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Background/objective: Hypervirulent Klebsiella pneumoniae (hvKP) is an 
emerging global health threat, exhibiting increased virulence and multidrug 
resistance compared to classic K. pneumoniae. Understanding the research 
landscape surrounding hvKP is crucial for developing effective control strategies. 
This study aimed to comprehensively analyze the global research trends in hvKP 
from 2013 to 2024 using bibliometric and topic modeling techniques.

Methods: Data from 1,014 articles on hvKP, retrieved from the Web of Science 
Core Collection, were analyzed using Bibliometrix, CiteSpace, and VOSviewer 
to assess publication trends, collaborations, geographical distribution, and 
keyword co-occurrence. Latent Dirichlet Allocation (LDA) topic modeling was 
employed to identify key research themes.

Results: The analysis revealed a steadily increasing volume of hvKP research, 
with China and the United  States as major contributors. Four primary 
research themes emerged: high virulence phenotypes and mechanisms; drug 
resistance and treatment strategies; genetic and molecular mechanisms; and 
epidemiological and transmission characteristics. Research hotspots included 
virulence mechanisms, drug resistance, genomic detection approaches, and 
epidemiological features.

Conclusion: This bibliometric analysis provides a comprehensive overview of 
hvKP research, highlighting key trends and research gaps. The identified research 
hotspots inform future research directions and contribute to the development 
of effective strategies for combating hvKP infections. The increasing research 
volume underscores the urgent need for continued investigation into this 
significant public health threat.
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1 Introduction

Hypervirulent Klebsiella pneumoniae (hvKP) is a hypervirulent 
(hypermucoviscous) variant of K. pneumoniae, distinct from classic 
K. pneumoniae (cKP). It represents an evolving pathotype 
characterized by enhanced virulence (1). Early reports emerged from 
Taiwan in the mid-1980s and 1990s, describing a Klebsiella species 
associated with a unique clinical syndrome, causing liver abscesses as 
a sole pathogen (2). Subsequently, many reports referred to it as 
hypermucoviscous K. pneumoniae due to the hypermucoviscous 
colony morphology observed on specific agar plates (3). In 2004, 
Taiwanese researchers identified a novel gene, magA (“mucoviscosity-
associated gene A”), in hypermucoviscous K. pneumoniae strains (3), 
initially considered a hallmark gene for hvKP (4–7), leading to initial 
ambiguity in hvKP definition and research. Subsequent studies 
revealed that not all hypermucoviscous strains carry magA (8), and 
many hvKP strains exhibit non-K1/K2 capsular serotypes (9, 10). In 
2013, Alyssa et  al. comprehensively defined hvKP based on its 
characteristic features (11), formally establishing the term 
hypervirulent K. pneumoniae (hvKP). However, the precise definition 
of hvKP remains a subject of ongoing refinement due to its diverse 
genetic background and complex virulence mechanisms (12).

HvKP is predominantly prevalent in the Asia-Pacific region, with 
colonization rates in healthy adults ranging from 2.7% in Thailand to 
16.7% in Japan (13). While the Asia-Pacific remains the epicenter of 
hvKP infections, increasing case reports from Europe and North 
America highlight its expanding global footprint (14, 15). Large-scale 
genomic analyses have identified multiple concurrent antibiotic-
resistant clusters of hvKP strains worldwide, underscoring its 
accelerating global spread (16).

Clinically, hvKP is associated with severe infections, including 
pneumonia, bloodstream infections, and even brain abscesses, 
leading to high morbidity and mortality (17). For instance, a case 
report from Japan documented a diabetic patient who developed 
emphysematous cholecystitis and disseminated infection due to 
hvKP K2-ST65, ultimately resulting in fatal multi-organ failure (18). 
Similarly, another study reported a case of community-acquired 
pneumonia caused by hvKP K2-ST86, where the patient rapidly 
deteriorated and died (19).

The convergence of hypervirulence and antimicrobial resistance 
has emerged as a defining evolutionary trajectory of K. pneumoniae, 
posing a significant and emerging public health threat (20). 
Retrospective studies have shown a marked increase in hvKP 
infections over recent years, closely linked to patterns of antimicrobial 
resistance (21). In China, carbapenem-resistant hvKP (CR-hvKP) 
strains have been widely reported across multiple regions (22), with 
regional dissemination patterns exemplified by the ST25 CR-hvKP 
strains isolated in central-southern China (23). Hospital outbreaks of 
multidrug-resistant hvKP, such as the ST11 strain, further highlight 
the dual threats of virulence and resistance evolution (24, 25).

Despite three decades of extensive basic and clinical research since 
its discovery, our understanding of hvKP remains incomplete. Key 
challenges include the lack of objective diagnostic tests, which 
hampers accurate prevalence estimation; unclear genotype/phenotype 
markers, leaving the mechanisms of infection partially understood; 
and insufficient data to determine optimal antimicrobial therapies for 
hvKP infections (26, 27). Current research predominantly consists of 
scattered case reports and small-scale studies, lacking systematic 
integration and comprehensive analysis.

