic 
alterations have been screened at the genome level using microarray 
technology and bioinformatic analysis (15). Using microarray 
profiling, signaling pathways, biological processes, and promising 
targets have been identified for anti-OP. Recently, several microarray 
and bioinformatics studies have significantly advanced our 
understanding of the molecular events underlying OP pathogenesis 
(16, 17). Based on three datasets, 52 OP vs. 57 non-OP patients, a 
bioinformatics study identified 10 OP hub genes and six diagnostic 
genes; the results were verified in OP patients (18). However, the small 
RNA-related regulatory network remains underexplored. Ferroptosis, 
closely related to inflammation and immunity, has also been implicated 
in OP (19). In another study, with five OP vs. four non-OP patients 
data, bioinformatics identified five genes that are highly correlated 
with ferroptosis and OP; the result was validated in OVX mice (16). 
However, immune checkpoint analysis was included, and the small 
sample sizes and missing genotypic data may have led to false positives 
and reduced reliability of the results. There are few bioinformatics 
research data on the relationship between autophagy and OP.

Consequently, our study aims to integrate data from three mRNA 
microarray datasets retrieved from the Gene Expression Omnibus 
(GEO) database, focusing on identifying genes with substantial 
differential expression between blood samples from OP patients and 
healthy individuals. This step is fundamental for pinpointing the genetic 
signatures of OP. To further dissect the intricate molecular landscape, 
network analysis is essential for revealing the complex interactions and 
potential mechanisms driving OP progression, particularly the interplay 
between autophagy, osteogenic, and adipogenic differentiation. Building 
on these insights, we  proceed with immune checkpoint and drug 
sensitivity analysis to identify therapeutic targets. Concurrently, 
we  constructed and validated a diagnostic model to enhance early 
detection. By constructing small RNA regulatory networks and 
performing immune infiltration analysis, we  aimed to classify OP 
subtypes, facilitating progress toward personalized medicine. Our 
research has established a comprehensive network of OP that 
encompasses autophagy, osteogenesis, and adipogenesis. This framework 
is a significant step forward in understanding the molecular mechanisms 
of OP and advancing its diagnosis at the systems biology level.

Materials and methods

Data download

The datasets pertinent to OP, namely GSE62402, GSE56815 (20), 
and GSE 35958 (21), were extracted from the GEO database utilizing 
the R package GEOquery (22). For more information, refer to 
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Supplementary Table S1. In the datasets, GSE62402 has five samples 
with OP and five samples without; GSE56815 has 40 OP samples and 
40 without; and GSE35958 has another five OP samples and four 
without. GSE35958 was selected as an independent validation set due 
to its complementary sample source (BMSCs) and phenotypic 
consistency (OP vs. non-OP) with the combined datasets (peripheral 
blood). Despite its small sample size (5 OP vs. 4 controls), its platform 
compatibility (GPL570) and probe standardization ensured validation 
reliability. All OP and control samples were included in this study.

Autophagy-related genes (APRGs), osteogenic-related genes 
(OGRGs), and adipogenic-related genes (AGRGs) were retrieved 
from the GeneCards database (23). Upon querying ‘Autophagy’, 
we  identified genes as ‘Protein Coding’ with a ‘Relevance Score’ 
threshold of 0.5 or higher, resulting in the identification of a total of 
5,152 APRGs. Additionally, by employing ‘Autophagy’ as a search term 
on the PubMed database (24), a collection of 223 published APRGs 
was procured. Upon consolidation and deduplication, a total of 5,177 
APRGs were pinpointed, with detailed information presented in 
Supplementary Table S2. Subsequently, keyword searches for 
‘Osteogenic’ and ‘Adipogenic’ identified 971 OGRGs and 292 AGRGs, 
respectively, with their specific characteristics outlined in 
Supplementary Tables S3, S4.

The datasets GSE62402 and GSE56815 were processed to remove 
batch effects using the R package sva (25), resulting in the formation 
of Combined Datasets (CDs). This dataset comprises 45 OP samples 
and an equal number of control samples. Subsequently, the R package 
limma (26) was employed for the normalization of the CDs, ensuring 
the standardization of annotation probes. The dataset GSE35958 
served as a validation set following the probe annotation process.

OP-related differentially expressed genes

Within the CDs, differential gene expression was analyzed for the 
OP and control groups with the limma R package (26). DEGs were 
filtered by |logFC| > 0 and p-value < 0.05. Upregulation was denoted by 
logFC > 0 and p-value < 0.05, and downregulation by logFC < 0 and the 
same p-value threshold. The volcano plot, created with ggplot2, and the 
heatmap from pheatmap, visualized the DEGs and gene expression 
profiles, respectively. To obtain the AP&OG&AGRDEGs, an intersection 
was taken between all the DEGs identified from the CDs and the 
autophagy, osteogenic, adipogenic-related genes (AP&OG&AGRGs). 
This intersection was then visualized using a Venn diagram. The resulting 
genes were further characterized by their chromosomal locations, which 
were depicted by the R package RCircos (27). This visualization provided 
a genomic mapping of the AP&OG&AGRDEGs associated with OP.

Gene ontology and Kyoto encyclopedia of 
genes and genomes enrichment analysis

GO analysis, a prevalent tool for extensive functional enrichment 
assesses biological process (BP), cellular component (CC), and 
molecular function (MF) (28). The KEGG database is extensively 
utilized for its repository of genomic, pathway, disease, and drug data 
(29). Employing clusterProfiler (30) in R, we executed GO and KEGG 
enrichment analyses on the AP&OG&AGRDEGs, with statistical 

significance determined by an adjusted p-value < 0.05 and an 
FDR-value (q-value) < 0.25, using the Benjamini-Hochberg (BH) 
approach for p-value correction.

Gene set enrichment analysis

GSEA (31) assesses the collective influence of pre-defined gene 
sets on a phenotype by examining the distribution patterns of genes 
within a ranked list that correlates with the phenotype. In our research, 
the initial step involved segmenting the CDs into distinct OP and 
control cohorts. Subsequently, we  deployed the R package 
clusterProfiler to execute GSEA for the entire gene complement of the 
CDs, leveraging the logFC values. The GSEA parameters were 
configured with a seed value of 2020, a minimum gene set size 
threshold at 10, and a maximum gene set size capped at 500. This 
GSEA utilized gene sets derived from the Molecular Signatures 
database (MSigDB) (32), specifically the c2.cp.all.v2022.1.Hs.symbols.
gmt [all canonical pathways] (3050) gene sets. The selection criteria 
were p-value < 0.05 and q-value < 0.25.

Immune checkpoint and drug sensitivity 
analysis

Immune checkpoint genes (ICGs) are ligand-receptor pairs that 
could either inhibit or stimulate immune responses. They are vital in 
modulating the immune system to preserve balance and prevent 
autoimmune diseases. We identified 47 ICGs from published literature 
on the PubMed website (33), with specific gene names listed in 
Supplementary Table S5. We compared ICG expressions between the 
OP and control groups in the CDs, producing group comparison charts.

