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The emergence of foundational models represents a paradigm shift in medical
imaging, o�ering extraordinary capabilities in disease detection, diagnosis, and
treatment planning. These large-scale artificial intelligence systems, trained
on extensive multimodal and multi-center datasets, demonstrate remarkable
versatility across diverse medical applications. However, their integration into
clinical practice presents complex ethical challenges that extend beyond
technical performance metrics. This study examines the critical ethical
considerations at the intersection of healthcare and artificial intelligence. Patient
data privacy remains a fundamental concern, particularly given these models’
requirement for extensive training data and their potential to inadvertently
memorize sensitive information. Algorithmic bias poses a significant challenge
in healthcare, as historical disparities in medical data collection may perpetuate
or exacerbate existing healthcare inequities across demographic groups. The
complexity of foundational models presents significant challenges regarding
transparency and explainability in medical decision-making. We propose a
comprehensive ethical framework that addresses these challenges while
promoting responsible innovation. This framework emphasizes robust privacy
safeguards, systematic bias detection andmitigation strategies, andmechanisms
for maintaining meaningful human oversight. By establishing clear guidelines for
development and deployment, we aim to harness the transformative potential
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of foundational models while preserving the fundamental principles of medical
ethics and patient-centered care.
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foundational models, ethical AI, responsible AI, medical imaging, fairness

1 Introduction

Recent advancements in artificial intelligence (AI) have been

catalyzed by the emergence of foundational models (FMs) (1)

large-scale architectures capable of generalizing across diverse

applications with significantly reduced data requirements

compared to traditional deep learning paradigms (2, 3). These

models, which leverage massive parameter spaces and extensive

training datasets, have achieved remarkable performance even

when using only a tenth of the conventional data volume (4). This

transformative progress is largely driven by two key innovations:

(1) the convergence of high-performance computing and scalable

parallel architectures and (2) the adoption of self-supervised

learning strategies, particularly those based on the transformer

architecture (5).

1.1 The evolution of foundational models
in medical imaging

The theoretical underpinnings of FMs rest on two key machine

learning paradigms: transfer learning (6) and unsupervised

learning (7). While traditional medical imaging has relied heavily

on vision-specific architectures such as convolutional neural

networks (CNNs) and vision transformers, these approaches face

significant limitations (8, 9). The conventional fully-supervised

learning paradigm demands substantial annotated datasets, making

it resource-intensive and time-consuming. Furthermore, these

models typically specialize in single tasks, such as segmentation or

classification, and operate within a single modality.

This single-modality constraint presents a fundamental

mismatch with real-world healthcare workflows, where clinicians

routinely integrate multiple information sources including clinical

notes, diagnostic reports, and various investigative findings tomake

informed decisions. FMs for computer-aided diagnosis (CAD)

represent a strategic shift toward addressing these limitations

while maintaining crucial considerations of patient privacy,

model transparency, and ethical implementation. The evolution

from traditional deep learning approaches to FMs mirrors the

complexity of actual clinical decision-making, where the synthesis

of diverse information sources drives diagnostic accuracy and

treatment planning (10, 11). This transition is particularly

consequential in medical imaging, where diagnostic accuracy

is contingent on integrating heterogeneous information. For

example, radiologists rely on multimodal inputs—imaging scans,

clinical histories, and laboratory results—to refine differential

diagnoses. FMs hold the potential to revolutionize this process by

enhancing diagnostic precision, automating complex tasks, and

personalizing treatment strategies at an unprecedented scale.

1.2 Ethical and practical challenges

Despite the remarkable achievements of FMs and large vision

models (LVMs) in medical applications (12, 13), their widespread

adoption raises significant ethical and societal concerns that

demand careful consideration. The substantial data requirements

for training these models present complex challenges regarding

patient privacy and data confidentiality. Medical datasets contain

highly sensitive information, including detailed health histories and

genetic data, necessitating robust protection mechanisms beyond

traditional security measures. A more nuanced challenge emerges

from inherent biases within training datasets. These biases can

manifest in various forms, potentially leading to discriminatory

outcomes based on demographic factors such as race, gender, and

socioeconomic status. Such biases not only compromise diagnostic

accuracy but also risk perpetuating existing healthcare disparities

when deployed in clinical settings. The accountability for these

biased outcomes becomes particularly complex given the multiple

stakeholders involved in developing and deploying medical FMs.

The generative capabilities of modern FMs introduce additional

layers of ethical complexity, particularly regarding potential misuse

and legal liability. The inherent opacity of these sophisticated

models, often characterized as “blackbox”, necessitates advanced

explainable AI techniques to establish trust among healthcare

providers and patients alike. This transparency is crucial for clinical

adoption and regulatory compliance. Hence, FMs in medical

imaging face several interconnected challenges, summarized briefly

as follows:

(i) Data scarcity. A fundamental constraint lies in the scarcity

of high-quality annotated medical images, which limits the

training capabilities of these sophisticated models.

