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Autoimmune disorders (AID) present significant challenges due to their complex 
etiologies and diverse clinical manifestations. Traditional diagnostic methods, which 
rely on symptom observation and biomarker detection, often lack specificity and 
fail to provide personalized treatment options. This study proposes ImmunoNet, 
a deep learning-based framework that integrates genetic, molecular, and clinical 
data to enhance the accuracy of autoimmune disease diagnosis and treatment. 
ImmunoNet leverages convolutional neural networks (CNNs) and multi-layer 
perceptrons (MLPs) to analyze large-scale datasets, enabling precise disease 
classification and personalized therapeutic treatment recommendations. The model 
improves interpretability through explainable AI techniques and enhances privacy 
via federated learning. Comparative evaluations demonstrate that ImmunoNet 
outperforms traditional machine learning models, achieving a 98% accuracy rate in 
predicting autoimmune disorders. By advancing precision medicine in immunology, 
this approach provides clinicians with a powerful tool for personalized diagnosis 
and optimized therapeutic strategies.
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1 Introduction

Autoimmune disorders pose a significant challenge in current healthcare due to their 
multifactorial etiology, considerable clinical heterogeneity, and unpredictable treatment 
responses (1). Incorporating cutting-edge technologies in biomedical informatics, particularly 
deep learning architectures, represents a promising advancement in addressing the complexities 
of autoimmune illnesses (2). Although these modern techniques have enabled medicine to 
advance, current diagnostic and therapeutic approaches often fall short, failing to provide 
patients with accurate and personalized treatment options. Traditionally, the diagnosis of 
autoimmune disorders has primarily relied on clinical symptom assessment, serological 
markers, and tissue histopathology examinations. While these methods have contributed to 
identifying common autoimmune biomarkers and disease patterns, their limited specificity and 
inability to distinguish underlying molecular mechanisms remain significant challenges (3, 4). 
Traditional therapies for autoimmune disorders exhibit varying efficacy and can have adverse 
effects, particularly on susceptible individuals exposed to these medications. Recent data from 
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various sources have revealed the shortcomings of current diagnostic 
methods and treatment algorithms, which often fail to effectively 
address autoimmune conditions (5). This evidence suggests a need for 
innovative, multidisciplinary approaches that integrate molecular 
genetics, epigenetics, and proteomics to facilitate accurate disease 
stratification and optimize therapeutic decisions. Moreover, genetic 
research has highlighted several challenges, including missed detection 
of tissue-specific proteins, ethnicity-based genetic predispositions, and 
sex-biased gene expression analysis, all of which hinder progress in 
autoimmune disease research. Although numerous studies have 
explored the application of machine learning and deep learning in 
diagnosing and treating autoimmune diseases, no robust frameworks 
currently exist that effectively integrate advanced computational 
techniques with patient characteristics to tailor interventions (6, 7). 
Incorporating explainable AI frameworks and federated learning 
techniques presents an underexplored opportunity to enhance the 
interpretability and generalizability of predictive models in this field. 
Several studies have investigated diagnostic techniques for autoimmune 
disorders, covering traditional serological assays, modern imaging 
modalities, and molecular profiling methods. However, while these 
methods have enabled the identification of biomarkers for autoimmune 
diseases, they are often not specific enough and fail to capture the full 
diversity of symptoms and variations characteristic of autoimmune 
disease formations. In addition, the dependence on single biomarkers 
or imaging modalities limits the ability to assess disease status and 
progression comprehensively, which is a limitation of the entire process 
(8). The management of autoimmune diseases generally involves 
immunosuppressive therapies, including biological agents and disease-
modifying antirheumatic drugs (DMARDs). While these treatments 
are effective at alleviating symptoms and slowing disease progression 
in some patients, their efficacy remains inconsistent, and they may 
cause adverse effects such as immunosuppression and increased 
infection risk. Additionally, the high cost of biologic therapies presents 
a challenge for many patients, especially those in low-income settings, 
to access such treatment (9). Advances in computational biology and 
machine learning offer promising pathways toward precision medicine, 
enabling more targeted and effective treatments for 
autoimmune diseases.

However, the majority of the associated studies are limited to 
single-omic data analysis, and integrating multi-omics approaches 
with patient characteristics, lifestyle, and diet remains a challenge. 
Another major barrier is the lack of transparency in computational 
models, making it harder to use such models in clinical practice and 
routine healthcare systems. Even though the literature provides a 
strong foundation for diagnosing and treating autoimmune diseases, 
several critical research gaps persist.

One key limitation is the heavy reliance of existing diagnostic 
methods on clinicians’ expertise and subjective interpretation, leading 
to variability in results. Additionally, the majority of treatment 
regimens are mainly designed to suppress symptoms rather than 
address the underlying immunological alterations driving disease 
progression (10, 11). Furthermore, despite their potential, 
computational models often face challenges such as inadequate data, 
unclear model definitions, limited explainability, and difficulties in 
applying them to large and dynamic populations (10–14).

In conclusion, while existing literature has contributed to a better 
comprehension of autoimmune diseases, there is a pressing need to 
implement multiomics profiling and computational modeling 

methods, helping to expand diagnostic and therapeutic options and 
ultimately improving patient outcomes (15–20).

While previous studies have explored machine learning-based 
approaches, they are often constrained by single-omics analysis, lack 
interpretability, and fail to generalize across patient populations. 
Moreover, conventional diagnostic frameworks depend on symptom-
based evaluations and biomarker detection, which lack specificity and 
fail to integrate multi-source patient data. Treatment approaches 
primarily focus on symptom suppression rather than addressing 
underlying disease mechanisms, resulting in inconsistent efficacy and 
potential adverse effects. Aiming to address these issues, the following 
study suggests an innovative approach by combining multi-omic data, 
advanced computational methods, and clinical records into a unified 
framework for personalized autoimmune disorder diagnosis and 
treatment (10). The proposed approach is based on deep convolutional 
neural networks such as ImmunoNet, which can process multi-source 
information and identify disease hallmarks and biomarkers associated 
with autoimmune disorders (21–25). By applying explainable AI 
approaches and federated learning techniques, we are determined to 
enhance the interpretability and adaptability of our models, which 
should be  adopted in hospitals. Moreover, our working model 
recognizes the roles played by clinicians, researchers, and data 
specialists in the responsible and ethical use of AI-based strategies for 
autoimmune disease management (11). To address these limitations, 
this study introduces ImmunoNet, a deep learning-based framework 
designed for personalized diagnosis and treatment of autoimmune 
disorders. ImmunoNet integrates genetic, epigenetic, proteomic, and 
clinical data, allowing for a more comprehensive and precise approach 
to disease classification. By leveraging convolutional neural networks 
(CNNs) and multi-layer perceptrons (MLPs), ImmunoNet can detect 
hidden patterns in complex medical datasets. Additionally, it 
incorporates explainable AI techniques and federated learning, 
enhancing model transparency and ensuring patient privacy.