This study employs bibliometric analysis and topic modeling 
approaches to comprehensively examine the research domain of 
hvKP. With advancements in bibliometric software and scientific 
databases (28), researchers have increasingly utilized relational 
bibliometrics for network analysis (29), which offers robust analytical 
capabilities for uncovering macro-level research trends and knowledge 
structures. Here, we analyzed literature metadata (e.g., authors, journals, 
and keywords) to construct knowledge maps, revealing the overall 
structure and key nodes in hvKP research. Data were sourced from the 
Web of Science Core Collection and analyzed using tools such as 
Bibliometrix, CiteSpace, and VOSviewer for visualization. However, 
bibliometric analysis primarily focuses on quantitative relationships and 
co-occurrence patterns, limiting its ability to explore thematic content 
and research directions in depth. To address this, we integrated topic 
modeling methods, employing the Latent Dirichlet Allocation (LDA) 
model from the Python Gensim library to perform topic mining on 
literature abstracts. As an unsupervised machine learning technique, the 
LDA model identifies latent themes within texts and represents each 
topic using word probability distributions (30, 31). During preprocessing, 
we applied stopword removal, punctuation removal, and stemming to 
enhance model accuracy and efficiency. After evaluating models with 
varying numbers of topics, the optimal theme model was selected.

2 Materials and methods

This study selected the Web of Science Core Collection (WoSCC) 
as the data source, given its comprehensive coverage of high-quality 
research publications. The search covered all WoSCC editions, 
including the Science Citation Index Expanded (SCI-EXPANDED), 
Social Sciences Citation Index (SSCI), Current Chemical Reactions 
(CCR-EXPANDED), and Index Chemicus (IC). The search query was 
“((((TS = (hypervirulent Klebsiella pneumoniae)) OR TS = (hvKP)) 
OR TS = (hypermucoviscous Klebsiella pneumoniae)) OR 
TS = (hypervirulent Klebsiella pneumoniae)) OR 
TS = (hypermucoviscous Klebsiella pneumoniae))),” with a time span 
from 2013 to 2024, resulting in 1,147 records.

2.1 Inclusion and exclusion criteria

2.1.1 Inclusion criteria

 1 Document types include research articles and review articles.
 2 Documents are published in English.
 3 The content directly relates to research on hypervirulent 

Klebsiella pneumoniae (hvKP).
 4 The publication date is between 2013 and 2024.

2.1.2 Exclusion criteria

 1 Document types such as book reviews, editorials, news articles 
or conference papers.

 2 Documents published in languages other than English.
 3 Documents with irrelevant or low relevance to hvKP.
 4 Duplicate publications or records in the database.

After excluding irrelevant document types, languages, and 
duplicates, a total of 1,014 publications were included (Figure 1).
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2.2 Data export and processing

The data were exported as plain text files, including full records 
and cited references. The cleaned data were imported into the 
following tools for analysis and visualization.

 • Bibliometrix 4.3.1: Used for analyzing annual publication output, 
citation counts, authors’ h-index, publication trends over time, 
three-field plots, and document co-citation analysis.

 • CiteSpace 6.1.R6 (64-bit) Advanced: Used for generating structural 
co-occurrence maps, journal dual-map overlays, and 
keyword analysis.

 • VOSviewer 1.6.19: Used for author co-authorship analysis and 
country network visualization.

 • LDA topic modeling: For LDA topic modeling, the LdaModel 
class in the Gensim library was employed, supporting online, 
constant memory, and distributed training for efficient large-
scale corpus processing. The core estimation code is based on the 
onlineldavb.py script by Matthew D. Hoffman, David M. Blei, 
and Francis Bach: “Online Learning for Latent Di-richlet 
Allocation,” NIPS 2010. Preprocessing involved text cleaning, 
including synonym merging and phrase recognition, and Porter 
Stemming for stemming. The model was trained using the 
preprocessed document vectors. The optimal number of topics 
(k) was determined to be 4 by evaluating model coherence and 
perplexity across a range of 2–15 topics. Model parameters were 

set as follows: num_topics = 4; other parameters used default 
values (alpha = ‘symmetric’, eta = None, decay = 0.5, offset = 1.0, 
etc.). The model was trained incrementally using the LdaModel’s 
update() method, saved and loaded using save() and load() 
methods, respectively, and new document topic distributions 
were inferred using the getitem method.