(ii) Variation. This challenge is compounded by the inherent

complexity of medical imaging data, where high-resolution

volumetric scans display significant anatomical variations

between individuals, making it difficult to developmodels that

generalize effectively across diverse patient populations.

(iii) Heterogeneous data. The heterogeneous nature of medical

imaging data presents another layer of complexity. Healthcare

facilities utilize various imaging devices and follow different

protocols, resulting in a diverse array of data formats

and characteristics. This variability in imaging modalities

and acquisition parameters creates substantial challenges for

developing unified models that can process and interpret such

diverse inputs effectively.

(iv) Computational cost. Scalability emerges as a critical

operational challenge in implementing medical FMs. These

sophisticated models demand substantial computational

resources, leading to extended processing times and increased

operational costs. This resource-intensive nature can

potentially limit their practical deployment in clinical settings
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where rapid analysis and cost-effectiveness are crucial

considerations.

(v) Ethics and reliability. Beyond these technical challenges,

ethical considerations and reliability concerns pose significant

hurdles. The handling of sensitive patient data necessitates

robust privacy and security measures while ensuring data

integrity remains paramount. The reliability of FM outputs

faces particular scrutiny in medical contexts, where the stakes

are exceptionally high.

(vi) Susceptibility. Moreover, these models’ vulnerability to

adversarial attacks raises serious concerns (14), given that

medical decisions can have profound implications for patient

outcomes.

These challenges span both domain-specific and

general considerations (15). Table 1 presents a real-

world example and the corresponding solution for

each challenge.

1.3 A framework for ethical AI in medicine

To address these challenges, we propose a comprehensive

ethical framework integrating federated learning, bias

mitigation techniques, and explainability modules. This

framework emphasizes:

1. Ethical AI development: we present an ethical

framework that guides the responsible development

and implementation of FMs in medicine. We propose

to implement privacy-preserving methodologies such as

homomorphic encryption and decentralized learning to protect

patient confidentiality.

2. Fairness & equity: establishing robust bias detection and

mitigation strategies to prevent discriminatory outcomes.

3. Transparency & clinical trust: leveraging interpretable AI

mechanisms and clinician-AI collaboration to foster adoption

and regulatory compliance.

This work aims to set the foundation for responsible AI

integration in medicine, ensuring that FMs enhance clinical

decision-making without compromising ethical integrity or patient

safety. The innovation of this paper lies in its comprehensive

ethical framework for medical FMs, integrating privacy-

preserving techniques (e.g., federated learning, homomorphic

encryption), fairness-aware training, and explainable AI to

address critical challenges in medical AI deployment. Unlike

conventional deep learning models that rely on single-task,

single-modality architectures, this work presents a framework

with a multi-modal, multi-task paradigm that aligns with

real-world clinical decision-making. Additionally, we propose

a systematic bias auditing and regulatory compliance strategy,

ensuring that FMs promote equitable, transparent, and trustworthy

AI-driven healthcare.

In the following sections, we provide a detailed examination

of these challenges and their implications for the development

and deployment of medical imaging FMs. This analysis serves

as a foundation for understanding the complex landscape of AI

implementation in healthcare.

2 Method

The societal implications of FMs in healthcare extend beyond

individual applications, encompassing broader ecosystem-wide

effects that scale with model deployment. As illustrated in Figure 1,

the ethical considerations surrounding large-scale FM adoption

in medical settings present both challenges and opportunities

for systematic improvement. These ethical dimensions can be

systematically evaluated and optimized through quantifiable

metrics that promote transparency, maintain data integrity, and

ensure equitable outcomes across diverse patient populations.

Our comprehensive analysis and subsequent proposals

establish a robust framework for developing and implementing

ethically sound FMs in biomedical artificial intelligence. This

framework addresses not only the technical aspects of model

development but also the broader societal responsibilities

inherent in deploying AI systems in healthcare. By focusing

on measurable ethical criteria and clear governance structures,

we aim to create a sustainable and responsible FM ecosystem

that serves the healthcare community while protecting patient

interests. This approach represents a critical step toward

harmonizing technological advancement with ethical imperatives

in medical AI, setting a foundation for future developments

that prioritize both innovation and responsibility. The following

sections detail our analysis and recommendations for achieving

this balance.

2.1 Glass box FMs: toward transparency

The growing emphasis on glass-box models in healthcare

represents a crucial shift toward interpretable artificial intelligence,

addressing major requirements for trust and transparency in

medical decision-making (16). These models provide essential

insights into their decision-making processes, making them

particularly valuable in clinical settings where understanding the

reasoning behind AI recommendations is paramount. Healthcare

professionals’ confidence in AI systems fundamentally depends on

their ability to comprehend the underlying decision mechanisms.