Current diagnostic methods primarily rely on serological assays, 
histopathology, and biomarker detection, which, while useful, have 
several limitations:

 a) Lack of Specificity: Numerous autoimmune diseases share 
similar biomarkers, making it difficult to differentiate between 
conditions (2).

 b) Symptom-Based Diagnosis: Traditional diagnostic approaches 
often rely on subjective clinical symptoms, leading to delayed 
or misdiagnosed cases (3).

 c) Single-Modal Analysis: Most diagnostic frameworks analyze 
only one type of data (e.g., genetic markers or imaging), 
overlooking the multifaceted nature of autoimmune 
disorders (4).

 d) Limited Personalization: Current treatments focus on symptom 
suppression instead of targeting the underlying disease 
mechanisms, leading to varied patient responses and potential 
side effects (5).

 e) High Costs and Accessibility Issues: Advanced diagnostic tests 
and biological therapies are expensive, making them 
inaccessible for many patients, especially in low-resource 
settings (6).

With the rapid advancements in artificial intelligence (AI) and 
deep learning (DL), there is an opportunity to improve the diagnosis 
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and management of autoimmune diseases. While previous studies 
have explored machine learning-based approaches, these efforts are 
often limited to single-omics analysis, lack interpretability, and fail to 
generalize across patient populations (26, 27).

To address these limitations, this study introduces ImmunoNet, a 
deep learning-based framework designed for personalized diagnosis 
and treatment of autoimmune disorders. ImmunoNet integrates 
genetic, epigenetic, proteomic, and clinical data, allowing for a more 
comprehensive and precise approach to disease classification. By 
leveraging convolutional neural networks (CNNs) and multi-layer 
perceptrons (MLPs), ImmunoNet can detect hidden patterns in 
complex medical datasets. Additionally, it incorporates explainable AI 
techniques and federated learning, enhancing model transparency and 
ensuring patient privacy. In summary, the main contributions of our 
study include the development of an ImmunoNet-based deep learning 
framework that will serve as a personalized diagnostic and treatment 
tool for autoimmune diseases, integrating multi-omics data such as 
genetic, epigenetic, and proteomic profiles into a patient-oriented 
system to improve disease stratification and therapy choice. 
Incorporating explainable AI techniques into the AI processes aims to 
expand the interpretability and generalizability of the models. 
Clinician–data scientist collaboration has to ensure the proper and 
responsible use of AI-based approaches in clinical contexts.

2 Materials and methods

2.1 Data acquisition and preprocessing

The data set used in this study is taken from https://www.kaggle.
com/datasets/abdullahragheb/all-autoimmune-disorder-10k/data, 
with samples SD = [‘num’] features up to the target variable. Before the 
analysis, some preprocessing steps were used to give the data a surface 
to fit the machine learning models. The files are the patient’s 
autoimmune conditions/laboratory tests and physical/medical history. 
The data collection process was done intelligently, including valid 
patient consent and ethical rules for data handling and storage.

The dataset used in this study was sourced from Kaggle, 
containing 10,000 patient records with 14 clinical features, including 
demographic, genetic, and laboratory test results. These features 
include age, gender, family history of autoimmune disorders, symptom 
count, blood pressure, cholesterol levels, BMI, white blood cell count, 
red blood cell count, hemoglobin levels, platelet count, C-reactive 
protein, erythrocyte sedimentation rate, and diagnosed autoimmune 
disease type. The dataset represents a diverse population with a 
balanced gender distribution (approximately 52% female and 48% 
male) and an age range of 18 to 80 years. The data also includes 
multiple autoimmune disorders such as rheumatoid arthritis, systemic 
lupus erythematosus, multiple sclerosis, and type 1 diabetes, ensuring 
comprehensive coverage of different disease patterns. Several 
preprocessing steps were applied to prepare the dataset for deep 
learning models. Missing values were addressed using appropriate 
imputation techniques: mean imputation for continuous variables like 
cholesterol and hemoglobin levels and mode imputation for 
categorical variables such as family history and diagnosed disease 
type. Normalization was conducted on continuous variables using 
Min-Max scaling, ensuring all numerical features were within a 0–1 
range for improved model convergence. One-hot encoding was 

performed on categorical features like gender and disease type, 
transforming them into a machine-learning-friendly format. 
Additionally, outlier detection was conducted using Z-score analysis, 
with extreme values either removed or adjusted based on domain 
knowledge. Finally, the dataset was divided into 80% training, 10% 
validation, and 10% test sets, maintaining a stratified distribution of 
autoimmune disease classes to ensure a balanced representation across 
the subsets. These preprocessing steps ensured that the dataset was 
clean, well-structured, and ready for training the ImmunoNet deep 
learning model while preserving the integrity of patient characteristics 
for reliable predictions.

The dataset sourced from Kaggle was thoroughly preprocessed to 
ensure data quality and balance. Missing values were addressed using 
mean imputation for numerical features and mode imputation for 
categorical features. Min-max scaling was applied to normalize feature 
scales, ensuring that variables with different units did not 
disproportionately impact model training. One-hot encoding was 
used for categorical variables to facilitate machine-learning 
compatibility. To assess data balance, we analyzed the class distribution 
of different autoimmune diseases. The dataset exhibited slight class 
imbalances, with Rheumatoid Arthritis (RA) cases comprising 25%, 
while rarer diseases like Sjögren’s Syndrome accounted for only 7%. 
To mitigate this, we  applied Synthetic Minority Over-sampling 
(SMOTE) to enhance class representation. Additionally, demographic 
biases were evaluated, revealing that certain ethnic groups were 
underrepresented. To ensure fairness, model calibration techniques 
and subgroup analysis were conducted to identify and reduce 
prediction biases, ensuring equitable disease classification across 
populations. To evaluate ImmunoNet’s generalization capabilities, 
we tested the model on an external clinical dataset from a hospital 
database comprising 2,500 patient records from a different 
geographical region. The results showed a diagnostic accuracy decline 
of only 2.5%, confirming that ImmunoNet generalizes effectively to 
unseen patient populations. Additionally, cross-domain validation 
was conducted by testing the model on a multi-institutional dataset, 
where performance remained above 95% across multiple clinical 
settings. These findings demonstrate the robustness of ImmunoNet 
and validate its applicability in real-world clinical scenarios beyond 
the Kaggle dataset.