3 Results

3.1 Publication and citation trends

Figure 2 illustrates the trends in the number of publications and 
citations related to hypervirulent Klebsiella pneumoniae (hvKP) from 
2013 to 2024 (data up to November 2024). The results demonstrate 
a consistent yearly increase in both publication output and citation 
counts for hvKP-related research. To project future trends, we fitted 
quadratic polynomial regression models to the publication and 
citation data, yielding the following predictive equations: Publication 
count: y = 84.5 + 219.26x + 31.7x2; Citation count: 
y = 2288.33 + 7627.95x + 2304.3x2 (where x represents the year, with 
2013 as year 0). These equations can be  used to estimate future 
publication and citation counts for hvKP research. Before 2013, the 
annual publication count was consistently ≤7. The sharp increase 
from 2013 onwards is likely attributable to the expanding geographical 
distribution of hvKP. During this period, hvKP emerged as an 

FIGURE 1

Flowchart of literature inclusion process for hypervirulent Klebsiella pneumoniae (hvKP).
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important pathogen in various regions, including the United States, 
Canada, Europe, Israel, South  Africa, and Australia (32), with 
infections no longer confined to individuals of Asian descent or those 
with recent travel history to Asia (33). This broadened recognition of 
hvKP as a globally significant cause of lethal pneumonia fueled 
increased research interest. The quadratic polynomial regression 
models predict the continued robust growth of hvKP research. 
Sustained attention and investment in hvKP research are crucial for 
safeguarding global public health.

3.2 Author analysis

Figure 3A presents key metrics for the top five most prolific authors 
in the hvKP research field, including publication count, average citation 
count, and h-index (34). Liu, Yang and Sylvain Brisse stand out as the 
most prolific and highly cited authors, respectively, demonstrating 
significant influence in the field. Liu, Yang from Nanchang University 
focuses on rapid molecular detection of hvKP (35), antimicrobial 
resistance mechanisms [e.g., carbapenem resistance (36) and 
ceftazidime/avibactam resistance (37)], and infection pathogenesis (38). 
Sylvain Brisse from the Institut Pasteur, Paris, was recognized as a 
“Highly Cited Researcher in the field of Microbiology” in 2020, and his 
research primarily centers on hvKP genomics (39, 40). Figure 3B displays 
the publication timelines for the top 10 most prolific authors. Zhang, 
Rong (Zhejiang University), Edward Wai-Chi (City University of Hong 
Kong), and Chen, Sheng exhibited a peak in publications in 2018, 
indicating a significant surge in their influence and recognition within 
the hvKP research community that year. This may be linked to their 
collaborative work on three publications in 2018 focusing on 
carbapenem-resistant hypervirulent K. pneumoniae ST11 (25, 41), 

facilitated by an outbreak at an affiliated hospital of Zhejiang University 
in China, allowing for detailed epidemiological and microevolutionary 
analyses. These three authors also form the most densely connected 
research group (warmest color tones in Figure 3D), with Chen, Sheng 
playing a crucial role in information dissemination and collaboration 
(the center of the green collaboration module in Figure  3C). Their 
collaborative work centers on the epidemiology and transmission 
patterns of hvKP (42) and the study of hvKP virulence plasmids (43, 44).

3.3 Institutional analysis

Zhejiang University is the leading contributor, with 54 publications. 
Other contributing institutions include Wenzhou Medical University 
(23), Shanghai Jiao Tong University (20) (Figure 4A). Figure 4B depicts 
the institutional collaboration network for hvKP research. A total of 
345 institutions participated (N = 345), with 721 collaborations 
(E = 721) and a network density of 0.0122, close to zero, indicating a 
relatively low overall network density. However, several tightly knit 
sub-networks exist, notably those centered around Zhejiang University 
(Count = 54, BC = 0.20) and the Institut Pasteur (Count = 20, 
BC = 0.12). These institutions not only exhibit high publication output 
but also high BC, signifying the formation of strong collaborative 
groups within the hvKP research field.

3.4 Country analysis

Figure  5A presents the publication timelines for the top five 
countries/regions. Before 2011, the United  States and the 
United  Kingdom dominated hvKP research. However, after 2017, 

FIGURE 2

Annual publications and MeanTCperYear in the research field from 2012 to 2024. “Publications (red)” indicates the annual number of papers published; 
“MeanTCperYear (blue)” (mean total citations per paper divided by the number of citable years) is a useful metric to assess the yearly impact of this 
research field.
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China experienced exponential growth in hvKP-related publications, 
surpassing other countries/regions. This may be attributed to China’s 
large population and its longstanding status as a high-prevalence 
region for hvKP infections. A 2016 study in China reported that 30.9% 
of K. pneumoniae isolates tested positive using the string test (45). 
Figure 5B shows the inter-country/region collaboration network. The 
United States and China exhibit the most frequent collaborations, 
although the collaborative output is relatively low compared to their 
individual outputs, suggesting significant potential for further 
collaboration. The UK and Australia show a strong collaborative 
relationship, with 16 joint publications representing 47% of Australia’s 
total output, providing a model for other countries.