This transparency enables clinicians to effectively integrate AI

assistance into their practice while maintaining their professional

judgment and accountability. Similarly, patient acceptance of AI-

driven healthcare recommendations significantly increases when

the decision-making process is transparent and comprehensible,

fostering a more trusting relationship between patients, healthcare

providers, and AI systems.

Several sophisticated tools and techniques have emerged to

enhance the interpretability of foundational models in commercial

medical applications. These include Gradient-weighted Class

Activation Mapping (CAM) methods (17, 18), which visualize

regions of interest in medical images that influence model

decisions. Principle component analysis offers a gradient-

independent approach to understanding data patterns (19), while

SHAP (SHapley Additive exPlanations) (20) and LIME (Local

Interpretable Model-agnostic Explanations) (21) provide detailed

insights into model predictions. These visual reasoning techniques

collectively enable a deeper understanding of how FMs process and

Frontiers inMedicine 03 frontiersin.org

https://doi.org/10.3389/fmed.2025.1544501
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Jha et al. 10.3389/fmed.2025.1544501

TABLE 1 Challenges, examples, and solutions in medical imaging.

Challenge Real-world example Real-world solution

Data scarcity A rare disease imaging dataset has only a few dozen

annotated examples, making it difficult to train a robust AI

model for diagnosis.

Utilize transfer learning by leveraging pre-trained models on large general

medical imaging datasets and fine-tune them for rare diseases. Use data

augmentation techniques (e.g., rotation, flipping, scaling) to artificially

increase the diversity of the dataset.

Variation Chest X-rays from patients of different ethnicities show

significant differences in anatomical features and disease

manifestations, leading to inconsistent model performance.

Train models on diverse and representative datasets that include data from

multiple demographics. Implement domain adaptation techniques to

improve the model’s generalization across varied patient populations.

Regular validation on diverse test sets is essential.

Heterogeneous data MRI scans from different hospitals vary due to different

imaging protocols, machine types, and acquisition settings,

causing challenges in creating a standardized analysis model.

Develop and apply normalization and harmonization techniques to

preprocess data to a common format and quality. Use federated learning to

train models on decentralized data while maintaining patient privacy and

improving model robustness across heterogeneous data sources.

Computational cost Running a large AI model to analyze MRI scans is slow on

high-end hardware, delaying critical diagnoses in emergency

scenarios.

Optimize models using techniques such as model pruning and

quantization to reduce size and computation. Incorporate edge computing

for real-time analysis where possible and leverage cloud-based platforms

with scalable resources for handling large-scale computations.

Ethics and reliability A misdiagnosis by an AI system in detecting a malignant

tumor could lead to incorrect treatment, raising ethical and

trust issues among clinicians and patients.

Implement rigorous validation and explainability mechanisms to ensure

transparency and reliability. Incorporate human-in-the-loop systems

where clinicians review and validate AI predictions. Establish robust

patient consent protocols and maintain high standards of data encryption

and privacy measures to ensure compliance with healthcare regulations.

Susceptibility An adversarial attack alters a medical image subtly, causing

the AI model to misclassify a benign condition as malignant,

leading to unnecessary surgeries.

Enhance model security through adversarial training, where the model is

exposed to and learns from adversarial examples during training. Monitor

model outputs for anomalies and use robust verification systems to flag

unexpected predictions for human review. Regularly update models to

defend against emerging adversarial techniques.

FIGURE 1

Comprehensive workflow of a foundational model in medical imaging: from multi-modal data acquisition and curation to deployment and
downstream tasks for higher order skills and vision tasks.

analyze medical data, making their decisions more transparent and

trustworthy for both healthcare providers and patients.

A clinical scenario where the model trained on a biased

model due to an imbalanced training dataset. For example,

consider a model trained predominantly on male patients

with hypertrophic cardiomyopathy (HCM). When deployed

in the real world, the model may fail to detect HCM in

female patients due to underlying gender-based biases in the

training data. By incorporating interpretable AI, clinicians can

identify and understand these biases. For instance, interpretable

AI might reveal that the model underweights key diagnostic

features in female patients. This insight allows physicians

to adjust their clinical decisions and provides feedback to

retrain the model with more diverse and representative data,

thereby improving future diagnostic accuracy and reducing

gender-related disparities.
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FIGURE 2

Illustration of the federated learning paradigm, in which multiple institutions collaboratively train deep learning models in a decentralized framework
without exchanging raw patient data. Each institution independently updates its local model using private datasets and transmits only model
parameters to a central aggregation server. The server securely integrates these updates to refine a global model, which is then redistributed to
participating sites. This iterative process preserves data privacy, maintains data locality, and mitigates risks related to bias and fairness while ensuring
robust model generalization across diverse clinical settings.