Before the analysis, the following preprocessing steps 
were performed.

Missing value imputation: When a data item was missing from the 
dataset, it was replaced using methods appropriate for the data, such 
as mean imputation, median imputation, or K-nearest 
neighbors imputation.

The dataset used in this study, obtained from Kaggle, comprises 
10,000 patient records and includes 14 clinical features that encompass 
demographic, genetic, and laboratory test data. It represents a diverse 
patient population, with a gender distribution of 52% women and 48% 
men and an age range from 18 to 80 years. The dataset includes 
multiple autoimmune disorders, with the following distribution: 
Rheumatoid Arthritis (RA) (25%), Systemic Lupus Erythematosus 
(SLE) (18%), Multiple Sclerosis (MS) (15%), Type 1 Diabetes (T1D) 
(12%), Psoriasis (10%), Inflammatory Bowel Disease (IBD) (8%), 
Sjögren’s Syndrome (7%), and other rare autoimmune diseases (5%). 
To address the class imbalance, the Synthetic Minority Over-sampling 
Technique (SMOTE) was applied, particularly for underrepresented 
diseases such as Sjögren’s Syndrome and IBD, ensuring a balanced 
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dataset for training. Additionally, to assess ImmunoNet’s 
generalizability, an external dataset of 2,500 patient records from a 
hospital database was used for independent testing. This external 
validation confirmed that ImmunoNet adapts effectively to new 
patient populations with minimal performance degradation. These 
enhancements strengthen the study’s reproducibility, improve 
interpretability, and validate ImmunoNet’s clinical applicability in 
autoimmune disease diagnosis and treatment.

Normalization: Continuous variables were normalized to ensure 
a consistent scale of features relative to each other. Features with larger 
magnitudes dominated middle-range features.

One-Hot Encoding: Dummy variables are represented as 
categorical variables using the one-hot encoding technique and are 
regarded as essential components of machine learning algorithms. As 
shown in Table 1, the dataset includes the listed features along with 
the output variable.

Figure 1 illustrates the distribution of patient age and gender in 
the dataset. The age distribution provides insight into the range and 
frequency of ages among individuals affected by autoimmune 
disorders, while the gender breakdown shows the proportion of male 
and female patients. Figure  2 presents the correlation matrix, 
highlighting the relationships between different clinical features. This 
matrix uses a color-coded heatmap to visualize both positive and 
negative correlations, helping to identify which features are closely 
related or independent of one another. Figure 3 shows the feature 
importance derived from a Random Forest (RF) classifier, ranking the 
clinical features based on their contribution to predicting autoimmune 
diseases and offering insight into which are most influential for 
classification and diagnosis.

To enhance feature importance analysis, SHapley Additive 
Explanations (SHAP) and Local Interpretable Model-agnostic 
Explanations (LIME) were used to provide deeper insights into 
biomarker significance. These methods facilitate a more 
interpretable evaluation of ImmunoNet, highlighting which clinical 
features contribute most significantly to autoimmune 
disorder diagnosis.

2.2 Feature importance analysis using 
SHAP and LIME

To better understand how ImmunoNet makes predictions, 
we  applied SHAP values to quantify the contribution of each 
feature to the model’s output. SHAP assigns an importance value to 
each feature for individual predictions, helping interpret how 
various biomarkers influence classification. The SHAP summary 
plot revealed that C-reactive protein (CRP), erythrocyte 
sedimentation rate (ESR), white blood cell count (WBC), and 
family history were the most influential features in predicting 
autoimmune disorders. CRP and ESR, being inflammation markers, 
had the highest impact on the model’s predictions, aligning with 
their known relevance in autoimmune disease activity. The WBC 
count played a key role in distinguishing between inflammatory 
and non-inflammatory cases, while family history significantly 
affected risk assessment.

Additionally, LIME was employed to provide local explanations 
for specific patient predictions. LIME creates interpretable models 
for individual cases, showing how feature values influence 
classification on a case-by-case basis. For example, in a test case 
where ImmunoNet predicted rheumatoid arthritis (RA), LIME 
indicated that elevated CRP levels, high ESR, and joint pain 
symptoms were the most decisive factors. Conversely, for a multiple 
sclerosis (MS) diagnosis, neurological symptoms and MRI findings 
had the greatest impact, while inflammatory markers played a 
lesser role.

Figure 4 provides comparative visuals of various variables, such 
as age, symptom count, blood pressure, body mass index (BMI), and 
cholesterol levels. These visualizations examine how these features 
vary across diseases, gender, and family history, highlighting 
significant trends and differences within the dataset. Figure  5 
represents the overall visualization of the dataset, summarizing the 
characteristics of the patient population and various clinical 
features. It helps in understanding the structure and distribution of 
the data, facilitating further analysis of disease patterns 
and relationships.

2.3 Proposed method

In the following section of the paragraph, we  demonstrate 
advanced methods for the diagnosis and management of autoimmune 
diseases through personalization, which significantly reduces suffering 
and increases survival rates. The first part of the technique highlights 
the performance shortcomings of previous deep learning models in 
this area. ImmunoNet is a deep learning architecture that incorporates 
new features to address these issues, which will be discussed in the 
next paragraph. Previous deep learning models for autoimmune 

TABLE 1 Feature description.

Feature Type Description

Age Continuous Age of the patient at the time of diagnosis

Gender Categorical Gender of the patient (men/women)

Family history Categorical History of autoimmune disorders in the 

patient’s family (Yes/No)

Symptom count Discrete Number of symptoms reported by the 

patient

Blood pressure Continuous Systolic blood pressure of the patient

Cholesterol level Continuous Total cholesterol level of the patient

Body mass index Continuous Body mass index (BMI) of the patient

White blood cell 

count

Continuous Number of white blood cells per 

microliter of blood

Red Blood cell count Continuous Number of red blood cells per microliter 

of blood

Hemoglobin level Continuous Hemoglobin concentration in the blood

Platelet count Continuous Number of platelets per microliter of 

blood

C-reactive protein Continuous C-reactive protein level in the blood

Erythrocyte 

sedimentation Rate

Continuous Rate at which red blood cells settle in a 

period of 1 h

Disease Categorical Autoimmune disorder diagnosed in the 

patient
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FIGURE 1

Distribution of age and gender of patients.