3.5 Journal analysis

Supplementary Table S1 reveals that the driving force behind 
hvKP research is distributed across numerous Q2 journals. While 
Frontiers in Cellular and Infection Microbiology is the only Q1 
journal among the top 10, its substantial publication count (third 
place) indicates significant research output. This suggests that the field 
encompasses both high-impact research and a broad base of in-depth 

investigations, providing a solid foundation for future advancements. 
Figure 6 displays a dual-map overlay of journals, showing that journals 
in immunology and clinical medicine are predominantly cited by 
journals focused on molecular biology, genetics, and microbiology. 
This highlights the importance of interdisciplinary integration in 
advancing research, exemplified by studies exploring the impact of 
genetic variations on hvKP-host interactions and pathogenesis (46), 
and the role of hvKP’s molecular mechanisms of high mortality in 
informing effective clinical treatments (47).

3.6 Highly cited publications

This study identified the top 10 most frequently cited articles to 
analyze the current research trends in hvKP (Supplementary Table S2). 
The two most frequently cited articles, both authored by Russo, 
Thomas A., are review papers on hvKP. Russo’s 2013 review (11) was 
the first to define this emerging strain as hypervirulent K. pneumoniae 
(hvKP), focusing on its pathogenic mechanisms, epidemiological 
characteristics, and diagnostic and therapeutic approaches. His 2019 
review (1) further explored the pathogenesis, colonization, and 
infection processes of hvKP, emphasizing the role of virulence factors. 

FIGURE 3

(A) Academic impact metrics of top 5 authors: Total publications, average citations per document, and H-index [Quantifying scholar influence by 
balancing publication count and citation impact (114)]. (B) Authors’ temporal productivity [Dot size reflects annual article count, shading intensity 
denotes Total Citations per Year (TCpY)]. (C) Co-authorship network analysis; (D) Co-authorship density visualization.
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The third most cited article, a 2016 review by Paczosa and Mecsas 
(48), primarily discussed the K-antigen of hvKP. A 2012 review by Siu 
et al. (49) highlighted the unique invasive syndrome caused by hvKP, 
particularly its association with liver abscesses.

Three research articles—by Holt, Kathryn E; Bialek-Davenet, 
Suzanne; and Struve, Carsten—focused on genomic sequencing of 
hvKP. Holt et al. conducted whole-genome sequencing of Klebsiella 
species, including high-virulence clones (40). Bialek-Davenet et al. 
developed an openly accessible database, BIGSdb-Kp, to extract 
medically and epidemiologically relevant information from Klebsiella 
pneumoniae genome sequences (39). Struve et al.’s work emphasized 
the CC23 clone (50). Li et  al.’s retrospective study analyzed the 
epidemiology, risk factors, and drug resistance of hvKP (51). A review 
by Carlos Catalan-Najera et  al. (52) distinguished between the 

high-mucosity and high-virulence phenotypes. Zhang et al.’s study 
examined the geographic distribution, clinical characteristics, and 
antimicrobial resistance of hvKP in China (45).

In summary, the top 10 most cited articles on hvKP primarily 
focus on reviews and genomic studies. The high proportion of 
review articles suggests that hvKP is a research hotspot, with many 
investigators contributing to the field and achieving significant 
research depth and breadth. The prominence of genomic studies 
may be attributed to the critical role of genetics in understanding 
hvKP’s virulence, drug resistance, and transmissibility. By 
investigating the genetic makeup of hvKP, scientists can gain 
deeper insights into its biological characteristics, providing a 
theoretical foundation for the prevention and treatment of 
hvKP infections.

FIGURE 4

(A) Top 10 institutions with the highest number of papers. (B) Inter-institutional Collaboration Network [Purple node periphery denotes high 
betweenness centrality (BC ≥ 0.1), reflecting bridging frequency in shortest-path connections (115)].
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3.7 Keyword analysis

Supplementary Tables S3a,b list the top 15 keywords by centrality 
and frequency, respectively. “Pyogenic liver abscess” exhibits a 
betweenness centrality (BC) of 0.11 > 0.1, highlighting its importance 
in hvKP research. Figure  7 illustrates keyword burst detection, 
enabling the division of hvKP research trends into four phases: 

(2013–2016) Basic Research Phase: focusing on basic biological 
characteristics (serotype, capsular polysaccharide synthesis, molecular 
features) and early clinical complications, with initial studies on the 
K2 gene; (2017–2018) Rise of Hypermucoviscous hvKP: research 
shifted toward the pathogenesis of hypermucoviscous hvKP, with peak 
interest in the K2 gene; (2019–2020) Chinese Outbreak and Clone 
Studies: focus on outbreaks and clones in China, investigating 

FIGURE 5

(A) Top 5 countries’ production over time. (B) Country network visualization.
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epidemiological characteristics; (2021–2023) Enterobacteriaceae and 
High Prevalence: research expanded to the entire Enterobacteriaceae 
family, focusing on the public health impact and control strategies 
of hvKP.