2.2 Federated learning: ensuring privacy

The exceptional performance of FMs in medical applications

heavily depends on access to extensive, high-quality training

data. However, the medical field faces a critical challenge in

data availability, particularly given the sensitive nature of patient

information and the time-intensive process of curating private

medical datasets. This constraint has led to the emergence

of federated learning as a transformative solution for medical

AI development. Federated learning represents a paradigm

shift in how medical FMs can be trained while preserving

patient privacy. This approach enables the development of

robust models by leveraging distributed data sources across

multiple healthcare institutions without requiring centralized data

storage (Figure 2). The key innovation lies in its ability to

keep sensitive patient data securely within its original location

while allowing the model to learn from multiple sources

simultaneously. This distributed architecture addresses not only

privacy concerns but also regulatory compliance requirements in

healthcare.

Moreover, federated learning provides an elegant solution to

the Non-IID (Non-Independent and Identically Distributed) (22)

challenge that frequently occurs in medical datasets. By

implementing granular controls over data sharing and model

updates, healthcare institutions can maintain oversight of their

contributions while benefiting from collaborative learning. This

approach facilitates the development of more inclusive and

representative models by incorporating diverse patient populations

across different healthcare settings. The resulting federated FMs

demonstrate enhanced fairness and reduced bias, as they can learn

from a broader spectrum of medical data while respecting privacy

boundaries and institutional protocols.
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2.3 LLMs: facilitating regulatory
compliance

Large Language Models (LLMs) are revolutionizing computer-

aided diagnosis (CAD) systems by bridging the gap between

visual analysis and clinical documentation. Models like LLaMa

and Komodo-7b (23) demonstrate remarkable capabilities

in transforming unstructured medical information into

comprehensive, standardized formats. This transformation

extends beyond simple text generation (24), encompassing crucial

healthcare applications including the creation of detailed Electronic

Health Records (EHRs), clinical trial analysis, drug discovery

processes, biomarker identification, and the enhancement of

Clinical Decision Support Systems (CDSS) (25).

The integration of LLMs into healthcare workflows addresses

critical regulatory compliance requirements while improving

documentation efficiency. These models excel at generating

structured medical records that adhere to stringent privacy

and security regulations, significantly reducing the risk of

non-compliance penalties. The implementation of sophisticated

privacy-preserving techniques, such as differential privacy, adds

an essential layer of security by introducing controlled noise

into training data, thereby protecting patient confidentiality while

maintaining data utility.

The ongoing clinical trials of LLM applications in healthcare

settings serve a dual purpose: validating their effectiveness in

real-world scenarios and ensuring compliance with regulatory

frameworks, particularly the Health Insurance Portability and

Accountability Act (HIPAA). This rigorous evaluation process

helps establish LLMs as reliable tools that can enhance healthcare

delivery while maintaining the highest standards of patient

privacy and data security. The successful integration of these

models demonstrates how advanced AI technologies can support

healthcare professionals in delivering more efficient and compliant

care.

2.4 Generative AI: generalization with
privacy

Generative models (26) have emerged as a powerful solution

to several fundamental challenges in medical AI, particularly

addressing the critical issue of data scarcity in training foundational

models (FMs). These models excel at creating synthetic medical

data that closely mirrors real patient information, effectively

expanding training datasets while circumventing privacy and

consent concerns inherent in using actual patient data. By

generating diverse synthetic samples that represent various

demographic and clinical characteristics, these models help

establish more balanced and representative training datasets.

Variational autoencoders (VAEs) (27) represent a particularly

sophisticated application of generative modeling in healthcare.

Their ability to predict missing values and generate synthetic

patient trajectories enhances the robustness of FMs by providing

more complete and diverse training data (28). This capability

proves especially valuable in medical settings where incomplete

or missing data often poses significant challenges to model

development and deployment.

Recent advances in self-supervised learning have further

enhanced the potential of generative approaches. Notable work by

Ghesu and colleagues demonstrated the effectiveness of combining

contrastive learning with online feature clustering for dense feature

learning in FMs (29). Their hybrid approach, building upon earlier

self-supervised techniques, achieves robust feature representations

by mapping them to cluster prototypes through both supervised

and self-supervised learning mechanisms (30).

The integration of generative techniques with FMs has

yielded remarkable results (31, 32), as exemplified by models like

MedSAM (13), which demonstrates superior performance through

generative AI-based encoding-decoding architectures. This success

extends to applications in generative image modeling, where

synthetic data is used for pretraining and inference on real-

world medical data, leading to optimized FM performance. These

advances not only improve model accuracy but also incorporate

crucial ethical considerations by emphasizing privacy-preserving

data generation methods and bias reduction strategies.

