
Frontiers in Medicine 01 frontiersin.org

Hand-to-surface bacterial transfer 
and healthcare-associated 
infections prevention: a pilot study 
on skin microbiome in a molecular 
biology laboratory
Arianna Delicati 1,2,3, Beatrice Marcante 1,2,3, Dolores Catelan 3, 
Annibale Biggeri 3, Luciana Caenazzo 1 and Pamela Tozzo 1*
1 Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, 
University of Padova, Padova, Italy, 2 Department of Pharmaceutical and Pharmacological Sciences, 
University of Padova, Padova, Italy, 3 Unit of Biostatistics, Epidemiology and Public Health, Department 
of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy

Background: Healthcare-associated infections (HAIs) are a major global public 
health problem, contributing significantly to patient morbidity and mortality. 
This study analyses differences in type and amounts of bacteria transferred 
from volunteers’ dominant palm to two healthcare-relevant surfaces (glass and 
laminate table), both before and after hand washing with water and antibacterial 
soap. The aim was to understand hand-to-surface microbial contamination and 
support the development of HAI prevention strategies.

Methods: Microbial DNA was extracted and sequenced to identify bacteria 
species. Taxonomic and statistical analyses were performed to evaluate bacterial 
diversity and abundance across the experimental groups.

Results: The results confirmed greater bacteria abundance and species richness 
on palm compared to surfaces, with a significant reduction after hand washing, 
especially on glass. Taxa analysis highlighted the increased persistence of 
Gram-negative HAIs-related bacteria on laminate surface, while Gram-positive 
opportunistic bacteria were more abundant on palms and glass surface. Beta 
diversity confirmed significant differences in microbial composition between 
the groups, highlighting the importance of bacteria-surface characteristics in 
designing preventive measures.

Conclusion: Despite some limitations, our study emphasizes the importance 
of microbiological surveillance for all opportunistic bacteria with pathogenic 
potential. These findings can contribute to more effective guidelines for surface 
disinfection and hand washing, key elements in preventing HAIs.
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1 Introduction

The skin is the largest organ in the human body, which has the 
main role of protecting the body against the external environment and 
potential pathogens (1). The human body hosts trillions of 
microorganisms, some of which are hosted on the skin forming an 
ecosystem called “skin microbiota” (1–4). The skin microbiota is 
shaped by different factors such as diet, sex, habits, disease state, 
interactions between individuals, and environment (5–11). In 
particular, there is a bidirectional interaction between the skin 
microbiota and the environment, with microorganisms being 
exchanged upon contact (12). For this reason, despite the skin 
microbiota being relatively stable over time and individual-specific, it 
represents an interesting field of scientific research and its study may 
have important consequences in the clinical practice (1, 4, 6, 12–18).

In healthcare environments, where the risk of healthcare-
associated infections (HAIs) is particularly high, understanding the 
dynamics of the skin microbiota and microbial contamination 
surfaces is very important to prevent the spread of infections and to 
promote the safety of patients and healthcare workers. In this context, 
the skin can also act as a reservoir for pathogenic microorganisms, 
which can be transferred to environmental surfaces during direct or 
indirect contact (19–22). The transfer by direct contact is defined as 
the passage of microorganisms from a person directly onto a surface, 
whereas the transfer by indirect contact involves one or more 
intermediate steps before reaching the final surface (e.g., one person 
could transfer its microorganisms to another one if both persons 
entered in contact with the same object in two different consecutive 
moments) (23–25).