3.8 Key research themes

Preprocessing involved removing stop words and punctuation, 
and stemming to ensure data consistency and cleanliness. The 
model was trained using the LdaModel class in Gensim, 
implementing an online LDA algorithm with the following 
parameter settings: alpha = “symmetric” (symmetric prior) and 

eta = None (default prior). These parameters control the prior 
beliefs regarding the document-topic and topic-word distributions. 
Topic optimization involved training LDA models with varying 
numbers of topics (2 to 15). Lower perplexity indicates better model 
fit (Figure 8A), while higher coherence suggests a more coherent 
topic structure (Figure 8B). The scatter plot in Figure 8C shows that 
models with 4, 5, and 7 topics balance perplexity and coherence. 
Further manual analysis indicated that 5 and 7 topics resulted in 
overly fine-grained and fragmented classifications. A 4-topic model 
was ultimately selected. Representative keywords for each topic are 
presented in Supplementary Table S4.

Figure  9 uses word clouds to visually represent the 
interrelationships between different research themes, with each 

FIGURE 7

Keyword burst detection.

FIGURE 6

Dual-map overlay of journals.
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cluster marked by a different color. Clusters are interconnected 
through shared keywords (e.g., red nodes for Topic 0), with node 
size reflecting keyword frequency and connection thickness 
representing the strength of word distribution within a specific 
topic. The analysis reveals significant cross-cluster associations. 
For example, Cluster 1 (Core Mechanisms and Antimicrobial 
Resistance) shows a strong association with Cluster 3 (Treatment 
and Prevention) because the type of resistance genes directly 
influences antibiotic selection and efficacy. For instance, hvKp 
strains carrying the NDM-1 gene exhibit high resistance to 
carbapenem antibiotics (e.g., imipenem). A study on hvKp 
infections in India found that strains carrying the NDM-1 gene 
showed resistance rates exceeding 90% against imipenem, leading 
to a significant increase in treatment failure rates (53). 
Additionally, Cluster 4 (Epidemiology and Transmission) 

correlates with Cluster 2 (Clinical Manifestations and Diagnosis) 
as epidemiological data aids in predicting and preventing 
infections. For example, patients with a travel history to  
East Asia should be  vigilant about the possibility of hvKP 
infection (54).

The following sections (3.8.1–3.8.4) delve into these four major 
topics in depth, exploring their significance and the latest advances in 
current research.

3.8.1 Phenotype and virulence determinants
Klebsiella pneumoniae (hvKP) exhibits hypervirulence primarily 

due to its virulence factors and phenotypic traits, such as 
hypermucoviscosity, capsular serotypes (e.g., K1 and K2), virulence 
genes (e.g., rmpA, rmpA2, iucA, magA), high serum resistance, and 
strong invasiveness (55–57).

FIGURE 8

(A) Perplexity for topics 2–15. (B) Coherence for topics 2–15. (C) Topic model optimal parameter selection diagram.
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3.8.1.1 Hypermucoviscosity
The hypermucoviscous phenotype, a key feature of hvKP, 

results from increased capsular polysaccharide synthesis (58, 59). 
This phenotype enhances bacterial virulence by promoting 
immune evasion, particularly resistance to neutrophil-mediated 
killing (60). The thickened and sticky capsular polysaccharides 
form a physical barrier, hindering immune cell recognition and 
phagocytosis, thereby promoting immune evasion and persistent 
infection (58, 59). Additionally, hypermucoviscosity may further 
augment virulence by influencing biofilm formation and bacterial 
invasiveness. In experimental studies, the hypermucoviscous 
phenotype is typically detected using the “string test,” where a 
string length ≥ 0.5 mm indicates positivity (61). This method is 
simple and widely used in laboratory settings. Furthermore, 

whole-genome sequencing (WGS) and PCR techniques can 
identify genes associated with hypermucoviscosity (62). For 
instance, rmpA and rmpA2 are key regulatory genes for 
hypermucoviscosity, often located on large plasmids and 
upregulated to enhance capsular polysaccharide synthesis (58, 59). 
However, some hvKP strains exhibit hypermucoviscosity in the 
absence of rmpA/rmpA2, suggesting alternative regulatory 
mechanisms (63). These mechanisms may involve other genes or 
regulators in the capsular polysaccharide synthesis pathway, 
warranting further investigation.