The Genomics of Drug Sensitivity in Cancer (GDSC) (34) 
database is a comprehensive public repository for data on cancer cell 
drug sensitivity and drug response molecular markers. Employing the 
pRRophetic algorithm (35), we predicted the sensitivity of OP patients 
to various anticancer drugs and small molecules using the expression 
profiles from the CDs to estimate IC50 values and visualized these 
findings in comparative charts.

Immune infiltration analysis of OP

Utilizing single-sample gene-set enrichment analysis (ssGSEA) 
(36), we quantified the infiltration abundance of distinct immune cell 
populations, including specific subtypes like activated CD8 + T cells 
and dendritic cells. The ssGSEA scores were indicative of the relative 
presence of these cells within the samples. We applied a stringent 
p-value filter of less than 0.05 to refine the dataset into an immune 
infiltration matrix. The comparative analysis revealed disparities in 
immune cell abundance between the OP group and control group 
across the CDs, as evidenced by the group charts. Finally, heatmaps 
were crafted using the R package pheatmap to visually represent the 
intricate relationships among immune cells and their associations with 
pivotal genes. Finally, scatter plots were constructed to represent the 
correlations with immune cells that exhibited the highest positive and 
negative associations with key genes.
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Establishment of OP diagnostic model

For the construction of an OP diagnostic model using the CDs, 
logistic regression was applied to the AP&OG&AGRDEGs. Logistic 
regression is the method of choice for examining the relationship 
between independent variables and a binary dependent variable, 
like the presence or absence of OP, with statistical significance set 
at a p-value < 0.05. The molecular expressions of the 
AP&OG&AGRDEGs that were integrated into the logistic 
regression model were subsequently depicted in a forest plot. 
Subsequently, leveraging the AP&OG&AGRDEGs identified in the 
logistic regression model, a support vector machine (SVM) model 
was formulated employing the SVM algorithm (37). The 
AP&OG&AGRDEGs were selected for their optimal balance 
between accuracy and error rate. Subsequently, a least absolute 
shrinkage and selection operator (LASSO) regression analysis was 
conducted on the AP&OG&AGRDEGs from the SVM model, 
utilizing the R package glmnet (38) with a seed parameter set to 
500. LASSO regression, an extension of linear regression, 
incorporates a penalty term (lambda times the absolute value of the 
slope coefficient) to mitigate overfitting, thereby enhancing the 
model’s predictive accuracy and generalizability. The outcome of the 
LASSO regression analysis is an OP diagnostic model with the 
AP&OG&AGRDEGs as pivotal genes. The findings were graphically 
represented through diagnostic and variable trajectory plots.

Validation of OP diagnostic model

A nomogram (39) is a visual tool that represents the correlation 
between multiple variables with a series of parallel lines on a Cartesian 
coordinate plane. Utilizing the outcomes from the LASSO logistic 
regression analysis, the rms R package was employed to create a 
nomogram that maps the interactions among the key genes. A 
calibration curve was generated through calibration analysis to assess 
the precision and discriminatory power of the OP diagnostic model 
predicated on these key genes. Employing the ggDCA R package, a 
decision curve analysis (DCA) (40) was conducted to plot the DCA 
graph based on the key genes identified. DCA offers a clear method 
for assessing the clinical value of predictive models, diagnostic tests, 
and molecular biomarkers. Following this, the pROC R package was 
utilized to generate the receiver operating characteristic (ROC) curve 
for the risk score and to compute the area under the curve (AUC), 
which serves to evaluate the diagnostic performance of the risk score’s 
gene expression levels for predicting OP. The computation of the risk 
score adheres to the following formula:

 
( ) ( )= ∗∑risk  i i

i
Score Coefficient gene mRNA Expression gene

Furthermore, the OP samples were stratified into high- and 
low-risk groups using the median RiskScore value. To delve deeper 
into the expression variances of the key genes within the high- and 
low-risk OP samples, comparative charts were crafted reflecting the 
expression profiles of these genes. Ultimately, the pROC R package 
was employed to trace the ROC curves and to compute the AUC, 
thereby assessing the diagnostic accuracy of the key gene expression 
levels in predicting the development of OP.

Profiling immune infiltration in high- and 
low-risk groups

With ssGSEA, we  quantified the variations in immune cell 
infiltration among high- versus low-risk OP samples, filtering significant 
samples at a p-value < 0.05 for comparative visualization. The pheatmap 
tool in R was subsequently applied to illustrate the correlational patterns 
between immune cells and their relationships with key genes across the 
risk-stratified OP groups. Ultimately, immune cells that had the highest 
positive and negative correlations with key genes were identified, and 
scatter plots were constructed to depict these correlations.

Key gene expression validation and 
correlation assessment

To delve deeper into the expression variances of key genes across the 
CDs and the validation set GSE35958, comparative expression charts 
were crafted for the OP and control groups in both datasets. Subsequently, 
the Spearman method was utilized to assess correlations among key gene 
expressions within the CDs and the GSE35958 dataset. The correlation 
heatmap, created with the R package pheatmap, visualized these findings.

Construction of regulatory network

MicroRNAs (miRNAs) are instrumental in the modulation of 
biological systems and genetic adaptation, targeting a diverse set of 
genes. The phenomenon of a single gene being regulated by multiple 
miRNAs is also prevalent. To decipher the intricate links between 
miRNAs and key genes, we conducted an analysis using the TarBase 
(41) database to identify miRNAs that are associated with key genes. 
Additionally, transcription factors (TFs) regulate gene expression by 
binding to key genes post-transcriptionally. Thereafter, the influence 
of these transcription factors on key genes was examined by utilizing 
data obtained from the ChIPBase database (42). Key gene-associated 
drug targets, both direct and indirect, were predicted through the 
Comparative Toxicogenomics Database (CTD) (43) to assess the 
connectivity between key genes and pharmaceuticals. The subsequent 
visualization of the regulatory networks, including mRNA-miRNA, 
mRNA-TF, and mRNA-Drug relationships, was accomplished with 
Cytoscape software.

OP subtypes construction

The algorithm of consensus clustering (44), which uses 
resampling to classify members into subgroups and to check the 
clusters’ coherence, was implemented via the R package 
ConsensusClusterPlus (45) to classify OP into its specific subtypes 
through the analysis of key genes. During this process, the cluster 
count was configured to vary between two and nine, executing 50 
iterations with 80% of the sample size drawn each time, using 
“kmeans” for the clustering algorithm and “pearson” as the distance 
metric in the analysis. Subsequently, heatmaps were generated to 
delineate the key gene expression variances among OP’s subtypes. 
Furthermore, comparative group charts were implemented to affirm 
the gene expression disparities. In conclusion, the pheatmap R 
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package was leveraged to exhibit the key genes’ correlation profiles 
within OP samples.

Immune infiltration analysis of subtypes of OP.
The ssGSEA quantifies global immune cell abundance via single-

sample gene set enrichment, while CIBERSORT (46) deconvolutes 
specific immune subsets using linear support vector regression. This 
dual approach comprehensively characterizes OP immune 
microenvironment heterogeneity and thus aid in assessing immune 
cell distribution and proportions in mixed cellular environments. In 
our research, the CIBERSORT algorithm was implemented, utilizing 
the LM22 gene signature matrix, and we filtered the data to include 
only those instances where the immune cell enrichment scores 
exceeded zero, culminating in the derivation of a detailed immune cell 
infiltration matrix. Subsequently, the pheatmap R package was used 
to demonstrate the correlation analysis between the LM22 immune 
cell signatures and the key genes, specifically within the contexts of 
Cluster1 and Cluster2.