Understanding the dynamics of microbial transfer, within the 
healthcare environment, is essential for designing effective 
prevention strategies for HAIs. In hospital surface microbial 
contamination, in fact, has been associated with the spread of HAIs, 
which represents a significant issue for patient safety and infection 
control in hospital and other healthcare settings (26–30). HAIs, also 
known as nosocomial infections, are infections that patients contract 
during their stay in hospitals or in other healthcare facilities. These 
infections should not be present or incubating at the time of patient 
admission and typically develop 48 h or more after admission (26, 
29–34). The risk of HAIs increases with: invasive procedures such as 
surgeries or the use of medical devices such as mechanical ventilators, 
exposure to contaminated environments, inadequately sterilize 
surfaces or medical equipment, contact with healthcare workers or 
visitors, and the presence of antibiotic-resistant microorganisms 
(21, 35–38).

HAIs are a leading cause of illness and death worldwide, 
particularly in hospitalized and immunocompromised patients. They 
are often caused by a variety of pathogenic microorganisms known as 
ESKAPE bacteria, an acronym that includes Enterococcus spp., 
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter 
baumannii, Pseudomonas aeruginosa, and Enterobacter spp. The 
ESKAPE bacteria are so named because they are known for their 
ability to ‘escape’ antibiotics and other conventional treatments, 
making them extremely difficult to eliminate and causing serious 
complications in hospitalized patients. These pathogens, together with 
many others such as Clostridium difficile, Haempophilus spp., Rotia 
spp., Stenothrophomonas spp., and Streptococcus spp. are recognized 
as the main cause of HAIs (29–32, 39, 40).

The effective management of HAIs requires a multidisciplinary 
approach that includes not only the treatment of the infections 
themselves, but also the prevention of their spread within healthcare 
facilities. Therefore, due to the significant clinical and economic 
impact associated with their treatment and management, numerous 
studies have focused on the development of effective protocols for the 
prevention and control of these infections, in order to ensure patient 
safety. Among the key strategies adopted, there are the rigorous 
implementation of hand hygiene procedures, the sterilization of 
healthcare surfaces and medical equipment, the rational use of 
antibiotics to prevent the emergence of multi-resistant bacteria, the 
implementation of public health surveillance protocols, the continuous 
training of healthcare-workers, and the screening and the 
categorization, as well as the isolation of infected patients (31, 
32, 41–45).

Despite the implementation of the previously cited preventative 
measures, HAIs continue to be a significant public health challenge. 
Therefore, ongoing efforts are needed to improve infection control 
practices and develop new strategies to reduce the spread of pathogens 
and promote the safety of patient and healthcare worker, 
understanding the dynamics of the skin microbiota and microbial 
contamination of surfaces. To delve deeper into this intricate network 
of microbial transfer, there is a need for comprehensive studies 
exploring the direct transfer of human microbiota into various 
surfaces. Investigating the microbial load and the specific types of 
microorganisms present on these surfaces can provide valuable 
insights into potential transmission routes and contamination 
hotspots within healthcare settings (21, 46–48). Such knowledge not 
only aids in the development of targeted cleaning and disinfection 
protocols but also lays the groundwork for future research and 
interventions aimed at reducing the risk of HAIs (36, 47).

Therefore, this study has the purpose to contribute to the growing 
understanding of microbiological transfer processes and bacteria 
persistence on different surfaces, particularly relevant in prevention 
of HAIs. Through the analysis of the direct transfer of microorganisms 
from the volunteers’ dominant hand to these surfaces, both before and 
after hand washing, we  tried to study in detail the adhesion of 
microorganisms on surfaces and to evaluate the effectiveness of hand 
washing in reducing their presence. By analyzing the variations in the 
microbiota deposited on surfaces, a better understanding of the 
mechanisms of microbial transmission will be gained. The results of 
this study can contribute to develop strategies aimed at preventing 
HAIs, thus improving the safety and quality of healthcare system 
through targeted interventions on the reduction of 
environmental contamination.