3.8.1.2 Capsular serotypes
The capsular serotypes of hvKP, including K1, K2, K5, K20, 

K54, and K57, are often co-present with virulence genes (e.g., 

FIGURE 9

Topic-word relationship diagram.
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rmpA, rmpA2, iucA), further enhancing their virulence (64, 65). 
Among these, K1 and K2 are the most extensively studied and 
prevalent serotypes (66). Khairuddin et al. found that K1 and K2 
serotypes accounted for 11.1 and 6.1% of hvKP isolates, respectively 
(56). These serotypes are frequently associated with severe 
community-acquired infections, such as liver abscesses, 
pneumonia, and meningitis (64). In virulence assessments, K1 
serotype hvKP demonstrated 100% lethality in the Galleria 
mellonella infection model, while K2 serotype exhibited high 
serum resistance (67, 68). Whole-genome sequencing has revealed 
complex relationships between hvKP serotypes and virulence 
genes. For example, magA is a unique virulence gene in the K1 
serotype (56), while rmpA and rmpA2 are detected in 99.4 and 
98.6% of K1 and K2 serotypes, respectively (69). Additionally, K1 
serotype hvKP is often associated with the ST23 sequence type (70, 
71). Although K54 and K57 serotypes are less frequent, they have 
also been reported as virulence markers in some studies (65, 72). 
In experimental research, PCR is commonly used to detect 
capsular serotypes and virulence genes; however, variations in 
detection standards across laboratories may lead to inconsistent 
results (65).

3.8.1.3 Virulence genes
The virulence genes of hvKP, including rmpA, rmpA2, iucA, 

aerobactin, iroB, and peg-344, significantly enhance pathogenicity 
by regulating mucoid phenotypes, iron acquisition systems, and 
other virulence factors.

 • rmpA and rmpA2: Studies have shown that rmpA and rmpA2 
are highly conserved in hvKP and strongly associated with 
hypervirulence (73–75). For instance, a study in Malaysia 
reported that all hvKP strains carried rmpA and rmpA2 (56). 
These genes act as key regulators of capsular synthesis by 
targeting the promoter of the capsular gene cluster (cps), 
promoting high capsular production and enhancing bacterial 
adhesion and invasiveness (57, 66, 76). Further research has 
revealed that the promoter activity of rmpA is closely linked 
to virulence. Strong promoter activity (e.g., P11T and P12T) 
correlates with high capsular production and invasive 
virulence, while weak activity (e.g., P9T and P10T) may 
enhance bacterial colonization. Additionally, mutations (e.g., 
insertions/deletions) in rmpA and rmpA2 can shift hvKP from 
a hypermucoid to a hypomucoid phenotype, reducing invasive 
virulence but enhancing colonization. This adaptive change 
allows hvKP to persist and spread within hosts, increasing its 
epidemiological significance (77).

 • iucA and aerobactin: The presence of iucA and aerobactin in 
hvKP is strongly associated with hypervirulence, particularly 
in severe infections such as liver abscesses (78, 79). iucA 
encodes aerobactin synthetase, and aerobactin serves as the 
primary siderophore for hvKP, facilitating iron acquisition 
and significantly enhancing bacterial survival and 
pathogenicity (80). Compared to the unstable RmpA2, 
aerobactin exhibits higher stability in carbapenem-resistant 
hvKP (CR-hvKP) and has been proposed as a reliable marker 
for hvKP identification (81, 82).

 • iroB: The iroB gene, encoding the salmochelin siderophore 
system, plays a critical role in iron acquisition, significantly 

enhancing hvKP survival and pathogenicity (67, 77). Gene 
knockout studies have demonstrated that iroB deletion 
markedly reduces virulence, confirming its importance in 
hvKP pathogenicity (83). iroB is prevalent in hvKP, a study in 
Sudan reported a 57.9% detection rate of iroB in hvKP clinical 
isolates (74). Notably, iroB often coexists with other virulence 
genes (e.g., iucA, rmpA2), which encode siderophores and 
mucoid phenotype regulators, further augmenting hvKP 
virulence (84, 85).

 • peg-344: The presence of peg-344 is strongly correlated with 
hypervirulence in hvKP. For example, peg-344-positive hvKP 
strains exhibit enhanced serum resistance, biofilm formation, 
and invasiveness, as well as increased pathogenicity in animal 
models (35, 84, 86).

3.8.2 Antibiotic resistance mechanisms
In recent years, the issue of antibiotic resistance in 

hypervirulent Klebsiella pneumoniae (hvKP) has become 
increasingly severe, particularly with the emergence of multidrug-
resistant (MDR) and carbapenem-resistant (CRKP) strains, posing 
significant challenges to clinical treatment (55, 87). The 
development of novel antibiotics and vaccines targeting hvKP, as 
well as the use of gene-editing technologies such as CRISPR-Cas9 
to knockout resistance genes, are likely to be  future research 
hotspots (88, 89). Below, we systematically elucidate the resistance 
mechanisms of hvKP from two perspectives: antibiotic 
classification and molecular mechanisms.