2.5 Fairness, biases, and risks with
generative models

The transformative potential of generative AI in healthcare is

accompanied by significant ethical challenges that demand careful

consideration. These models can inadvertently amplify existing

social biases across multiple dimensions including race, gender,

and socioeconomic status, potentially leading to discriminatory

outcomes in medical decision-making (33). The sophisticated

nature of these technologies raises particular concerns about

their role in perpetuating or exacerbating existing healthcare

disparities. The risk extends beyond bias amplification to include

more direct threats to public trust and safety. The capability

of generative AI to create convincing deepfakes and propagate

medical misinformation presents serious challenges to healthcare

communication and patient trust. These issues are particularly

concerning in medical contexts, where accurate information is

crucial for patient care and public health decisions. The potential

for societal harm increases when these technologies trigger public

hostility or erode trust in healthcare institutions (34).

Addressing these challenges requires a comprehensive

approach that prioritizes ethical considerations over purely

technological advancement. Organizations developing medical

AI systems must shift their focus from maximizing model

performance to actively minimizing bias and potential harm.

This paradigm shift emphasizes the importance of building

trustworthy systems that serve all populations equitably, rather

than pursuing technological capabilities at the expense of ethical

considerations. The path forward requires early intervention in

AI education and development, embedding responsible usage

principles at fundamental stages of both technical training

and clinical implementation. This approach must also address

the broader socioeconomic implications of AI deployment in

healthcare, particularly the risk of creating or widening digital
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TABLE 2 Methods for measuring fairness, bias, privacy, and diversity of generations.

Method References Metric Performance

Fairness-constrained (38) Equalized Odds, Demographic Parity Fairness vs. accuracy trade-offs

Fairness auditing (39) Bias Detection Continuous monitoring needed

Gender classification (40) Intersectional Accuracy Varied accuracy; higher errors for

darker-skinned females

Federated learning (41) Fairness, Privacy Fairness with data privacy

Private GANs (42) Privacy, Fidelity Private data with good fidelity

Multi-modal foundation (43) Gini Coefficient, Shannon Diversity High diversity and balanced

representations

Fair representation (44) Stat. Parity, Equalized Odds Balanced fairness metrics

divides that favor well-resourced healthcare systems while

potentially disadvantaging others. Success in this endeavor

demands active collaboration among healthcare providers, AI

developers, policymakers, and patient advocates to ensure that

generative AI advances medical care while upholding ethical

principles and promoting equitable access.

2.6 Methods for measuring fairness, bias,
privacy, and diversity of generations

The development of ethical generative AI systems in

healthcare demands a rigorous approach to ensuring fairness

and equity in model outcomes. A fundamental principle is

that these systems should deliver consistent results for similar

medical cases, independent of demographic factors such as race,

gender, or socioeconomic status. This objective necessitates the

implementation of sophisticated fairness metrics and systematic

algorithmic audits to identify and address potential biases in both

training data and model outputs.

Privacy protection in medical AI systems can be achieved

through a multi-layered approach combining advanced techniques

such as data anonymization with strategic noise injection

and federated learning architectures (35). These methods

effectively minimize the risk of data breaches while maintaining

model performance. The evaluation of model fairness employs

quantitative measures such as the Gini coefficient and Shannon

diversity index (36), which provide objective metrics for assessing

output diversity and detecting potential biases (Table 2). Higher

diversity scores typically indicate more inclusive and less

homogeneous model behavior across different demographic

groups.

The integration of these evaluation techniques throughout

the entire development life-cycle ensures continuous monitoring

of fairness, bias, and diversity metrics (7). This systematic

approach is essential for maintaining consistent performance

across all patient populations. Achieving truly inclusive AI systems

requires deliberate efforts to incorporate diverse representation in

both training data and development teams, thereby preventing

performance disparities that could disadvantage specific patient

groups.

The challenge of addressing historical and societal biases

in medical data requires a combination of technical solutions

and social awareness (37). Through rigorous bias auditing and

sophisticated debiasing techniques, developers can work to

neutralize these embedded prejudices. Success in this endeavor

requires meaningful collaboration between technologists,

healthcare professionals, and social scientists, ensuring that

medical AI systems serve all populations effectively and ethically.

2.7 Copyright concerns

The intersection of generative AI and copyright law presents

complex challenges inmedical imaging and healthcare applications.

These AI systems’ ability to generate content that may resemble

existing work raises significant questions about intellectual

property rights and fair use (45, 46). The challenge becomes

particularly nuanced in medical contexts, where the generated

content could include diagnostic patterns, imaging techniques,

or analytical methods that may be subject to existing patents or

copyrights.