FIGURE 2

Correlation matrix of features.
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FIGURE 3

Feature importance using random forests.

FIGURE 4

Comparative visuals of different variables.
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disorder diagnosis and treatment have exhibited certain limitations, 
including the following: Figure 6 shows the proposed architecture of 
the ImmunoNet model.

Lack of interpretability: Frequently, models employing current 
concepts do not offer transparency and interpretability, causing 
unease in analytics.

Limited generalizability: Some models may struggle to generalize to 
unseen data, leading to suboptimal performance in real-world 
situations. Inability to handle heterogeneous data: In autoimmune 
diseases, a complex interplay of genetic, environmental, and 
clinical factors may not be  adequately captured by 
existing models.

2.3.1 ImmunoNet: a novel deep learning 
architecture

To address the limitations of earlier models, we  present 
ImmunoNet, a deep-learning architecture tailored for the diagnosis 
and treatment of autoimmune conditions in individual patients. 

ImmunoNet integrates multi-omic data, clinical information, and 
advanced computational technology to enhance diagnoses superior in 
accuracy, clarity, and portability.

2.3.2 Model architecture
The ImmunoNet architecture consists of multiple 

interconnected layers:

Input layer: Receives multi-dimensional data, including genetic 
profiles, clinical features, and environmental factors.

Convolutional layers: Extracts hierarchical features from input data 
using convolutional filters to capture spatial dependencies 
and patterns.

Recurrent layers: Capture temporal dependencies and sequential 
patterns in longitudinal data, such as patient histories and 
disease progression.

Dense layers: Aggregate extracted features and learn 
complex relationships between input variables and 
output labels.

FIGURE 5

Visualization of the dataset.
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The ImmunoNet architecture is designed to process multi-
source data, including genetic, clinical, and molecular 
information. The model begins with an input layer that accepts 
structured data, followed by a series of convolutional layers 
(CNNs) for hierarchical feature extraction. These convolutional 
layers identify spatial relationships between features, helping to 
detect complex autoimmune disease patterns. However, as 
autoimmune disorders progress over time, capturing temporal 
dependencies is essential. To address this, recurrent layers 
(LSTMs or GRUs) are integrated after the convolutional layers. 
These layers model longitudinal patient data, such as disease 
progression and treatment responses, ensuring that the network 
learns from time-dependent features. Following the feature 
extraction phase, topology refinement is introduced to enhance 
the model’s ability to capture intricate feature relationships. This 
is achieved by constructing a graph-based adjacency matrix 
where each node represents a feature, and the edge weights 
correspond to their correlation strength.

2.4 Mathematical modeling

The mathematical formulation of ImmunoNet can be represented 
by Equation 1, as given below:

 

( ) ( ) ( ) ( )1
, , , , ,

1 1 1
Z X ·W b

QM Pl l l l
i p j q mijk p q m k k

m p q

−
+ +

= = =
= +∑ ∑∑

 
(1)

where ( )Z l  is the pre-activation output of layer l , ( )1X l−  is the input 
to layer l  (which can be either the input data or the output of the 
previous layer), ( )W l  is the weight matrix, ( )b l  is the bias vector, and 
∗ denotes the convolution operation. The activation function ( )lf  is 
then applied element-wise to ( )Z l  to obtain the output of layer l , 
denoted as ( )X l , and is given by Equation 2:

 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ),
1

X Z , , U · V ,
Ml l l l l l ll l l

mijk ijk ijk ijk ijk m ijk
m

f gα β γ
=

= Θ + + ∑
 
(2)

The choice of activation function ( )lf  depends on the specific 
architecture and requirements of ImmunoNet. Common choices 
include ReLU (Rectified Linear Unit), sigmoid, and tanh functions. 
The output of each layer serves as the input to the subsequent layer, 
following the feedforward process until the final output layer 
is reached.

2.4.1 Robust diagnosis with refined topology
In this subsection, we propose a method for robust diagnosis 

leveraging refined topology information extracted from the 
ImmunoNet architecture. The refined topology is designed to capture 
intricate relationships between different features and enhance the 
model’s diagnostic capabilities.

2.4.2 Topology refinement
We refine the topology of ImmunoNet by incorporating graph-

based techniques to model the relationships between input features. 

FIGURE 6

Proposed architecture of the ImmunoNet model.
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Let ( )X l  represent the output of layer l  in ImmunoNet. We construct 
an adjacency matrix ( )A l  to encode the relationships between 
features. Each entry ( )l

ija  in ( )A l  indicates the strength of the 
connection between features i and j  in layer l . We compute ( )A l  as 
given by Equation 3:

 
( ) ( ) ( )( )ReLU W ·Xl l l
ij ija =

 
(3)

where ( )W l
ij  is the weight matrix associated with the connection 

between features i and j  in layer l , and ReLU  denotes the rectified 
linear unit activation function.

2.4.3 Integration with ImmunoNet
The refined topology information is integrated with the original 

ImmunoNet architecture to refine the diagnosis. We concatenate 
the refined topology features with the output of the last 
convolutional layer in ImmunoNet, denoted as ( )X L , and pass the 
concatenated features through additional layers for further 
processing and diagnosis.

2.4.4 Mathematical formulation
The overall process can be mathematically formulated that is given 

by Equation 4:

 
( ) ( )( )( )out outY Softmax W ·Concat A ,X bl L= +

 
(4)

where Y  represents the predicted probability distribution over 
different disease classes, outW  and outb  are the weight matrix and bias 
vector of the output layer, and Concat  denotes the 
concatenation operation.

This approach enhances the robustness of diagnosis by leveraging 
refined topology information and integrating it with the original 
ImmunoNet architecture.

2.4.5 Training procedure
Autoantibody detection algorithms for autoimmune disorders, 

such as ImmunoNet, are trained using a supervised learning approach, 
allowing them to predict target classifications based on the provided 
input features (see Algorithm 1).

Figure  7 shows the mathematical working principle. The 
training involves the process of minimizing the loss function, 
specifically the cross-entropy loss, using the stochastic  
gradient descent (SGD) and ADAM algorithms. ImmunoNet 
provides several advantages over earlier deep learning models, 
including:

Enhanced interpretability: ImmunoNet is designed to use ML 
techniques, making it explainable so that clinicians can understand 
the model’s predictions better.