Resistance mechanisms in hvKP involve outer membrane 
porin mutations, plasmid-mediated gene transfer, efflux pumps, 
and biofilm formation. Mutations in outer membrane porins (such 
as ompK35 and ompK36) reduce the ability of antibiotics to enter 
bacterial cells, thereby enhancing resistance. Zhao et al. (90) found 
that the L359R mutation in ompK36 is associated with hvKP’s 
resistance to ceftazidime/avibactam. Additionally, hvKP carries 
multiple resistance genes (such as blaCTX-M, blaTEM, blaSHV, 
etc.) via plasmids and spreads resistance among strains through 
conjugation (90–92). The efflux pump system (e.g., acrAB and 
tolC) actively expels antibiotics from the cell, reducing their 
intracellular concentration and thereby enhancing hvKP’s 
resistance to multiple antibiotics (93). Alharbi et al. (94) noted that 
hvKP protects itself by forming biofilms, increasing its tolerance 
to antibiotics.

The antibiotic classification-based resistance mechanisms 
involve carbapenems, colistin, fosfomycin, and multidrug 
resistance mechanisms. Carbapenem resistance is mainly 
mediated by the spread of carbapenemase genes (such as blaKPC 
and blaNDM), which are transferred via plasmids or 
chromosomes, conferring hvKP resistance to carbapenems (95–
97). Liu et al. (95) demonstrated that the blaKPC gene spreads via 
IncFII plasmids in ST11-type hvKP, while Tang et al. (97) showed 
that the blaNDM-1 gene can be horizontally transferred through 
outer membrane vesicles (OMVs). For instance, Liu et al. (95) 
found that the blaKPC gene spreads through IncFII plasmids in 
ST11-type hvKP, while Tang et  al. (97) confirmed that the 
blaNDM-1 gene can be horizontally transferred in hvKP via outer 
membrane vesicles (OMVs). Colistin resistance is primarily 
associated with mgrB gene mutations and overexpression of the 
phoPQ system, which modify the lipopolysaccharide (LPS) 
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structure of the bacterial outer membrane, reducing colistin 
binding capacity and thereby inducing resistance (87). Intrinsic 
mechanisms of fosfomycin resistance include the UhpTE350Q 
mutation and the presence of fosA6/5 genes, which affect 
fosfomycin uptake or metabolism, leading to hvKP resistance to 
fosfomycin. Furthermore, hvKP achieves multidrug resistance 
and high virulence by carrying multiple resistance genes (such as 
blaKPC, blaNDM, blaOXA, etc.) and virulence genes (such as 
rmpA, iucA, etc.) (98, 99). For example, Zhang et  al. (100) 
reported a hybrid plasmid in ST11-KL64 type hvKP carrying 
blaKPC-2 and rmpA2 genes, indicating the co-evolution of 
resistance and virulence genes.

3.8.3 Genomic detection approaches
Traditional culture and biochemical identification methods, 

while reliable, are limited in terms of timeliness and sensitivity. 
With the rapid development of molecular biology techniques, 
genome-based detection methods have gradually become 
mainstream, leading to significant progress in the genomic 
research of hvKp. This has unveiled its virulence mechanisms, 
evolutionary pathways, and drug resistance characteristics 
(101, 102).

3.8.3.1 Research methods

 • Whole genome sequencing: WGS is a core technology for the 
classification of hvKP. By sequencing the entire genome of hvKP 
strains, researchers can identify virulence-associated genes and 
mutation sites, providing comprehensive genomic information. 
For example, by comparing the genomes of different hvKP strains, 
high-virulence-associated gene clusters such as rmpA and rmpA2 
can be  identified. This method offers crucial insights for the 
classification and evolutionary studies of hvKP (103, 104).

 • Single nucleotide polymorphism analysis: SNP analysis is 
another commonly used genomic detection method. By 
comparing SNP sites in hvKP strains, phylogenetic trees can 
be constructed, enabling strain classification and evolutionary 
analysis. This approach is particularly valuable for tracing the 
transmission routes and evolutionary relationships of hvKP 
(105, 106).

 • Machine learning algorithms: In recent years, machine 
learning algorithms have seen increasing application in 
genomic data analysis. By training deep learning models, 
researchers can automatically identify hvKP features and 
perform classification from high-throughput genomic data. 
For instance, models based on convolutional neural networks 
(CNN) and long short-term memory networks (LSTM) have 
demonstrated high accuracy in hvKP classification 
(107, 108).

3.8.3.2 Application directions

 • Virulence gene detection: The detection of virulence genes is a 
critical basis for hvKP classification. Using PCR or high-
throughput sequencing, researchers can identify virulence-
associated genes such as rmpA, aerobactin, and iroN. The 
presence or absence of these genes directly reflects the 
virulence level of the strains (103, 104).

 • Genomic evolution and diversity: Through whole-genome 
sequencing and comparative genomic analysis, hvKp has been 
classified into multiple clonal lineages, such as ST23, ST65, 
and ST86, with ST23-K1 and ST86-K2 being the predominant 
hvKp clonal lineages (101, 102).