A balanced approach to addressing these concerns requires

careful consideration of both innovation and protection.

Healthcare AI developers must implement rigorous protocols

to ensure their training methodologies respect intellectual property

rights, including proper attribution of source materials and

careful documentation of training data provenance. This challenge

extends beyond simple compliance to fundamental questions about

the ownership and rights associated with AI-generated medical

insights and diagnostic tools (47, 48).

The evolving nature of AI technology necessitates new legal

frameworks that can effectively address these emerging challenges

while fostering innovation in healthcare. This requires sustained

collaboration between multiple stakeholders: technologists who

understand the technical capabilities and limitations of generative

AI, legislators who can craft appropriate regulatory frameworks,

and legal experts who can interpret and apply these frameworks in

the context of existing intellectual property law (49).

The path forward demands aggressive yet thoughtful action to

establish clear guidelines for the ethical and legal implementation

of generative AI in healthcare. These guidelines must balance the
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Framework of ethical AI governance components.

imperative for technological advancement in medical care with

the protection of individual and institutional rights. Success in

this endeavor requires a comprehensive approach that considers

not only technical and legal aspects but also broader societal

implications, ensuring that the development of medical AI serves

the public good while respecting intellectual property rights.

2.8 Governance and collaboration

The implementation of artificial intelligence inmedical imaging

demands a robust governance framework that places human

oversight at its core, ensuring responsible and ethical decision-

making throughout the AI life-cycle (50, 51). This framework

must begin with design-based privacy principles that protect

patient data from the earliest stages of development, embedding

security and confidentiality into the fundamental architecture of AI

systems (52).

The complexity of healthcare AI necessitates a multi-

stakeholder approach to governance. By engaging diverse

participants—including healthcare providers, patients,

technologists, ethicists, and regulatory experts—the framework

benefits from a rich tapestry of perspectives and experiences (53).

This inclusive approach helps identify potential challenges and

opportunities that might be overlooked from a single viewpoint.

Safety in medical AI systems requires a comprehensive

validation protocol that includes rigorous testing, continuous

monitoring, and regular assessment of outcomes (54). The

establishment of an Ethical Governance Council provides crucial

oversight, ensuring that AI development and deployment align

with established ethical principles and clinical standards (55). This

council serves as a guardian of patient interests while facilitating

technological advancement.

Educational initiatives play a vital role in this framework by

ensuring all stakeholders understand both the capabilities and

limitations of AI systems. These awareness programs foster realistic

expectations and promote responsible use of AI technologies in

clinical settings (51). The framework also emphasizes continuous

improvement, incorporating mechanisms to adapt AI systems as

new data becomes available and medical knowledge advances (52).

A particularly forward-thinking aspect of this governance

structure is its consideration of intergenerational impacts. By

addressing the needs of different age groups and anticipating future

healthcare challenges, the framework ensures that AI development

in medical imaging serves both current and future generations

equitably (53). As illustrated in Figure 3, this comprehensive

approach creates an ethical AI ecosystem that aligns technological

innovation with societal values and healthcare needs (55).

2.9 Balance between scaling and societal
impact for FMs

The advancement of artificial intelligence in healthcare requires

careful navigation of interconnected practical and ethical challenges

to ensure that technological innovation serves societal needs

while minimizing potential harm. At the foundation of these

challenges lies the critical issue of data quality and accessibility.

The development of robust AI systems depends on access to

diverse, representative datasets that capture the full spectrum

of patient populations and medical conditions (56). However,

this requirement must be balanced against stringent privacy

requirements and ethical considerations in healthcare data

management.

The technical challenge of developing scalable AI systems

extends beyond pure computational capabilities to questions

of seamless integration with existing healthcare infrastructure.

These systems must operate efficiently within established clinical

workflows while maintaining the highest standards of reliability

and performance. This operational complexity is compounded by

the imperative to maintain robust security measures that protect

against data breaches and unauthorized access, particularly given

the sensitive nature of medical information.

Bias mitigation represents one of the most pressing ethical

challenges in medical AI development. The potential for AI systems

to perpetuate or amplify existing healthcare disparities demands

continuous innovation in fairness-ensuring techniques (57).

This effort requires not only technical solutions but also

deep understanding of how societal biases can manifest in

healthcare data and decision-making processes. The development

of transparent and accountable AI systems is crucial for building

trust among healthcare providers and patients alike.

The broader societal implications of AI deployment in

healthcare must be carefully considered and actively managed. This

includes addressing concerns about potential job displacement in

the medical sector, the responsible use of surveillance technologies,
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and the risk of exacerbating existing social inequalities in healthcare

access. Success in navigating these challenges requires finding an

optimal balance between technological advancement and societal

acceptance, ensuring that AI development aligns with both clinical

needs and public values.