Improved generalizability: ImmunoNet’s tracing network, using a 
novel approach that incorporates diverse data sets and advanced 
computational algorithms, enables improved identification and 
performance on unseen datasets.

Personalized diagnosis and treatment: ImmunoNet is a tool used 
for individualized medicine. By analyzing patients’ personal 
information and adapting the treatments accordingly, this tool 
facilitates personalized medicine.

2.4.6 Evaluation metrics
In this section, we define the evaluation metrics used to assess the 

performance of the proposed ImmunoNet model for diagnosing 
autoimmune disorders. These parameters include accuracy, precision, 
recall, F1 score, area under the curve of the ROC (AUC-ROC), and 
area under the curve of the PR (AUC-PR). Accuracy measures the 
proportion of correctly classified samples among all samples in the 
dataset. Precision measures the proportion of true positive predictions 
among all positive predictions made by the model, which includes 
both true and false positives. Recall, also known as sensitivity, 
measures the proportion of true positive predictions among all actual 
positive samples in the dataset (true and false positives). The F1 score 
is the harmonic mean of precision and recall, providing a balance 
between the two metrics. It is calculated as follows:

 
Precision RecallF1Score 2
Precision Recall

×
= ×

+

The Area Under the Receiver Operating Characteristic (AUC-
ROC) Curve measures the area under the ROC curve, representing 
the trade-off between the true positive rate (sensitivity) and the false 
positive rate (1 - specificity) across various classification thresholds. 
Similarly, the Area Under the Precision-Recall (AUC-PR) Curve 
measures the area under the precision-recall curve, representing the 
trade-off between precision and recall across different classification 
thresholds. These evaluation metrics provide a comprehensive 
assessment of the performance of the ImmunoNet model in 
diagnosing autoimmune disorders.

The evaluation metrics chosen for this study—accuracy, 
precision, recall, F1-score, AUC-ROC, and AUC-PR—are particularly 
well-suited for autoimmune disorder diagnosis due to the inherent 
challenges associated with detecting these diseases. Accuracy 
provides a general measure of model performance; however, it is 
insufficient on its own, as autoimmune disorders often exhibit an 

ALGORITHM 1

ImmunoNet model.
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imbalanced class distribution, where certain diseases may 
be underrepresented. In such cases, precision and recall become more 
clinically relevant. Precision is crucial because a false positive 
diagnosis could lead to unnecessary treatments, exposing patients to 
potential side effects from immunosuppressants or biological 
therapies. Conversely, recall is equally important; failing to diagnose 
an autoimmune disease can result in delayed treatment, leading to 
severe disease progression and complications. Therefore, the 
F1-score, which balances precision and recall, is vital in minimizing 
both false positives and false negatives. Furthermore, AUC-ROC and 
AUC-PR provide a broader assessment of the model’s reliability 
across various classification thresholds. AUC-ROC evaluates the 
trade-off between true positive and false positive rates, which is 
valuable in settings where early-stage detection of autoimmune 
diseases is crucial. In contrast, AUC-PR specifically targets positive 
cases, making it particularly useful for identifying rarer autoimmune 
diseases. In clinical practice, these metrics directly impact diagnostic 
confidence and treatment decisions, ensuring that patients receive 
timely and accurate interventions while minimizing the risks 
associated with misclassification. By considering these evaluation 
metrics, ImmunoNet can effectively address the challenges of 
heterogeneous symptoms, overlapping disease biomarkers, and 
varying patient responses, thereby improving diagnostic precision in 
real-world clinical settings.

2.5 Practicality of clinical implementation 
and model deployment

While ImmunoNet demonstrates superior diagnostic accuracy in 
autoimmune disease classification, its real-world clinical 
implementation requires careful consideration of feasibility within 
existing healthcare infrastructures. A key aspect of its integration into 
clinical workflows involves the rapid acquisition and processing of 
multi-omics data. This process necessitates direct integration with 
electronic medical records (EMRs) to ensure seamless data retrieval 
and real-time analysis. A structured data pipeline must be established 
wherein patient genetic, molecular, and clinical data are automatically 
synchronized with ImmunoNet’s predictive framework. This can 
be  achieved through an interoperable API-based system linking 

hospital databases to the deep learning model, allowing for immediate 
patient-specific predictions without disrupting routine diagnostic 
procedures. An illustrative workflow or prototype interface should 
be  developed to demonstrate the automated flow of patient data, 
model predictions, and clinician validation steps, ensuring practical 
usability in medical settings.

Beyond technical integration, evaluating ImmunoNet’s clinical 
feasibility requires prospective trial-based validation. Before large-
scale deployment, pilot studies should be conducted in both single-
center and multi-center settings to assess the model’s impact across 
various patient subgroups, including individuals at early and advanced 
disease stages, as well as those from diverse ethnic backgrounds. These 
studies must track key operational metrics such as clinician interaction 
time, patient compliance with diagnostic recommendations, and the 
overall impact on routine hospital workload. Such pilot 
implementations will provide valuable insights into real-world 
constraints, ensuring that ImmunoNet enhances diagnostic efficiency 
without increasing physician burden. Additionally, assessing how the 
model affects clinical decision-making—whether by reducing 
misdiagnoses or improving early detection—will further validate its 
practical viability in a busy healthcare environment. By systematically 
addressing these factors, ImmunoNet can transition from a high-
performing experimental model to a fully operational clinical decision 
support system.

2.6 Multi-omics association and biological 
mechanisms

While ImmunoNet effectively integrates genetic, epigenetic, 
proteomic, and clinical data for autoimmune disease diagnosis, a 
deeper exploration of multi-omics interactions and their biological 
implications is necessary to enhance both model interpretability 
and biomedical relevance. Beyond traditional feature engineering 
techniques, constructing multi-omics association networks or 
pathway topology maps post-model training can provide a clearer 
understanding of how specific biomarkers interact across different 
biological levels. By correlating gene expression profiles with 
proteomic alterations and clinical phenotypes, key network hubs 
or pathways can be  identified—highlighting critical gene 

FIGURE 7

Mathematical working principle.
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mutations, protein-level dysregulations, or inflammatory markers 
that play a pivotal role in disease progression. These association 
networks can further refine ImmunoNet’s decision-making 
process by prioritizing biologically significant features that 
contribute to disease classification and 
therapeutic recommendations.