Statistical analysis

Utilizing R software (Version 4.2.2), this article’s data processing 
and analysis presented continuous variables as mean ± standard 
deviation. For comparing any two groups, the Wilcoxon rank sum test 
was implemented. Spearman correlation analysis was the method for 
determining the correlation coefficients among various molecules, 
with a p-value threshold of less than 0.05 to denote statistical  
significance.

Results

Technology roadmap

The overarching structure of our research design is elegantly 
captured in Figure 1, which delineates the sequence of methodologies 
and analyses employed throughout the study.

Pooling of OP datasets

In our study, batch effects in the OP datasets GSE56815 and 
GSE62402 were mitigated using the ‘sva’ R package. After the batch 
effect correction, we consolidated the datasets into CDs. Subsequently, 
to visually assess the datasets before and after the batch effect removal, 
we employed distribution box plots and principal component analysis 
(PCA), as depicted in Figures 2A–D. The findings indicate that the 
batch effects within the CDs were largely neutralized.

DEGs related to autophagy, osteogenesis, 
and adipogenesis

To analyze the gene expression differences between OP and the 
control group, the ‘limma’ R package was used to conduct differential 
analysis on the CDs. In the ensuing analysis, all 1,297 DEGs were 
identified across the CDs that met the criteria of an absolute log fold 

change (|logFC|) > 0.00 and p-value < 0.05. Among these DEGs, 689 
genes were upregulated, characterized by a logFC > 0.00 and a p-value 
< 0.05, and 608 genes were downregulated (logFC < 0.00 and p-value 
< 0.05). The results of the differential analysis were presented using a 
volcano plot (Figure 3A).

To identify AP&OG&AGRDEGs, we intersected the set of all 
DEGs above with the set of genes related to autophagy, osteogenesis, 
and adipogenesis (AP&OG&AGRGs). A total of 14 
AP&OG&AGRDEGs were obtained and visualized using a Venn 
diagram (Figure  3B), including: AKT1, NFKB1, FOXO1, TNF, 
CTNNB1, LMNA, INSR, BHLHE40, RUNX2, IGFBP3, BMP4, 
SMARCA4, WNT1, and COPS3. Subsequently, the expression 
differences of these 14 AP&OG&AGRDEGs were analyzed and 
displayed by a heatmap (Figure 3C). Finally, the positions of the 14 
AP&OG&AGRDEGs on the human chromosomes were mapped 
using the R package RCircos, and a chromosomal location map was 
created (Figure  3D). The results indicate that the majority of 
the AP&OG&AGRDEGs are located on chromosomes 3, 6, 
14, and 19.

GO and KEGG enrichment analysis

To analyze the biological mechanisms involved with these 14 
AP&OG&AGRDEGs, we conducted GO and KEGG enrichment 
analysis, with detailed results presented in Supplementary Table S6. 
The analyses revealed that the AP&OG&AGRDEGs were 
significantly enriched in BP, including the regulation of smooth 
muscle cell proliferation, the regulation of cell death induced by 
oxidative stress, and the proliferation of smooth muscle cells. In 
terms of CC, they were enriched in the endoplasmic reticulum 
lumen, membrane raft, and membrane microdomain. For MF, they 
were involved in binding insulin-like growth factor I, insulin-like 
growth factor, and bHLH transcription factor. Additionally, they 
were enriched in biological pathways including insulin resistance, 
fluid shear stress and atherosclerosis, alcoholic liver disease, human 
papillomavirus infection, and longevity regulating pathways. The 
outcomes of the GO and KEGG enrichment analyses were depicted 
through a bubble chart (Figure 4A), with the top 5 BP/CC/MF terms 
and pathways shown in Supplementary Table S6. Simultaneously, a 
network diagram was generated to illustrate the BP, CC, MF, and 
KEGG pathways as determined by the enrichment analysis 
(Figures 4B–E).

GSEA for CDs

To ascertain the influence of gene expression levels across the CDs 
on OP, GSEA was utilized to examine the interplay between gene 
expression and the associated biological processes, impacted cellular 
components, and engaged molecular functions (Figure 5A). Further 
details of the results are available in Supplementary Table S7. The 
findings indicated that the genes within the CDs were substantially 
enriched across a spectrum of biological functions and signaling 
pathways, including the IL6 (Figure 5B), MAPK-Trk (Figure 5C), IL4 
(Figure 5D), IL3 (Figure 5E), IL18 (Figure 5F), and the overarching 
MAPK signaling pathways (Figure 5G).
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Immune checkpoint and drug sensitivity 
analysis

We extracted ICGs from the published literature. Upon intersecting 
these with the genes present in the CDs, we  identified a matrix 
comprising 26 ICGs along with their respective expression levels, as 
delineated in Supplementary Table S8. Following that, we utilized the 
Mann–Whitney U test to determine the statistical variance in the 

expression levels of ICGs between OP and control groups, as depicted 
in Figure  6A. The analysis identified eight ICGs—CD48, IDO1, 
TNFRSF8, CD244, CD40LG, CD86, LAIR1, and TNFRSF14—with 
significant differences in expression (p-value < 0.05) between the groups.

Subsequently, to explore therapeutic strategies for OP patients 
following mRNA vaccination, we employed the GDSC database’s drug 
sensitivity information to predict the susceptibility of the OP and 
control group in the CDs to various drugs. Subsequently, we applied 

FIGURE 1

Flow chart for the comprehensive analysis of AP&OG&AGRDEGs. OP, osteoporosis; DEGs, differentially expressed genes; APRGs, autophagy-related 
genes; OGRGs, osteogenic-related genes; AGRGs, adipogenic-related genes; GSEA, gene set enrichment analysis; GO, gene ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; AP&OG&AGRDEGs, autophagy&osteogenic&adipogenic-related differentially expressed genes; SVM, support 
vector machine; LASSO, least absolute shrinkage and selection operator; ExpDiff, expression difference; TF, transcription factor.
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the Mann–Whitney U test (also known as the Wilcoxon rank sum 
test) to evaluate disparities in drug sensitivity, with the results 
visualized using grouped comparison plots. The results indicated that 
eight drugs, including Z.LLNle.CHO, Pazopanib, AZD6482, AP.24534, 
CHIR.99021, AKT.inhibitor.VIII, WO2009093972, and XMD8.85, 
showed significant differences in sensitivity between OP and the 
control group (p-value < 0.05). Moreover, it was observed that the 
sensitivity to these eight drugs was generally lower in the OP group 
compared to the control group (Figures  6B–I). Based on the 
aforementioned findings, it is inferred that OP patients might require 
higher doses of medication to achieve therapeutic effects, underscoring 
the significance of personalized treatment strategies in drug dosage 
selection to ensure efficacy and minimize unnecessary side effects.