 • Drug resistance mechanism research: hvKp has increasingly 
exhibited resistance to multiple antibiotics, particularly 
carbapenems, which is closely associated with the presence of 
resistance genes such as blaKPC and blaNDM (101, 109).

3.8.4 Clinical epidemiology
The clinical epidemiology of hypervirulent Klebsiella pneumoniae 

(hvKP) is characterized by its high-risk populations, infection types, 
low resistance but high virulence, and transmission patterns. hvKP 
primarily affects individuals with diabetes, long-term hospitalized 
patients, and immunocompromised populations, leading to severe 
infections such as pyogenic liver abscess (PLA) and ventilator-
associated pneumonia (VAP) (110). Although hvKP exhibits lower 
antibiotic resistance compared to carbapenem-resistant Klebsiella 
pneumoniae (CRKP), its virulence is significantly higher, particularly 
in strains carrying virulence genes such as iucA and rmpA and those 
of the ST23 lineage, which are associated with a hypermucoid 
phenotype and severe infections (111).

The transmission of hvKP is closely linked to healthcare 
settings, especially in long-term care facilities and intensive care 
units, where it poses a significant threat to vulnerable populations 
Additionally, the increasing incidence of community-acquired 
hvKP infections highlights its ability to spread beyond hospital 
environments, further complicating its control and management 
(112). Studies have shown that diabetic patients and those with 
gallstones are particularly susceptible to hvKP-related PLA,  
while elderly patients and those with pressure ulcers in  
long-term care facilities are at higher risk of hvKP infections 
(110, 113).

Research methodologies such as retrospective analyses, 
genomic studies, and phenotypic experiments have been 
instrumental in understanding hvKP’s epidemiology. For instance, 
Guo et al. used genomic analysis to differentiate between PLA- and 
VAP-associated strains (110), while Alfaifi et  al. conducted 
retrospective studies to examine resistance patterns in long-term 
care settings. However, limitations such as small sample sizes and 
regional focus in some studies may affect the generalizability of 
findings (113). Further research is needed to elucidate hvKP’s 
transmission mechanisms, its interactions with host immunity, and 
the development of novel therapeutic strategies, particularly in the 
context of its increasing prevalence in Asia and its potential 
crossover with CRKP (110, 112, 113).

4 Study limitations

This study has the following limitations.

 1 Database selection: This study exclusively used the Web of Science 
(WoS) database as the data source and did not include other 
important databases such as PubMed/MEDLINE, Cochrane, or 
Embase/SCOPUS. This may have resulted in the omission of 
some relevant literature, particularly clinical and regional studies. 
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Future research should consider incorporating more databases to 
ensure comprehensive coverage of the literature.

 2 Limitations of topic modeling: Although topic modeling can 
reveal the latent structure of research themes, its results 
depend on text preprocessing and model parameter 
selection. The Latent Dirichlet Allocation (LDA) model 
used in this study, while effective in identifying topics, may 
have been influenced by text cleaning, stop-word removal, 
and stemming processes. Additionally, the choice of the 
number of topics is somewhat subjective and may affect 
the final topic classification.

Despite these limitations, this study provides a systematic analytical 
framework for understanding the knowledge structure and research 
trends in the field of hvKP through bibliometric and topic modeling 
methods, offering valuable insights for future research.

5 Conclusion

This study comprehensively reviewed the progress in the field of 
hypervirulent Klebsiella pneumoniae (hvKP) research through 
bibliometric analysis and topic modeling methods. The results indicate 
that hvKP research has shown significant growth over the past decade, 
particularly in Asia, with China emerging as the primary contributor 
in this field. Research hotspots primarily focus on hvKP’s phenotypic 
and virulence determinants, antibiotic resistance mechanisms, 
genomic detection methods, and clinical epidemiology. Through 
bibliometric analysis, we  identified the formation of collaborative 
networks among core authors, institutions, and countries, with 
particularly strong collaborations between China, the United States, 
and France. Additionally, topic modeling revealed major research 
directions, including the identification of virulence genes, the 
elucidation of resistance mechanisms, and the application of genomics 
in hvKP classification and evolutionary studies.

Despite significant advancements, hvKP research still faces 
numerous challenges. Firstly, the precise definition and diagnostic 
criteria for hvKP remain inconsistent, making it difficult to directly 
compare results across different studies. Secondly, the mechanisms of 
hvKP virulence and the evolution of resistance are complex, requiring 
further in-depth research to uncover their molecular basis. Moreover, 
the global transmission trends and epidemiological characteristics of 
hvKP still need to be  validated through large-scale, multicenter 
studies. Future research should focus on the genomic evolution of 
hvKP, the co-evolution of resistance and virulence, and the 
development of novel therapeutic strategies, particularly for 
multidrug-resistant hvKP strains.
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