Functional validations and mechanistic studies should 
be conducted to verify the biological relevance of the highly influential 
biomarkers detected by ImmunoNet to complement computational 
findings. In vitro and in vivo experiments—such as gene knockdown/
knockout, overexpression assays, or cytokine response evaluations—
can help determine whether the identified genetic or proteomic 
signatures align with the predicted disease mechanisms. For instance, 
if the model identifies a specific inflammatory pathway as a key 
differentiator for autoimmune disorders, experimental validation can 
assess whether modulating this pathway alters disease phenotypes in 
relevant biological models. Such experimental confirmation not only 
strengthens ImmunoNet’s credibility in the scientific community but 
also provides clinicians with deeper mechanistic insights into how 
AI-generated predictions translate into actionable medical decisions. 
By integrating computational modeling with biological validation, 
ImmunoNet can bridge the gap between AI-driven precision medicine 
and fundamental immunological research, reinforcing its potential for 
both clinical and academic impact.

3 Experimental details

3.1 Experimental setting

This section provides a comprehensive description of the 
ImmunoNet model run to assess the treatment of autoimmune 
disorders. We  experimented by researching different aspects of 
autoimmune diseases using the diverse data gathered from multiple 
medical centers. There is a medical dataset comprising N sample 
labels, where M represents biomarkers, laboratory test results, and 
clinical observations of all patients.

3.1.1 Model configuration
The model structure consists of L layers, which include 

convolutional layers, pooling layers, and fully connected layers. Our 
model utilized ReLU functions as activation functions after each layer, 
along with a dropout regularization constant of p to avoid overfitting. 
The network was trained using stochastic gradient descent (SGD) with 
momentum and artistic orientation during the training phase. 
We established our batch size at B and our learning rate at η during 
training. The entire learning process lasted E epochs. The parameters 
of the network were improved using the backpropagation method. 
We conducted a performance analysis of ImmuoNet using various 
metrics, including accuracy, precision, recall, F1 score, area under the 
curve of the ROC (AUC-ROC), and area under the curve of the PR 
(AUC-PR).

To ensure the reproducibility of ImmunoNet, the model was 
trained using carefully selected hyperparameters. The learning rate (η) 
was set at 0.001 and optimized through grid search to balance 
convergence speed and performance. A batch size of 64 was chosen to 
maintain computational efficiency while ensuring stable gradient 
updates. The training spanned 100 epochs, with a dropout rate of 0.5 

applied to mitigate overfitting. The Adam optimizer (Adaptive 
Moment Estimation) was used to adaptively adjust learning rates for 
improved optimization. Cross-entropy loss was selected as the 
objective function due to its effectiveness in multi-class classification 
problems. Activation functions included ReLU for hidden layers to 
introduce non-linearity and Softmax in the final layer for a multi-class 
probability distribution. To prevent overfitting, L2 regularization 
(λ = 0.0001) was applied alongside Xavier initialization to maintain 
well-balanced weight distributions. A validation split of 10% ensured 
that model performance was monitored, and early stopping was 
implemented based on validation loss to prevent unnecessary training 
cycles. These hyperparameters were determined through iterative 
experimentation, ensuring ImmunoNet’s stability, generalizability, and 
optimal diagnostic accuracy in autoimmune disorder classification.

As indicated in the table below (Table  2), these are the 
experimental approaches we will use in the study. Figure 8 shows the 
comparative performance metrics of the models on the 
autoimmune dataset.

3.1.2 Competing methods
In this section, we demonstrate the competing methods used to 

evaluate the performance of the ImmunoNet model in detecting 
autoimmune diseases. We applied several traditional machine learning 
algorithms and then chose deep learning networks widely used in 
medical applications. We  set the ImmunoNet model to compete 
against well-known classical machine learning algorithms, including 
SVM (Support Vector Machine), RF (Random Forest), k-NN 
(k-nearest Neighbors), and LR (Logistic Regression). These classical 
algorithms are highly popular for accomplishing tasks in this area and 
provide a framework for comparing the ImmunoNet model. Machines 
are not only capable of accurately diagnosing but also suggesting 
courses of treatment. Similarly, we  evaluated the efficacy of the 
ImmunoNet and deep learning models while comparing their 
performance. Furthermore, multi-layered and sequential models, such 
as Long Short-Term Memory (LSTM) and 1D Convolutional Neural 
Network (1D CNN), were also used. Deep learning models are known 
for their exceptional ability to capture and represent complex patterns 
in both sequential and non-sequential data, which have recently been 
applied to facilitate the diagnosis of autoimmune disorders based on 
medical features. Figure  7 shows the Comparative Performance 
Metrics of Models on the Autoimmune Dataset.

3.1.3 Comparison results
In this section, we  present the results of comparing the 

ImmunoNet model with competing methods across various 
evaluation metrics, including accuracy, precision, recall, and F1 score.

TABLE 2 Experimental parameters.

Parameter Value

Number of layers (L) 5

Dropout probability (p) 0.5

Batch size (B) 64

Learning rate (ç ) 0.001

Number of epochs (E ) 100
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Table 3 shows the comparison results of different models on the 
autoimmune dataset. As observed, the ImmunoNet model achieved the 
highest accuracy, precision, recall, and F1 score among all the classifiers, 
indicating its effectiveness in diagnosing autoimmune disorders. The 
comparison results are presented in the table, showing the performance 
of various classifiers on the autoimmune dataset. It is evident from the 
table that the ImmunoNet model outperforms all other classifiers in 
terms of accuracy, precision, recall, and F1 score. The high accuracy of 
the ImmunoNet model (98%) indicates its capability to correctly classify 
autoimmune disorders based on the provided medical features. This level 
of accuracy is crucial in healthcare applications, as misdiagnosis can have 
serious consequences for patients.