Immune infiltration analysis of OP

Using ssGSEA, we quantified the levels of immune cell infiltration 
for 28 distinct immune cell types in the CDs, comparing the OP group 
with the control group patients. The findings revealed that the levels 
of infiltration for natural killer cells, type 2 T helper cells, mast cells, 
and plasmacytoid dendritic cells were significantly different between 
the two groups, with a p-value < 0.05 (Figure 7A). We performed an 
analysis to examine the correlation among the four types of immune 
cells. The results showed that type 2 T helper and natural killer cells 
had the strongest negative correlation (r-value = −0.387) (Figure 7B). 

Finally, we selected key genes that were significantly correlated with 
immune cells (p-value < 0.05). We displayed the overall correlation 
results through a correlation dot plot (Figure  7C) and the top  1 
positively correlated and top 1 negatively correlated key genes were 
emphasized (Figures 7D,E). The findings indicated that the LMNA 
showed the strongest positive correlation with natural killer cells 
(r-value = 0.328), whereas the gene AKT1 had the strongest negative 
correlation with type 2 T helper cells (r-value = −0.533).

Establishment of a diagnostic model of OP

To determine the diagnostic potential of the 14 
AP&OG&AGRDEGs for OP, we  initially developed a logistic 
regression model, which was then depicted through a forest plot 
(Figure  8A). The analysis showed that 13 of these 
AP&OG&AGRDEGs were significantly associated with the OP in 
the logistic regression model, all having p-values < 0.05. 
Subsequently, an SVM model was constructed utilizing the 13 
AP&OG&AGRDEGs, which resulted in the minimal error rate as 
depicted in Figure  8B, and the maximal accuracy as shown in 
Figure 8C, based on the count of genes. It was shown that when the 
gene count was nine (AP&OG&AGRDEGs being NFKB1, BHLHE40, 
CTNNB1, AKT1, LMNA, WNT1, BMP4, TNF, and COPS3), the 
SVM model attained the highest level of accuracy. Subsequently, the 
nine genes were used to construct a LASSO regression model, which 

FIGURE 2

Batch effects removal of GSE56815 and GSE62402. (A,B). Boxplot of the distribution of the CDs before (A) and after (B) de-batching. (C,D). PCA plots 
of the CDs before (C) and after (D) de-batching. PCA, Principal Component Analysis; OP, osteoporosis; CDs, combined datasets. Purple is OP dataset 
GSE56815 and yellow is OP dataset GSE62402.
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serves as a diagnostic model for OP. The visualization process 
involved the depiction of the LASSO regression model (Figure 8D) 
along with the LASSO coefficient path diagram (Figure 8E). The nine 
AP&OG&AGRDEGs selected by the LASSO regression model are 
considered pivotal for diagnosis.

Validation of OP diagnostic model

To provide additional validation for the OP diagnostic model’s 
utility, a nomogram was utilized to illustrate the relationships among 
the key genes across the CDs (Figure 9A). The analysis demonstrated 
that the expression of NFKB1 had a significantly greater predictive value 
for the OP diagnostic model when compared to other genes. Conversely, 
BMP4’s expression level was found to have a substantially lower 
predictive value relative to the other genes. Next, the diagnostic model’s 
calibration curve indicated that while the purple calibration line slightly 

deviated from the perfect model curve (the diagonal), it was still 
roughly aligned (Figure 9B). Additionally, the DCA outcomes revealed 
that the model’s simulated curve was consistently above the all-positive 
and all-negative threshold lines within a specific range, signifying a 
higher net benefit and thus the model’s enhanced effectiveness 
(Figure 9C). Moreover, the ROC curve (Figure 9D) indicated that the 
RiskScore, based on the expression levels of key genes, provides a 
significant measure of diagnostic accuracy for OP, with an AUC 
indicating a moderate to high level of accuracy (0.7 < AUC < 0.9). The 
formula for calculating the RiskScore is as follows:

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )
( )

= ∗ + ∗ − +
∗ − + ∗ − +

∗ − + ∗ +
∗ + ∗ − +
∗

risk 1 0.560 40 0.029
1 0.616 1 0.421

0.450 1 1.422
4 0.756 0.070
3 1.100

Score NFKB BHLHE
CTNNB AKT
LMNA WNT
BMP TNF
COPS

FIGURE 3

Differential gene expression analysis for CDs. (A) Volcano plots of differentially expressed genes in the OP and control groups in the CDs. (B) Venn 
plots of DEGs and AP&OG&AGRGs. (C) Heatmap of AP&OG&AGRDEGs in the CDs. (D) Chromosomal mapping of AP&OG&AGRDEGs. OP, 
osteoporosis; DEGs, differentially expressed genes; AP&OG&AGRGs, Autophagy&Osteogenic&Adipogenic-Related genes; AP&OG&AGRDEGs, 
Autophagy&Osteogenic&Adipogenic-related differentially expressed genes; CDs, combined datasets. Purple represents the control group, and yellow 
is the OP group.
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Using the median RiskScore as a cut-off, the OP samples were 
divided into high- and low-risk groups. In our analysis of OP samples, 
we employed box plot comparisons to delineate the expression levels 
of nine key genes, distinguishing between the high- and low-risk 
groups. The findings, depicted in Figure 9E, indicated that there were 
statistically significant differences in expression levels for five key 
genes when comparing the groups, with a p-value < 0.05, including 
CTNNB1, AKT1, WNT1, COPS3, and BMP4. Finally, the ROC curves 
(Figures 9F–I) confirmed that the expressions of the five key genes in 
OP samples achieved a considerable degree of accuracy in classifying 
the groups, as evidenced by an AUC that signifies a notable level of 
diagnostic effectiveness (0.7 < AUC < 0.9).

Analysis of immune infiltration in high- and 
low-risk groups

By applying ssGSEA, we  evaluated the abundance of immune 
infiltration across 28 specific immune cell types in OP patients, divided 
into high- and low-risk categories. The findings indicated that there were 
statistically significant differences in the abundance of six immune cell 
types between the groups, with a p-value < 0.05. These cell types were 
identified as plasmacytoid dendritic cells, activated dendritic cells, 
activated CD8 + T cells, central memory CD8 + T cells, gamma delta T 
cells, and CD56dim natural killer cells (Figure 10A), In addition, the 
correlation analysis of the infiltration levels among the six immune cell 

FIGURE 4

GO and KEGG enrichment analysis for AP&OG&AGRDEGs.(A) Bubble diagram of GO and KEGG enrichment analysis results of AP&OG&AGRDEGs: BP, 
CC, MF, and biological pathways. The abscissa is GO terms and KEGG terms. (B–E) Network diagram of GO and KEGG enrichment analysis results of 
AP&OG&AGRDEGs: BP (B), CC (C), MF (D) and KEGG (E). Purple nodes represent items, orange nodes represent molecules, and connecting lines 
represent the relationship between items and molecules. AP&OG&AGRDEGs, Autophagy&Osteogenic&Adipogenic-related differentially expressed 
genes; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC, cellular component; MF, molecular 
function. The item screening criteria for GO and KEGG enrichment analyses were adj. p-value < 0.05 and FDR-value (q-value) < 0.25 were considered 
statistically significant, with Benjamini-Hochberg (BH) as the p-value correction method.
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types in OP samples highlighted a significant positive correlation, 
particularly between plasmacytoid dendritic cells and activated dendritic 
cells, with an r-value = 0.574 (Figure 10B). Finally, we screened for key 
genes that showed significant correlation with immune cells (p-value < 
0.05) and presented the overall correlation results (Figure 10C) and the 
top  1 positively correlated and top  1 negatively correlated key genes 
through correlation dot plots (Figures 10D,E). The results indicated that 
AKT1 exhibited the strongest positive correlation with central memory 
CD8 T cell (r-value = 0.686), while COPS3 exhibited the most pronounced 
negative association with central memory CD8 T cell (r-value = −0.519).