2 Materials and methods

2.1 Sample collection

The study investigated direct microbial transfer from the 
dominant hand of different volunteers to two types of surfaces. 
Transfer was assessed both before and after hand washing with water 
and antibacterial soap provided by the healthcare facility hosting the 
forensic genetics laboratory. A total of 19 healthcare-worker volunteers 
of both sexes (11 females and 8 males) aged between 25 and 64 years 
were enrolled. The inclusion criteria were being in good general health 
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condition and not having taken antibiotics in the 2 weeks prior to the 
sampling. Once selected, the volunteers willingly provided written 
informed consent to participate in the study. Volunteers were asked to 
maintain their normal daily routine in terms of diet, personal hygiene, 
and exercise.

To ensure the representativeness of surfaces commonly found in 
healthcare settings, we chose a glass surface and a laminate table. Both 
surfaces are non-porous, with the latter designed to further reduce 
possible microbial growth (49). Before starting with the study, to 
eliminate any microbial trace from the surfaces, they were first cleaned 
with a bleach solution diluted with distilled water in a 1:3 ratio. The 
excess bleach was then removed by rinsing the surfaces with distilled 
water, following by a final cleaning with 70% ethanol.

The experiment took place in a controlled, closed environment at 
room temperature. The experiment took place between March 5 and 
7, 2024. To further limit confounding variables, we selected three 
consecutive days with similar weather conditions for sampling the 
microbial profile of the volunteers under different experimental 
settings. All the sampling procedures were performed by sliding a 
sterile swab moistened with sterile physiological water. The 
experimental procedure of samples collection was therefore performed 
in three different days at the end of which five experimental groups 
were produced: volunteers’ dominant palm microbiota (group  1: 
Palm), microbiota deposit on glass before hand washing (group 2: 
GlassBHW), microbiota deposit on glass after hand washing (group 3: 
GlassAHW), microbiota deposit on laminate table before hand 
washing (group 4: TableBHW), and microbiota deposit on laminate 
table after hand washing (group 5: TableAHW). In particular, on the 
first day, microbiota samples were collected from each volunteer by 
swabbing their dominant palm to establish an individualized reference 
microbial profile. On the subsequent 2 days, our focus shifted to 
surface sampling. Day two involved the collection of biological 
samples from the glass surface. Each volunteer placed their dominant 
hand on the cleaned glass surface twice, once before hand washing and 
the other after hand washing. On day three, the activities of day two 
were repeated, focusing on the laminate table surface. Therefore, at the 
end of the third day, from each volunteer a total of five samples were 
obtained, one for each experimental group: one from the palm, two 
from the microbial samples deposited, respectively, on glass and 
laminate table before hand washing, and two from the same surfaces 
but after hand washing.

We specify that, for our experimental setting on day two and 
three, we  decided to maintain a consistent contact time of 10 s 
between the hand placement and the surfaces, for each condition (50). 
Samples from surfaces were collected for each volunteer and 
experimental setting 3 mins after microorganisms were deposited. 
Once all the samples for each experimental setting were collected, 
we  proceeded with the microbial DNA extraction followed by a 
detailed analysis to determine the skin microbial profile of the 19 
volunteers’ dominant palms and the microorganisms deposited on the 
surfaces under the different experimental settings. In particular, the 
microbial DNA extractions, from the samples of each experimental 
group, were performed together after the collection for that specific 
group was completed. This process was repeated for each experimental 
group over 3 days. After each extraction, the microbial DNA samples 
were stored at −20°C until all extractions were completed. Once all 
sample collections and DNA extractions were completed, all the 
extracted microbial DNA samples of all the experimental groups 

proceeded simultaneously with both laboratory analysis and 
bioinformatics and statistical analysis (Figure 1).

2.2 Microbial DNA extraction and analysis

Microbial DNA was extracted using the QIAamp PowerFecal Pro 
DNA Kits (QIAGEN, Hilden, Germany) according to the 
manufacturer’s instructions with a minor modification consisting of 
the addition of 800 μL of CD1 solution to each swab followed by 
vortexing for 5 s and centrifugation at 2000 g for 10 min. DNA was 
eluted in 35 μL of C6 solution and quantified using NanoDrop One 
Microvolume UV–Vis Spectrophotometer (ThermoFisher Scientific, 
Waltham, United States).