2.10 Security concerns and patient care

The emerging threat of “jailbreaking” in medical AI systems

represents a critical vulnerability that extends beyond typical

security concerns to potentially impact patient care directly.

These unauthorized modifications of generative AI models

can compromise the entire healthcare decision-making chain,

introducing subtle yet dangerous alterations that may escape

immediate detection (58). The implications of such tampering are

particularly severe in medical imaging, where small alterations can

lead to misdiagnosis or inappropriate treatment recommendations.

The risks associated with jailbreaking medical AI systems

operate on multiple levels. At the technical level, these

modifications can introduce systematic errors and biases that

undermine the model’s carefully calibrated performance. More

critically, from a patient safety perspective, compromised systems

may generate plausible-seeming but incorrect analyses, potentially

leading to cascading errors in clinical decision-making. These

technical vulnerabilities intersect with complex legal and regulatory

requirements, potentially violating established healthcare standards

and patient privacy protections (59).

The ethical implications of jailbreaking strike at the heart

of fundamental medical principles. By compromising system

integrity, these unauthorized modifications violate patient

autonomy by potentially subjecting individuals to flawed medical

decisions without their knowledge or consent. This breach of trust

extends beyond individual patient relationships to potentially

undermine broader public confidence in AI-driven healthcare

solutions, threatening the advancement of beneficial medical AI

applications.

Maintaining the integrity of medical AI systems requires a

comprehensive defense strategy that prioritizes patient welfare

above all other considerations. This necessitates collaboration

between AI developers, healthcare providers, and regulatory bodies

to establish robust security protocols and ethical guidelines. Only

bymaintaining an unwavering commitment to system integrity and

patient safety can we preserve trust in AI-driven medical solutions

and ensure their continued beneficial development (60).

2.11 Ethical and responsible use

The development of ethical foundational models in healthcare

requires a systematic approach to transparency and fairness that

begins at the earliest stages of model development. Comprehensive

documentation of data collection methodologies, preprocessing

techniques, and model customization procedures creates a

foundation of accountability and enables a thorough examination

of potential biases. This documentation serves not only as a

technical record but also as a crucial tool for identifying and

addressing potential sources of bias before they can impact patient

care.

Performance monitoring in healthcare AI must extend beyond

traditional accuracy metrics to encompass fairness indicators

across diverse patient populations. This requires sophisticated

evaluation frameworks that can detect subtle performance

variations across different demographic groups and clinical

scenarios. The integration of advanced techniques such as data

augmentation and algorithmic debiasing helps ensure that models

maintain consistent performance across all patient populations,

addressing potential disparities before they manifest in clinical

practice (61).

Data protection in medical AI demands a multi-layered

approach that combines technical solutions with rigorous

governance protocols. The implementation of differential privacy

techniques and federated learning architectures enables healthcare

organizations to maintain high standards of data security while

facilitating necessary model improvements. Regular security audits

serve as critical checkpoints, identifying potential vulnerabilities

and enabling proactive implementation of protective measures

against emerging threats.

The concept of accountability in medical AI extends beyond

technical performance to encompass broader responsibilities

toward patient care and societal impact. This requires establishing

clear chains of responsibility for AI-driven decisions and their

consequences, creating channels for stakeholder feedback, and

developing protocols for responsible model deployment. Success in

this endeavor requires active engagement with external entities and

a commitment to continuous improvement based on real-world

performance and stakeholder input.

3 Discussion

3.1 Critical analysis and limitations

Our framework for ethical FMs in medical imaging, while

comprehensive, faces several critical challenges that warrant

careful consideration. First, the inherent tension between model

performance and interpretability remains largely unresolved.

While we advocate for glass-box approaches, the increasing

complexity of FMs often creates a trade-off between accuracy

and explainability that cannot be easily reconciled with current

technical solutions.

The proposed federated learning approach, though promising

for privacy preservation, introduces significant computational

overhead and potential degradation in model performance.

Healthcare institutions with varying computational resources and

data quality may experience different levels of benefit from this

distributed learning paradigm, potentially exacerbating existing

healthcare disparities rather than mitigating them.

A critical limitation of our framework lies in its assumption

of standardized data collection and annotation practices across

healthcare institutions. The reality of medical data collection

involves significant variability in protocols, equipment calibration,

and annotation standards. This heterogeneity may undermine

the effectiveness of our proposed bias detection and mitigation

strategies.
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3.2 Practical implementation challenges
and regulations

The implementation of our ethical framework faces several

practical obstacles that require acknowledgment. The resource

requirements for maintaining robust privacy measures and

conducting comprehensive bias audits may be prohibitive for

smaller healthcare facilities. This economic barrier could lead to a

two-tiered system where only well-resourced institutions can fully

implement ethical AI practices. The proposed governance

structure, while theoretically sound, may face resistance

from various stakeholders. Clinicians may view additional

oversight mechanisms as bureaucratic hurdles, while institutional

administrators might resist the additional costs and complexity of

implementing comprehensive ethical frameworks. These practical

considerations could significantly impact the real-world adoption

of our proposed solutions.