Verification and correlation analysis of key 
gene expression differences

To further authenticate the differential expression of key genes 
among groups within the CDs and the validation dataset GSE35958, 
we presented comparative expression graphs. The findings indicated that 

there was a statistically significant difference in the expression levels of 
nine key genes between the OP and control group within the CDs, with 
a p-value < 0.05 (Figure 11A). Simultaneously, the expression levels of 
five key genes were statistically significant in the validation dataset 
GSE35958 (p-value < 0.05) (Figure 11B), including BHLHE40, CTNNB1, 
AKT1, LMNA, and TNF. Subsequently, the correlation between the 
expression levels of key genes was determined for the combined data sets 
and GSE35958, applying the Spearman correlation technique for the 
analysis. The results showed that AKT1 and BHLHE40, TNF and 
BHLHE40, LMNA and AKT1, TNF and AKT1, TNF and LMNA all 
exhibited positive correlation in both the combined and the validation 
datasets GSE35958 (Figures 11C,D).

Construction of regulatory networks

First, we  obtained 40 miRNAs related to the nine key genes 
through the TarBase database, with specific information provided in 

FIGURE 5

GSEA for CDs. (A) GSEA of the CDs is presented in a mountain map of six biological functions. (B–G) GSEA showed that OP was significantly enriched 
in IL6 (B), Mapk Trk (C), IL4 (D), IL3 (E), IL18 (F) and Mapk signaling pathways (G). OP, osteoporosis; GSEA, gene set enrichment analysis; CDs, combined 
datasets. GSEA screening criteria were p- value < 0.05 and FDR-value (q-value) < 0.25.

https://doi.org/10.3389/fmed.2025.1544390
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Han et al. 10.3389/fmed.2025.1544390

Frontiers in Medicine 11 frontiersin.org

Supplementary Table S9. Next, we retrieved 42 TFs associated with the 
nine key genes from the ChIPBase database, with detailed information 
available in Supplementary Table S10. Additionally, employing the 
CTD database, we  ascertained 37 candidate drugs or molecular 
compounds linked to five key genes, with specific information listed 
in Supplementary Table S11. To culminate the analysis, we  used 
Cytoscape software (V3.7.0) to generate and illustrate the interaction 
networks among mRNA, miRNA, TFs, and drugs (Figures 12A–C).

Construction of subtypes of OP

In probing the OP disease subtypes present in the CDs, we utilized 
the R package ConsensusClusterPlus. It harnessed the expression profiles 

of the nine key genes within OP samples to identify distinct OP-related 
disease subtypes through a consensus clustering approach. Ultimately, 
two subtypes were determined: Subtype A (Cluster 1) and Subtype B 
(Cluster 2) (Figures  13A–C). Among them, Subtype A includes 13 
samples, and Subtype B includes 32 samples. The 3D PCA plot 
highlighted significant differences between the two disease subtypes 
(Figure 13D). Next, leveraging the R package pheatmap, we produced a 
heatmap to visually represent a differential expression of key genes 
among the two OP subtype categories (Figure 13E). Continuing our 
investigation, we engaged in an assessment to identify the differences in 
the expression level of key gene between the two OP subtypes. The results 
indicated that six out of the nine key genes exhibited statistically 
significant differences in expression between the two subtypes (p-value 
< 0.05). These genes included: NFKB1, AKT1, LMNA, TNF, BHLHE40, 

FIGURE 6

Immune checkpoint genes and drug sensitivity analysis. (A) Group comparison of ICGs in OP and control group of the CDs. B–I. Group comparison 
plot of sensitivity analysis results of OP and control group to drugs Z.LLNle.CHO (B), pazopanib (C), AZD6482 (D), AP.24534 (E), CHIR.99021 (F), AKT.
inhibitor.VIII (G), WO2009093972 (H), and XMD8.85 (I) based on the GDSC database. OP, osteoporosis; GDSC, genomics of drug sensitivity in cancer; 
ICGs, immune checkpoint genes; CDs, combined datasets. * p- value < 0.05, which is statistically significant; ** p- value < 0.01, highly statistically 
significant; *** p-value < 0.001, highly statistically significant. Purple represents the control and yellow represents the OP groups.
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and COPS3 (Figure 13F). Finally, the study on the correlation of key 
genes within osteoporotic samples indicated that NFKB1 correlates 
positively with BHLHE40, AKT1 with NFKB1, TNF with NFKB1, TNF 
with BHLHE40, LMNA with AKT1, and BMP4 with WNT1. Negative 
correlations were identified between BMP4 and BHLHE40, LMNA and 
CTNNB1, and COPS3 with AKT1 (Figure 13G).

Analysis of immune infiltration in subtypes 
of OP

Employing the CIBERSORT algorithm, we  assessed the 
relationships between 22 categories of immune cells and the two OP 
subtypes: Subtype A (Cluster 1) and Subtype B (Cluster 2). Following 
the analysis of immune cell infiltration, we  generated a bar chart 
illustrating the relative frequencies of these immune cells within the 
samples of the CDs (Figure  14A). Further along in our study, 
we explored the correlation of immune cell infiltration abundance 
between samples classified as OP Subtype A and as Subtype B 
(Figures 14B,C). This analysis identified strong positive correlations 
in Subtype A, specifically between T cells gamma delta and T cells 
CD4 naïve (r-value = 0.884), between neutrophils and plasma cells 
(r-value = 0.786), and between eosinophils and B cells memory (r-
value = 0.609). Monocytes and eosinophils (r-value = −0.85), B cells 

naïve and B cells memory (r-value = −0.603), and monocytes and 
mast cells resting (r-value = −0.564) showed negative correlations. 
Within Subtype B, significant positive associations were found 
between plasma cells and activated NK cells (r-value = 0.836), 
activated NK cells and memory B cells (r-value = 0.648), and plasma 
cells and memory B cells (r-value = 0.540). Conversely, negative 
correlations were noted between resting CD4 Memory T cells and 
CD8 T cells (r-value = −0.527), and CD8 T cells and macrophages M0 
(r-value = −0.510). In the final phase of our study, we investigated the 
correlation between the expression of key genes and the abundance of 
immune cell infiltration in OP Subtype A and Subtype B 
(Figures 14D,E). For Subtype A, the strongest positive association was 
found between the gene COPS3 and memory B cells (r-value = 0.647). 
The most significant inverse relationship was between WNT1 and 
neutrophils (r-value = −0.770). In Subtype B, the gene TNF had the 
most substantial positive correlation with T regulatory cells (Tregs) 
(r-value = 0.456); the gene NFKB1 had the most pronounced negative 
correlation with resting dendritic cells (r-value = −0.450).