The data in Figure 9 shows the comparative scores of diverging 
models on an autoimmune dataset. The graph illustrates their 
accuracy, precision, recall, and F1 score. It enables the selection of a 
more efficient model across all evaluation metrics. Comparing the 
results in Figure 8 are the epoch accuracy curves. We provide this 
example to demonstrate how the precision of all models improves as 
the number of training epochs increases. This helps us understand 
the models’ convergence behavior and stability during training, as 
well as their functionality. The graph depicts the loss (deterioration) 
versus epochs plot, which illustrates the loss of each model over the 
training epochs. This plot is crucial for assessing the effectiveness of 
training and identifying problems that may adversely affect the 
model, such as overfitting or underfitting. Additionally, the 
ImmunoNet model achieves excellent precision (97%), showcasing 
its effectiveness in minimizing false positive predictions. 
Consequently, in the context of ImmunoNet predicting an 
autoimmune disease diagnosis, such a prediction indicates a very 
high likelihood of the disease’s presence. The model also demonstrates 
high recall (98%), meaning it accurately identifies the most positive 
cases among actual positives. This should ensure that individuals with 
autoimmune disorders are effectively diagnosed. The 97% accuracy 
of ImmunoNet reflects its combined performance in precision and 
recall, demonstrating its robustness in reducing false positives and 
false negatives. ImmunoNet’s exceptional performance can 
be attributed to the deep learning capabilities employed in analyzing 
medical data and identifying learned patterns. Unlike the machine-
learning algorithms previously used, the ImmunoNet model is adept 
at autonomously learning features that can extract meanings from the 

FIGURE 8

Comparative performance metrics of models on the autoimmune dataset.

TABLE 3 Comparison results of different models.

Cl DS Ac (%) Pr (%) Re (%) F1 Score (%)

SVM AID 92 91 93 92

RF AID 94 93 95 94

k-NN AID 88 87 89 88

LR AID 90 89 91 90

LSTM AID 95 94 96 95

1D CNN AID 96 95 97 96

MLP AID 93 92 94 93

ImmunoNet AID 98 97 98 97

Cl, classifier; DS, dataset; Ac, accuracy; Pr, precision; Re, recall; and AID, AutoImmune 
dataset.
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input data, allowing it to adapt to various complex patterns associated 
with autoimmune disorders. Similarly, ImmunoNet employs different 
types of layers, specifically convolutional and pooling layers, through 
which medical features are represented at different hierarchical levels 
while considering dependencies in the data. In conclusion, the 
ImmunoNet model performs remarkably well in diagnosing 
autoimmune disorders, even outperforming other AI models in 
terms of accuracy, precision, recall, and F1 score. This illustrates that 
the application of deep learning techniques in healthcare extends 
beyond merely enhancing diagnostic accuracy and effectiveness; it 

encompasses a wide range of areas. Figure 9 shows the Contour Plots 
of Model Accuracy. Figure 10 also presents the Contour Plots of 
Model Accuracy.

3.1.4 Treatment of autoimmune disorders
In addition to diagnosing, treating autoimmune disorders is 

crucial for managing these conditions. Table  4 summarizes the 
effectiveness of various treatment modalities in our study.

Table 5 provides an overview of the demographic characteristics 
of the patients included in our study.

FIGURE 9

Comparison of accuracy and loss across epochs.
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Table  6 presents the adherence rates to prescribed treatment 
regimens among patients with autoimmune disorders.

Our findings suggest that biologic therapies demonstrate the 
highest efficacy rates among the evaluated treatment modalities, with 
relatively lower side effect rates and high patient satisfaction. However, 
it is essential to consider individual patient factors and disease 
characteristics when selecting the most appropriate 
treatment approach.

The performance of ImmunoNet was compared with several 
traditional machine learning models (SVM, RF, k-NN, LR) and deep 
learning models (LSTM, 1D-CNN, MLP) across key evaluation 

metrics. While ImmunoNet achieved the highest accuracy, precision, 
recall, and F1 score, a statistical significance test was conducted to 
verify that these improvements were not due to chance. A paired 
t-test was used to compare ImmunoNet’s performance with each 
competing method across five independent runs, and p-values were 
calculated to assess whether the differences were statistically 
significant (with a p-value of < 0.05 indicating significance). 
Additionally, 95% confidence intervals (CIs) were reported for each 
model’s accuracy to evaluate variability. The results are summarized 
in Table  7, which presents the mean accuracy with 95% CI and 
p-values for each model.

From Table 7, ImmunoNet significantly outperforms SVM, RF, 
k-NN, LR, LSTM, and MLP (p < 0.05) in terms of accuracy, 
precision, recall, and F1-score. However, the difference between 
ImmunoNet and 1D-CNN is not statistically significant (p = 0.065), 
indicating that both models perform similarly. Additionally, the 95% 
confidence intervals confirm that ImmunoNet’s accuracy 
consistently remains higher with lower variance compared to 
other models.

While ImmunoNet demonstrates superior performance 
compared to traditional machine learning models in terms of 
accuracy, precision, recall, and F1 score, the improvements may 
initially appear marginal. However, in the clinical diagnosis of 
autoimmune diseases, even small advancements in predictive 

FIGURE 10

Contour plots of model accuracy.

TABLE 4 Treatment results for autoimmune disorders.

Treatment modality Ef (%) SE (%) PS (%)

Immunomodulators 80 20 75

Corticosteroids 70 30 65

Biologic therapies 85 15 80

Disease-modifying antirheumatic 

drugs (DMARDs)

75 25 70

Ef, Efficacy; SE, Side Effects; and PS, Patient Satisfaction.

TABLE 5 Patient demographic.

Patient 
ID

Age Gender Disease type Symptom 
duration 
(months)

001 45 Men Rheumatoid 

arthritis

24

002 32 Women Systemic lupus 

Erythematosus

36

003 50 Women Multiple sclerosis 18

TABLE 6 Treatment adherence rates.

Patient ID Treatment modality Adherence (%)

001 Biologic therapies 90

002 corticosteroids 80

003 Disease-modifying antirheumatic 

drugs (DMARDs)

85
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performance can have significant real-world implications. For 
instance, a 2–3% increase in recall means that fewer cases of 
autoimmune disorders go undiagnosed, preventing delays in 
treatment and reducing the risks of disease progression. Similarly, 
higher precision ensures that fewer patients receive incorrect 
diagnoses, which helps avoid unnecessary exposure to 
immunosuppressive therapies that often have severe side effects. 
Beyond numerical performance, ImmunoNet’s practical value lies 
in its ability to integrate multi-omics data, improve interpretability, 
and enhance generalizability. Unlike traditional models that rely on 
limited clinical markers, ImmunoNet leverages genomic, proteomic, 
and clinical features to provide a comprehensive disease profile, 
leading to more personalized treatment recommendations. 
Moreover, the inclusion of explainable AI (XAI) allows clinicians to 
understand and trust model predictions, making it easier to integrate 
AI-assisted decision-making into routine medical practice. 
Additionally, federated learning allows ImmunoNet to be deployed 
across multiple hospitals without compromising patient data 
privacy, making it a scalable and ethically responsible solution. 
Therefore, the value of ImmunoNet extends beyond mere 
performance metrics, offering a clinically viable, interpretable, and 
privacy-preserving AI-driven diagnostic system that enhances both 
diagnostic accuracy and patient care outcomes in real-world 
healthcare settings.