AI regulation is being shaped by a combination of international

organizations and private tech giants, all of which are addressing

the practical implementation challenges of ethical and responsible

AI. UNESCO (62), for example, focuses on global AI governance

and ethical considerations, emphasizing the importance of human

rights and transparency in AI deployment. Their initiatives

highlight the difficulty of ensuring compliance across diverse

regulatory environments. Meanwhile, the European Union

(EU) (63) is spearheading one of the most comprehensive AI

regulatory efforts with its AI Act, which aims to classify and

regulate AI systems based on risk levels. However, enforcement

across EU member states poses logistical and legal challenges. At

an intergovernmental level, the OECD (64) has established

AI principles that emphasize fairness, transparency, and

accountability, but translating these high-level guidelines into

enforceable national policies remains a challenge. Private sector

leaders are also taking steps toward AI regulation. Microsoft

promotes “Responsible AI” frameworks, including bias mitigation

and human oversight, but the challenge remains in integrating

these ethical safeguards into rapidly evolving AI products.

Similarly, Google’s AI principles (65) outline commitments to

fairness and safety, but practical implementation is complicated

by the need to balance innovation with regulation. Lastly,

IBM’s focus on “Trustworthy AI” centers (66) on explainability

and algorithmic fairness, yet the challenge lies in achieving

industry-wide standardization while ensuring business viability.

These varied approaches collectively aim to tackle the real-

world obstacles of AI governance, but each faces difficulties in

enforcement, standardization, and global applicability. The key

challenge remains bridging the gap between regulatory ambition

and practical implementation in AI development and deployment.

3.3 Sociotechnical considerations

The broader societal implications of our framework deserve

critical examination. The emphasis on technical solutions to

ethical challenges may inadvertently overshadow the importance

of human judgment and clinical expertise. There is a risk that

over-reliance on automated systems, even those with built-in

ethical safeguards, could gradually erode the human elements of

healthcare delivery. Moreover, our approach to bias mitigation,

while well-intentioned, may not adequately address the root causes

of healthcare disparities. Technical solutions alone cannot resolve

systemic inequities deeply embedded in healthcare systems and

society at large. This limitation suggests the need for our framework

to be integrated with broader systemic changes in healthcare

delivery and medical education.

3.4 Future research directions and open
questions

Several critical questions remain unanswered and require

further investigation:

1. Scalability vs. Ethics: How can we balance the computational

demands of ethical AI practices with the need for rapid clinical

deployment?

2. Governance Evolution: How should ethical frameworks adapt to

emerging AI capabilities and evolving societal values?

3. Cultural Considerations: How can our framework be adapted

to different healthcare systems and cultural contexts while

maintaining its ethical principles?

4. Long-term Impact: What are the potential unintended

consequences of widespread adoption of AI-driven medical

imaging systems on healthcare profession dynamics?

These questions highlight the need for ongoing critical evaluation

and refinement of our framework.

4 Conclusion

Foundational models represent a pivotal advancement in

medical imaging, promising to revolutionize diagnostic precision,

treatment planning, and personalized medicine. Their potential

to transform healthcare delivery extends beyond mere technical

improvements, offering new possibilities for personalized

medicine and enhanced clinical decision-making. However, this

technological promise must be carefully balanced against the

complex ethical challenges that emerge from their deployment in

clinical settings. Our analysis reveals the multifaceted nature of

these challenges, encompassing critical concerns about patient data

privacy, algorithmic bias, model transparency, and professional

accountability. The framework we propose addresses these

challenges through a systematic approach that integrates technical

solutions with ethical principles. By combining advanced privacy-

preserving techniques, bias mitigation strategies, and robust

accountability measures, we establish a foundation for responsible

AI development in healthcare. The successful implementation of

foundational models in medical practice demands unprecedented

collaboration across disciplines. This includes not only technical

experts and healthcare professionals but also ethicists, legal

scholars, and patient advocates. Such diverse participation ensures

that these powerful tools evolve in ways that respect patient rights,

promote equitable care, and maintain the highest standards of

medical ethics. The responsible development ofmedical AI requires

constant vigilance and adaptation to emerging challenges. As these

technologies continue to evolve, our ethical framework provides

a dynamic structure that can accommodate new developments
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while maintaining an unwavering commitment to patient welfare.

This balanced approach ensures that the transformative potential

of foundational models in healthcare can be realized while

upholding the fundamental principles of medical ethics and

human dignity.
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