Discussion

OP continues to be  a major health issue that affects patients 
physically and emotionally and carries high care costs (47). Because 

FIGURE 7

CDs immune infiltration analysis by ssGSEA algorithm. (A) Group comparison of immune cells between OP and control group in the CDs. 
(B) Correlation heatmap of immune cell infiltration abundance in the CDs. (C) Dot plot of correlation between key genes and immune cell infiltration 
abundance in the CDs. (D) Scatter plot of correlation between top 1 positively related key genes and immune cells. (E) Scatter plot of correlation 
between top 1 negatively related key genes and immune cells. ssGSEA, single-sample gene-set enrichment analysis; OP, osteoporosis; CDs, combined 
datasets. * p-value < 0.05, statistically significant; ** p-value < 0.01, highly statistically significant. The absolute value of the correlation coefficient (r-
value) is weak or no correlation below 0.3, weak correlation between 0.3 and 0.5, moderate correlation between 0.5 and 0.8, and strong correlation 
above 0.8. In the group comparison chart, purple is the control group, and yellow is the OP group. The correlation heatmap is red for positive 
correlation and blue for negative correlation.
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the symptoms are not noticeable at the beginning, OP is often only 
diagnosed after an osteoporotic fracture occurs; however, by this stage, 
the therapeutic effectiveness may have significantly declined. Even 
with advances in anti-OP treatments, including targeted molecular 
therapies, discontinuation of denosumab results in rapid BMD loss, 
and an increased risk of hypercalcemia and multiple vertebral 
fractures according to recent data (48, 49). The use of romosozumab 
is only approved in some countries, and following the cardiovascular 
concerns seen in romosozumab clinical trials, the safety reports for 
the drug, especially cardiovascular events, were of concern (50). 
Therefore, in this study, we established a gene network associated with 
OP to deepen our understanding of its immune response and provide 
new insights for diagnosis and treatment. We also highlighted the 
potential of personalized therapy and immunomodulation in the 
treatment of OP.

It is well known that inflammatory response is closely related to 
the occurrence and development of OP. The GSEA results show that 
DEGs are predominantly enriched in inflammation-related pathways, 
such as the IL-6 signaling pathway, and similar. There is substantial 
in vitro and in vivo experimental evidence that confirms this result 
(51). In addition, the immune status correlates closely with the 
inflammatory response (52). Subsequent ICGs analysis revealed 
statistically significant differential expression of eight genes in OP 
patients. IDO1, an ICG, is activated in a state of chronic inflammation; 
studies suggest that it triggers inhibitory signal transduction by 
binding to PI3K p110 and SHP-1, promoting immunosenescence, 
impairing autophagy, and contributing to the development of OP (53). 
CD40LG, or CD40L, belongs to the tumor necrosis factor receptor 
superfamily member 5 and induces B cells to secrete immunoglobulins 
(54). An in  vivo experiment showed that the silencing of CD40L 

FIGURE 8

Diagnostic model of OP. (A) Forest plot of 13 AP&OG&AGRDEGs included in the logistic regression model in OP diagnostic model. (B,C) The number of 
genes with the lowest error rate (B) and the highest accuracy (C) obtained by the SVM algorithm are visualized. (D,E) Diagnostic model plot (D) and 
variable trajectory plot (E) of the LASSO regression model. LASSO (Least Absolute Shrinkage and Selection Operator) regression is a variable selection 
method that introduces L1 regularization to shrink some coefficients to zero, thereby selecting the most relevant features. OP, osteoporosis; 
AP&OG&AGRDEGs, Autophagy&Osteogenic&Adipogenic-Related differentially expressed genes; SVM, support vector machine; IncNodePurity, 
increase in node purity; LASSO, least absolute shrinkage and selection operator.
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attenuated the ability of OVX (ovariectomy) to stimulate OC-mediated 
bone resorption and induce bone loss. In other words, CD40L 
promotes bone resorption by stimulating the formation of OC (55); 
this result is predicated on the premise of T-cell depletion.

The expression of key genes might have some associations with 
immune cells. This research showed that the LMNA has the strongest 
positive correlation with natural killer (NK) cell (Figure  7D), it 
suggested that nuclear envelope structural proteins may influence 

FIGURE 9

Diagnostic and validation analysis of OP. (A) Nomogram of nine key genes in the OP diagnostic model. (B,C) Calibration curve (B) and DCA plot (C) of 
the OP diagnostic model based on key genes. (D) ROC curve of RiskScore in CDs. (E) Group comparison of key genes in high- and low-risk groups of 
OP samples. (F–I). ROC curves of key genes CTNNB1 (F), AKT1 (G), WNT1 (H), BMP4, and COPS3 (I) whose expression values were significantly 
different between high- and low-risk groups of OP samples. The vertical axis of the calibration curve plot represents net benefit, while the horizontal 
axis represents threshold probabilities. OP, osteoporosis; DCA, decision curve analysis; AUC, the area under the curve. Ns represents p-value ≥ 0.05, 
not statistically significant; * p-value < 0.05, statistically significant; ** p-value < 0.01, highly statistically significant. The AUC was accurate between 0.7 
and 0.9. In the group comparison chart, purple represents the low-risk and yellow represents the high-risk groups.
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NK cell function through epigenetic regulation. As a major 
component of the nuclear lamina, upregulated LMNA expression 
could alter the chromatin spatial conformation of NK cells. NK cells 
are notable for their expression of macrophage colony-stimulating 
factor (M-CSF) and receptor activator of nuclear factor-kappa B 
ligand (RANKL), with RANKL being instrumental in the activation 
and differentiation of OC, highlighting a role for NK cells in 
osteolytic processes (56), suggesting that NK cells contribute to the 
process of bone erosion. Furthermore, the significant negative 
correlation between NK cells and Th2 cells (7B) indicated a 
competitive regulatory interplay among immune subsets in the OP 
microenvironment. The activation process of Th2 cells involves the 
release of various cytokines, including IL-4. IL-4 has been confirmed 
by in vitro and in vivo experiments to promote bone regeneration 
and prevent bone loss (57). Th2 cells may antagonize the 
pro-osteoclastic effects of NK cells via anti-inflammatory cytokines 
like IL-4. The absence of AKT1 enhances osteoblast differentiation 
and negatively regulates osteoblast differentiation. However, AKT1 
promotes the differentiation of OC (58). In our study, AKT1 has the 
strongest negative correlation with Th2 cells (Figure  7C), which 
implies indirect regulation of the osteoblast–osteoclast balance via 
AKT1 signaling. AKT1 inhibitors, such as MK-2206 (in clinical 
trials for cancer), have been shown to play a significant role in 
suppressing osteoclast differentiation (59). Therefore, AKT1 

inhibitors might be potential drugs for treating OP. This finding is 
important as it guides future in-depth research.

We conducted GO and KEGG enrichment analyses on a total of 
14 AP&OG&AGRDEGs. The outcomes from the BP component of 
the GO analysis revealed that the “regulation of cell death induced by 
oxidative stress” is implicated in the onset and progression of OP. By 
suppressing oxidative stress, FOXO1 inhibits osteoblast apoptosis (60). 
However, the function of FOXO1 is still controversial. It is widely 
recognized that Runt-related transcription factor 2 (Runx2) is a crucial 
transcription factor for osteoblast differentiation and the process of 
bone formation; a deficiency in Runx2 could result in a complete 
failure of bone formation. Through the inhibition of Runx2 in 
osteoblasts, FOXO1 regulates the expression of osteocalcin in a 
manner that is contingent upon the insulin-like growth factor 1 
(IGF1) and insulin signaling pathways (61). In other words, FOXO1 is 
a negative regulator of the osteoblast-specific transcription 
factor Runx2.