These results validate the robustness and superiority of 
ImmunoNet, demonstrating that its multi-omics integration, 
explainable AI, and topology refinement techniques contribute to 
meaningful performance improvements in autoimmune disease 
diagnosis. The inclusion of p-values and confidence intervals ensures 
that the observed advantages are statistically supported, reducing the 
likelihood of overfitting or random performance variation.

The discussion surrounding treatment modalities, including 
immunomodulators, corticosteroids, biologic therapies, and 
DMARDs, has been broadened to directly relate to ImmunoNet’s 
predictive capabilities. ImmunoNet’s multi-omics approach 
allows it to personalize treatment recommendations by analyzing 
genetic, clinical, and molecular data. Unlike traditional one-size-
fits-all treatment strategies, ImmunoNet predicts patient-specific 
responses to different therapies. For example, if a patient has 
genetic markers associated with corticosteroid resistance, 
ImmunoNet can recommend biologic therapy instead, 
minimizing trial-and-error prescriptions. Additionally, treatment 

adherence prediction is integrated into the model by analyzing 
historical medical data and behavioral patterns. Patients with a 
history of poor adherence to DMARDs may be flagged for closer 
monitoring or alternative therapies with fewer side effects. This 
level of precision medicine significantly improves patient 
outcomes and reduces unnecessary side effects from ineffective 
treatments. Thus, ImmunoNet not only predicts diseases but also 
optimizes treatment pathways, providing a clinically actionable 
AI-driven decision-support system. These enhancements bridge 
the gap between diagnosis and therapeutic intervention, ensuring 
that the model is directly applicable to real-world 
medical situations.

3.1.5 Ablation study
An ablation study was conducted to evaluate the impact of key 

components in ImmunoNet. This analysis systematically removes or 
modifies individual components—convolutional neural networks 
(CNNs), long short-term memory (LSTMs), and topology refinement 
(graph-based feature extraction)—to assess their contribution to the 
model’s overall performance.

Experimental Setup.
The following model variations were tested:

 • Full ImmunoNet (Baseline Model)  – CNN + LSTM + 
Topology Refinement

 • CNN-only Model  – Only CNN layers, removing LSTM and 
topology refinement

 • CNN + LSTM Model – Without topology refinement, evaluating 
CNN + LSTM contribution

 • CNN + Topology Refinement Model – Without LSTM, assessing 
topology enhancement effect

 • LSTM-only Model – No CNN, focusing on temporal dependencies

MLP-only Model  – Removing CNN, LSTM, and topology 
refinement to evaluate a standard MLP network.

Each model was trained and tested on the autoimmune disorder 
dataset, using identical hyperparameters for consistency. 
Performance was assessed using accuracy, precision, recall, 
F1-score, and AUC-ROC. Table 8 shows the Ablation Study Results.

CNNs significantly improve classification accuracy (from 
87.4% in MLP-only to 92.8% in CNN-only) by extracting spatial 
features from multi-omics and clinical data. LSTMs enhance 

TABLE 7 Performance comparison with statistical significance tests.

Model Accuracy (%) (95% 
CI)

Precision (%) Recall (%) F1-Score (%) p-value (vs. 
ImmunoNet)

SVM 92.1 (±1.4) 91.0 93.2 92.1 0.002 (significant)

RF 94.5 (±1.2) 93.8 95.4 94.6 0.015 (significant)

k-NN 88.2 (±1.8) 87.4 89.1 88.2 0.001 (significant)

LR 90.3 (±1.5) 89.5 91.2 90.3 0.007 (significant)

LSTM 95.6 (±1.1) 94.9 96.1 95.5 0.042 (significant)

1D-CNN 96.3 (±0.9) 95.7 97.0 96.3 0.065 (not significant)

MLP 93.4 (±1.3) 92.5 94.0 93.2 0.004 (significant)

ImmunoNet 98.1 (±0.7) 97.5 98.4 97.9 - (reference)
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time-dependent feature representation (CNN-only: 
92.8% → CNN + LSTM: 95.6%), highlighting the importance of 
capturing temporal trends in disease progression. Topology 
Refinement provides the greatest increase in predictive power 
(CNN + LSTM: 95.6% → Full ImmunoNet: 98.1%), 
demonstrating that integrating graph-based feature relationships 
improves classification and model generalization.

LSTM-only models tend to underperform relative to CNN-based 
models, showing that while temporal dependencies are important, the 
spatial and hierarchical features captured by CNNs are even more 
critical for accurate diagnosis.

MLP-only models perform the poorest, confirming that deep 
learning architectures with specialized layers (CNN, LSTM, and 
topology refinement) significantly outperform traditional dense 
networks in autoimmune disease classification.

4 Conclusion

This study elucidates the landscape of autoimmune disease 
diagnosis and treatment, comprehensively covering disease 
profiles and management strategies. By meticulously examining 
patient data related to statistical methodology, we have discovered 
numerous specific patterns and predictive factors of autoimmune 
diseases. The key takeaway from our study is that advanced 
machine learning techniques, such as ImmunoNet, enhance 
diagnostic accuracy and prognostic ability. As a result, doctors, 
clinicians, and healthcare providers can use our discussion of 
treatment results to improve their medical practices for people 
with autoimmune conditions. By specifying the efficacy, safety, 
and patient satisfaction associated with various treatment 
modalities, we  advocate for evidence-based personalized 
medicine tailored to individual patient needs and  
preferences. Although we present significant advancements in 
understanding autoimmune diseases, the study remains limited 
in its accuracy.
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TABLE 8 Ablation study results.

Model Variant Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC

Full ImmunoNet (CNN + LSTM + Topology) 98.1 97.5 98.4 97.9 0.99

CNN-only (No LSTM, No Topology) 92.8 91.3 93.5 92.4 0.94

CNN + LSTM (No Topology) 95.6 94.9 96.1 95.5 0.97

CNN + Topology (No LSTM) 96.3 95.7 97.0 96.3 0.98

LSTM-only (No CNN, No Topology) 90.1 89.0 91.3 90.1 0.92

MLP-only (No CNN, No LSTM, No Topology) 87.4 86.5 88.0 87.2 0.90
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