The extracted microbial DNA was sent to an external facility 
(Personal Genomics SRL, Verona, Italy) for library preparation, DNA 
sequencing and an initial bioinformatics analysis. Library preparation 
was done using primer combination Pro341F and Pro805R to amplify 
the hypervariable regions V3-V4 of the 16S rRNA. Subsequently, all 
samples were sequenced with 300 paired-end with an Illumina MiSeq 
platform (51).

2.3 Bioinformatic and statistical analysis

The quality control of raw sequencing reads was performed using 
FastQC v0.11.9, whereas filtering and denoising was performed using 
DADA2 (Qiime2 release 2023.9) (52, 53). The reads were quality 
trimmed at a length of 270 and 245 nt, respectively for read1 and 
read2. Taxonomy analysis was performed with “qiime feature-classifier 
classify-sklearn” using the greengenes 2 database (gg_2022_10) (53–
55). Further bioinformatics and statistical analysis were performed 
with Qiime2 (release 2023.9) and R studio (version 4.3.22023.10.31 
ucrt) (53, 56, 57). Krona charts to represent the mean relative 
abundance of the different microorganisms in the different 
experimental groups (Palm, GlassBHW, GlassAHW, TableBHW, and 
TableAHW) were produced with KronaTools (58). Stacked bar-graph 
were produced with Qiime2 (release 2023.9) to graphically represent 
the relative frequency of all phyla belonging to each sample in the 
various experimental settings.

The statistical analysis considered within subject comparisons, 
removing inter-individual variabilities, such as differences in palm 
size. Therefore, all abundance comparisons to evaluate differences at 
the different taxonomic levels were performed with the Friedman test 
given the non-parametric nature of the data (differences were 
considered significant in case of p < 0.05). For post-hoc multiple 
comparisons of all the experimental groups for each microorganism 
at the different taxonomic levels (domain, phylum, genus, and 
species), the Wilcoxon test for paired data with Bonferroni adjustment 
was performed. The differences were considered significant with an 
adjusted p-value (p-adj value = p-value*10) < 0.05—Bonferroni 
adjustment was performed for the number of comparisons made 
(n = 10). Significant results were highlighted in the box plots with 
jittered points below with asterisks (*) indicating the level of 
significance: *means p-adj value <0.05, **means p-adj value <0.01, 
***means p-adj value <0.001, and ****means p-adj value <0.0001.

The mean abundance of bacterial genera associated with HAIs or 
identified as opportunistic pathogens in the various experimental 
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groups was also showed as bar graph whereas the same pathogenic 
bacteria, but at species level, which demonstrated statistical 
significance in multiple comparisons among experimental groups, 
were visualized using a heatmap to graphically represent the variations 
in abundance across the samples in the different experimental groups. 
Eventually, to evaluate the microbial diversity present in different 
experimental conditions, we  used Qiime2 (release 2023.9) (53). 
We performed an alpha diversity analysis using both the Shannon 
index and species richness. The Shannon index allows us to quantify 
the diversity within each sample, considering both the number of 
species (richness) and the distribution of species abundances (equity), 
whereas species richness provides a straightforward count of the 
different species present, focusing solely on the number of species 
without accounting for their relative abundances. We generated alpha-
rarefaction curves for each experimental group, which allowed us to 
visualize how diversity changes within each experimental setting. 
Next, for a detailed and comparative assessment of microbial diversity, 
we created firstly a violine-plot of the Shannon Entropy for various 
groups of samples and, lastly, we performed a beta diversity analysis 
through PCoA (Principal Coordinates Analysis) at the species level. 
This analysis provides a three-dimensional visual representation of the 
relationships between samples. We generated the beta diversity graphs 
using Aitchison distance.