Subsequently, we constructed diagnostic models for OP. As a 
result, nine key diagnostic genes were identified, including AKT1, 
NFKB1, TNF, CTNNB1, LMNA, BHLHE40, BMP4, WNT1, and 
COPS3. Through nomogram analysis, it was found that the 
expression level of NFKB1 has the highest utility for the OP 
diagnostic model. Bortezomib, a proteasome inhibitor of the 
NFKB1 - regulated inflammatory pathway, is widely used to treat 

FIGURE 10

Risk group immune infiltration analysis by ssGSEA algorithm. (A) Group comparison of immune cells in OP disease subtypes. (B) Heatmap of the 
correlation of immune cell infiltration abundance in OP samples. (C) Dot plot of correlation between key genes and immune cell infiltration abundance 
in OP samples. (D) Scatter plot of correlation between top 1 positively related key genes and immune cells. (E) Scatter plot of correlation between top 1 
negatively related key gene and immune cells. ssGSEA, single-sample Gene-Set Enrichment Analysis; OP, osteoporosis. * p-value < 0.05, statistically 
significant; ** p-value < 0.01, highly statistically significant; *** p-value < 0.001, highly statistically significant. The absolute value of the correlation 
coefficient (r-value) is weak or no correlation below 0.3, weak correlation between 0.3 and 0.5, moderate correlation between 0.5 and 0.8, and strong 
correlation above 0.8. In the group comparison chart, purple is the low- and yellow is the high-risk group. The correlation heat map is red for positive 
correlation and blue for negative correlation.
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multiple myeloma. It has been reported to directly stimulate 
osteoblast growth and differentiation while inhibiting osteoclast 
development and activity, thereby exerting osteogenic effects in 
clinical settings (62). The RiskScore analysis revealed a markedly 
significant statistical difference in the infiltration levels of 
plasmacytoid dendritic cells between the high- and low-risk groups 
within the OP samples (Figure  10A). Dendritic cells (DCs) are 
integral to the inflammatory processes that lead to osteoclastogenesis 
and are linked to the development of inflammatory bone diseases. 
In the absence of estrogen, DCs have a longer lifespan and express 
higher levels of IL-7 and IL-15, together inducing memory T cells to 
produce IL-17A and TNF-α. The resulting cytokines drive 
inflammation-mediated bone loss (63). It appears, consistent with 
our results, that memory T cells are also involved in the process of 
OP. In the final validation model, BHLHE40, CTNNB1, AKT1, 
LMNA, and TNF were found to be differentially expressed in the 
validation dataset. In other words, their likelihood of serving as 
diagnostic markers is higher. Literature suggests that elevated 
BHLHE40 expression is tightly connected with osteoclast 
maturation. In vitro experiments confirm that BHLHE40 stimulates 
osteoclast development, and in contrast, its absence in vivo is linked 
to greater bone density and lessened osteoclast formation (64). 
Although some results have been confirmed, our blood  - based 
mRNA diagnostic model, though adaptable for clinical screening via 
RT - qPCR or NanoString, needs further validation across diverse 

ethnicities and age groups and integration with BMD and FRAX 
scores to optimize risk stratification before it can be generalized.

The TFs could promote or inhibit the transcription process of 
mRNA by recognizing and binding to specific DNA sequences. 
Further, miRNAs exert regulatory control over gene expression by 
binding to the 3′ untranslated region (3’ UTR) of their target mRNAs, 
resulting in mRNA degradation or the inhibition of their translation 
into proteins. Thus, TFs and miRNA play a major role in regulating 
gene expression. Within the scope of this study, we  identified 40 
miRNAs that correspond to the nine key genes. The miR-483-3p is one 
of the miRNAs we have predicted. Previous studies have indicated a 
correlation between miR-483-3p and OP associated with estrogen 
deficiency (65). Zhou et al. found that elevated levels of miR-483-3p 
significantly boosted the expression of mRNA transcripts related to 
osteogenic markers, specifically alkaline phosphatase (ALP), Runx2, 
and osteocalcin (OCN). Additionally, the upregulation of miR-483-3p 
significantly elevated the expression levels of Wnt1 and β-catenin. As 
a result, the study suggested that miR-483-3p could potentially 
augment osteoblast proliferation and osteogenesis by activating the 
Wnt/β-catenin signaling pathway (66). These findings are in alignment 
with our predictive outcomes, implying the credibility of our 
predictive results.

As demonstrated by the drug sensitivity results in our study, it is 
also important to emphasize personalized treatment strategies for OP 
patients to ensure therapeutic effectiveness and minimize unnecessary 

FIGURE 11

Correlation and expression difference analysis for key genes. (A) Group comparison of key genes in the CDs. (B) Group comparison of key genes in 
dataset GSE35958. (C) Correlation heatmap of key genes in the CDs. (D) Correlation heatmap of key genes in GSE35958. OP, osteoporosis; CDs, 
combined datasets. Ns represents p-value ≥ 0.05, not statistically significant; * p-value < 0.05, statistically significant; ** p-value < 0.01, highly 
statistically significant; *** p-value < 0.001, highly statistically significant. The absolute value of the correlation coefficient (r-value) is weak or no 
correlation below 0.3, weak correlation between 0.3 and 0.5, moderate correlation between 0.5 and 0.8, and strong correlation above 0.8. In the group 
comparison chart, purple is the control, and yellow is the OP group. The correlation heatmap shows a positive correlation in red and a negative 
correlation in blue.
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side effects. We  have conducted a further subtype analysis of the 
disease among OP patients. Ultimately, we  have delineated two 
distinct disease subtypes, characterized by significant differential 
expression of six pivotal genes across these subtypes: NFKB1, AKT1, 
LMNA, TNF, BHLHE40, and COPS3. The BHLHE40, also known as 
human differentiated embryonic chondrocyte expressed gene 1 
(DEC1), is believed to be related to enhanced osteogenesis. After the 
knockout of DEC1, DEC1-deficient mice exhibited at four and 
24 weeks of age a phenotype of reduced bone mass compared to 
age-matched wild-type (WT) mice. Moreover, the bone mass decay 
was more pronounced in the 24-week-old mice group (67). However, 
other researchers have found that BHLHE40 is associated with 
osteoclastogenesis and abnormal bone resorption. Mice deficient in 
BHLHE40 were resistant to estrogen deficiency-induced OP. In other 
words, the deficiency of BHLHE40 increased bone formation. Further 
mechanistic research elucidated that the bone mass increment in 

BHLHE40-deficient conditions stems from an inherent cellular 
deficiency affecting osteoclast differentiation in the mice. BHLHE40 
is shown to upregulate the transcription of FOS and NFATC1 genes 
through direct interaction with their promoter regions. The latter 
promoted osteoclastogenesis in ovariectomized mice (64). 
Additionally, drug sensitivity analysis (Figure 6G) revealed reduced 
AKT inhibitor sensitivity in OP patients, underscoring the need for 
personalized dosing regimens. Therefore, personalized treatment is 
necessary. In further subtypes of immune infiltration analysis, TNF 
and regulatory T cells (Tregs) are positively correlated. In vitro, Tregs 
directly inhibit the differentiation and function of OC (68). In 
TNF-transgenic mice, a phenomenon of bone loss occurs, which 
could be  reversed by an increase in the number of Tregs (69). In 
certain types of OP patients, such as postmenopausal OP, the increase 
in the number of Tregs might serve as a protective immune response 
to shield the patients from TNF-induced bone loss. This suggests an 

FIGURE 12

Regulatory network of key genes. (A) The mRNA-miRNA regulatory network of key genes. (B) mRNA-TF regulatory network of key genes. (C) mRNA-
Drug regulatory network of key genes. TF, transcription factor. Red is mRNA, blue is miRNA, purple is TF, and yellow is Drug.
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interaction between key genes and the immune system, possibly 
affecting the activity and function of immune cells.