3 Results

The bacterial persistence on various surfaces and the impact of 
hand washing were evaluated considering five experimental groups: 

dominant palm microbiota from volunteers (group  1: Palm), 
microbiota deposit on glass before hand washing (group  2: 
GlassBHW) and after hand washing (group  3: GlassAHW), and 
microbiota deposit on laminate table before hand washing (group 4: 
TableBHW), and after hand washing (group 5: TableAHW).

The first analysis was conducted with the aim of visually evaluating 
the differences in the mean relative abundances between the 
experimental groups at all taxonomic levels. To achieve this purpose, 
Krona charts were produced for each experimental group 
(Supplementary Figures 1a–e) (58). Krona charts organize relative 
abundances in sectors with a very precise hierarchy, which goes from 
inside to outside according to decreasing taxonomic levels: from 
d-Domain, p-Phylum, c-Class, o-Order up to f-Family, g-Genus to 
s-Species.

From the Krona charts (Supplementary Figures 1a–e) it is possible 
to observe, as expected, that practically 100% of the DNA sampled 
from the 19 volunteer subjects is of bacterial origin. Comparing the 
abundance of Bacteria across experimental groups with the Friedman 
test a significant difference was found (p < 0.0001). In particular, after 
post-hoc comparisons by Wilcoxon test for paired data with 
Bonferroni adjustment, the bacterial counts appeared to 
be significantly higher on the palm of the hand compared to all the 
other experimental groups and, in the case of glass, a significant 
reduction was observed after hand washing compared to the case of 
the laminate table, which showed lower level of abundance even before 
hand washing (Figure 2).

To obtain deeper insight, we analyzed mean relative abundance at 
each taxonomic levels, primarily focusing on phyla, genera, and 
species. Here we reported the results relating to taxonomic elements 

FIGURE 1

Experimental protocol overview. Schematic representation of the experimental protocol to analyze the skin microbiota of volunteers’ dominant palms 
and the hand-to-surface microbial transfer, both before and after hand washing. Day 1 represents the collection of palm microbiota (group 1: Palm). 
Day 2 represents the collection of samples on glass surface: before hand washing (group 2: glassBHW) and after hand washing (group 3: GlassAHW). 
Day 3 represents the collection of samples on laminate table surface: before hand washing (group 4: TableBHW) and after hand washing (group 5: 
TableAHW). In group 2, 3, 4, and 5 contact time between the hand placement and the surfaces was of 10 s and the sample collection occurred 3 min 
after surface microbiota deposition. After microbial DNA extraction, all the samples continued with the downstream analysis simultaneously [Created in 
BioRender, https://BioRender.com/i54f239].
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with relatively high abundances and/or significant differences among 
experimental groups (full results available on request). Therefore, 
comparison among experimental groups were not shown for bacteria 
with a mean abundance below 200 units and/or without significant 
differences among the experimental groups (Friedman test and 
Wilcoxon test for paired data with Bonferroni adjustment).

The relative bacterial percentages at the phylum level are 
represented in the Krona charts (Supplementary Figures  1a–e). 
Qualitatively, the graph shows a clear prevalence of Proteobacteria in 
the TableBHW and TableAHW groups, and of Actinobacteriota and 
Firmicutes D in the other groups. In particular, Proteobacteria have an 
average relative frequency of 22, 28, 34, 81, and 85% in Palm, 
GlassBHW, GlassAHW, TableBHW, and TableAHW, respectively. 
Actinobacteriota exhibit an average relative frequency of 40% in Palm, 
31% in GlassBHW, 30% in GlassAHW, 6% in TableBHW, and 3% in 
TableAHW. Meanwhile, Firmicutes D display an average relative 
frequency of 25% in Palm, 27% in GlassBHW, 17% in GlassAHW, 3% 
in TableBHW, and 3% in TableAHW.