However, this study has several limitations. First, although 
we employed the sva R package for batch effect correction, residual 
batch effects may still influence gene expression patterns, potentially 
compromising the reproducibility of certain findings. Second, the 
relatively small sample size may impact statistical power and the 
generalizability of the diagnostic model. Despite integrating multiple 
datasets and conducting rigorous validation, larger cohort studies are 
required to further confirm the reliability of the results. Finally, this 
work primarily relies on bioinformatics analyses and lacks 
experimental validation. Future studies will prioritize validating the 

expression of key genes using qPCR or Western blot and elucidating 
their functional roles in OP-related pathways. These additional 
investigations will enhance the robustness and biological relevance of 
the findings.

Our diagnostic model offers a novel molecular strategy to refine 
OP diagnosis by enabling early identification of high-risk populations 
through peripheral blood gene expression profiling (e.g., qPCR or 
RNA sequencing) as a complement to BMD testing. This approach 
holds translational potential for guiding personalized interventions, 
such as risk stratification systems integrating key genes (AKT1, 
NFKB1). However, clinical implementation faces three major 
challenges. First, biomarkers predicted via bioinformatics require 

FIGURE 13

Consensus clustering analysis for key genes. (A) Concordance cluster results plot for OP samples. (B,C) Concordance cumulative distribution function 
(CDF) plot (B) and Delta plot (C) for concordance cluster analysis. (D) 3D PCA plot of two subtypes of OP. (E) Heatmap of the association of key genes. 
(F) Group comparison chart of key genes. (G) Heatmap of the association of key genes in OP samples. OP, osteoporosis; CDF, Empirical Cumulative 
Distribution Function; PCA, Principal Component Analysis. ns means p-value ≥ 0.05, not statistically significant; * p-value < 0.05, statistically significant; 
*** p-value < 0.001, highly statistically significant. The absolute value of the correlation coefficient (r-value) is weak or no correlation below 0.3, weak 
correlation between 0.3 and 0.5, moderate correlation between 0.5 and 0.8, and strong correlation above 0.8. Purple is subtype A (Cluster 1) and 
yellow is subtype B (Cluster 2). The correlation heatmap shows positive (in red) and negative (in blue) correlations.
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validation in large prospective cohorts, as retrospective public datasets 
may overestimate diagnostic accuracy due to batch effects and 
population heterogeneity (e.g., age, comorbidities). Second, the 
molecular complexity of OP pathogenesis—exemplified by AKT1’s 
pleiotropic roles in bone homeostasis, which are modulated by 

miRNA-mediated epigenetic regulation or post-translational 
modifications—cannot be  fully resolved by transcriptome-level 
analysis alone. Third, the model currently lacks specificity for OP 
subtypes driven by distinct etiologies, such as inflammatory bone loss 
in rheumatoid arthritis. Addressing these limitations will require 

FIGURE 14

Consensus cluster immune infiltration analysis by CIBERSORT algorithm. (A) Histogram of immune cell infiltration abundance in OP subtypes. (B,C) 
Heatmap of correlation of immune cell infiltration abundance in subtype A (B) and subtype B (C). (D,E) Dot plots of correlation of key genes with 
immune in filtration abundance in subtype A (D) and subtype B (E). OP, osteoporosis. The absolute value of the correlation coefficient (r-value) is weak 
or no correlation below 0.3, weak correlation between 0.3 and 0.5, moderate correlation between 0.5 and 0.8, and strong correlation above 0.8. The 
component bargraph is purple for subtype A and yellow for subtype B. The correlation heatmap is red for positive and blue for negative correlation.
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integrating multi-omics data (e.g., proteomics, epigenetics) with 
clinical phenotypes to develop etiology-specific diagnostic algorithms, 
thereby enhancing both clinical utility and biological relevance.

Conclusion

This research established a network of genes associated with 
OP and thoroughly examined the molecular mechanisms of the 
immune response within the context of OP. The identification of 
critical diagnostic genes and the analysis of immune cell infiltration 
have enhanced our profound understanding of OP’s 
pathophysiology, potentially pointing toward new avenues for 
refining diagnostic and therapeutic strategies. Furthermore, the 
study accentuates the significance of tailored therapeutic 
approaches and highlights the potential role of immunomodulation 
in the clinical management of OP.
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Glossary

OP - Osteoporosis

DEGs - Differentially Expressed Genes

APRGs - Autophagy-Related Genes

OGRGs - Osteogenic-Related Genes

AGRGs - Adipogenic-Related Genes

GSEA - Gene Set Enrichment Analysis

AP&OG&AGRDEGs - Autophagy& Osteogenic&Adipogenic- 
Related Differentially Expressed Genes

GO - Gene Ontology

KEGG - Kyoto Encyclopedia of Genes and Genomes

SVM - Support Vector Machine

LASSO - Least Absolute Shrinkage and Selection Operator

TF - Transcription Factor

PCA - Principal Component Analysis

CDs - Combined Datasets

GDSC - Genomics of Drug Sensitivity in Cancer

ICGs - Immune Checkpoint Genes

ssGSEA - Single-Sample Gene-Set Enrichment Analysis

DCA - Decision Curve Analysis

AUC - The Area Under the Curve

CDF - Empirical Cumulative Distribution Function

BMD - Bone Mineral Density

IDO1 - Indoleamine 2,3-dioxygenase 1

PI3K p110 - Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic 
subunit alpha isoform

SHP-1 - Src homology region 2 domain-containing phosphatase-1

CD40L - CD40 ligand

LMNA - Lamin A/C

AKT1 - Protein kinase B alpha

M-CSF - Macrophage colony-stimulating factor

RANKL - Receptor activator of nuclear factor kappa-B ligand

FOXO1 - Forkhead box O1

OB - Osteoblast

OC: Osteocalcin

Runx2 - Runt-related transcription factor 2

IGF1 - Insulin-like growth factor 1

NFKB1 - Nuclear factor kappa B subunit 1

BHLHE40 - Basic helix–loop–helix family member e40

ALP - Alkaline phosphatase

OCN - Osteocalcin

FOS - FBJ murine osteosarcoma viral oncogene homolog

NFATC1 - Nuclear factor of activated T-cells, cytoplasmic 1
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