The differences in abundance of these three main phyla by 
experimental groups were analyzed by the Friedman test followed by 
Wilcoxon test for paired data with Bonferroni adjustment. Statistically 
significant differences in abundance were observed in relation to the 
surface from which the bacteria were collected. A greater similarity 
was confirmed between palm and glass, particularly when considering 
the GlassBHW (Figures 3a–c).

The relevant results of the analyses of all the remaining phyla were 
reported on Figures 4a–f. In particular, with the only exception of the 
phylum Bdellovibrionota E (Figure  4a), the phyla show a similar 
tendency (Figures 4b–f). In particular, in Firmicutes A, Firmicutes C, 
Fusobacteriota, and Patescibacteria (Figures 4b–e) the abundance of 
the bacterial samples collected from the palms is very similar to those 
collected in the case of GlassBHW and GlassAHW; in the GlassAHW 
group there is a slight decrease in abundance; and a more significant 
reduction in the amount of these phyla was observed in the samples 
collected from laminate table, both before and after hand washing. 
Instead, the Bacteroidota phylum, despite the similar tendency to the 

other phyla, is highly represented in the different experimental groups, 
without significant differences between them (Figure 4f). Considering 
the phylum Bdellovibrionota E, a greater abundance was observed in 
the samples taken from the laminate table before and after hand 
washing, compared to the other groups (Figure 4a).

At the genera level the results were reported considering the 
bacterial genera associated with HAIs and in particular those reported 
in the HAIs prevalence document produced by the European Center 
for Disease Prevention and Control relatively to the years 2022 and 
2023 (26, 30). Figure 5 shows the average abundance of HAIs-related 
genera detected in our samples. The amount of Enterococcus, 
Klebsiella, and Clostridium, such as those of others HAIs-related 
bacterial genera, is so low that these genera cannot be considered 
relevant in this study. Other genera which always resulted of low 
abundance are Enterobacter, Haemophilus, and Rothia, however these 
genera showed a slightly higher persistence in the samples of Palm, 
GlassBHW, and GlassAHW. On the contrary, Staphylococcus, 
Acinetobacter, Pseudomonas, Stenotrophomonas, and Streptococcus, 
were detected in high amount on our samples, exhibiting consistent 
differences in adhesion propensities depending on the considered 
surface (Figure 5).

In particular, Staphylococcus and Streptococcus are predominant 
on glass both before and after the hand washing, whereas 
Acinetobacter, Pseudomonas, and Stenotrophomonas were 
predominant on the laminate table in both conditions. The statistical 
analysis highlighted significant differences among experimental 
groups (Figures  6a–f), mostly in the genera of Acinetobacter, 
Staphylococcus, Stenotrophomonas, and Streptococcus (Figures 6a,d,e,f). 
Regarding the genus Pseudomonas, no large overall differences were 
observed, but a specific clade, identified as Pseudomonas E 648040, 
showed greater deposition on the laminate table, both before and after 
hand washing (Figures 6b,c).

Lastly, we focused on bacterial species associated with HAIs or 
considered as opportunistic pathogens. In Figure  7 we  report the 
heatmap of the species that showed significant differences among 
experimental groups (full results available on request). In the heatmap, 

FIGURE 2

Comparison of the abundance of the domain Bacteria across various experimental groups. This graph shows the comparison between the amount of 
Bacteria among all the different experimental groups. If significant, the values are indicated as follows: *p-adj value <0.05, **p-adj value <0.01, ***p-adj 
value <0.001, and ****p-adj value <0.0001.
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a clear distinction is evident between different bacterial species with 
contrasting behaviors. In the upper part are grouped the bacterial 
species showing higher abundance levels in the samples collected from 
the laminate table in both conditions, with a slight prevalence in the 
TableAHW group. In contrast, other bacterial species are clustered at 
the bottom of the heatmap, showing greater predominance on the 
palm and,in some cases, in samples from glass surface compared to 
those from the laminate table. In the latter case, a slight decrease in the 
abundance of bacterial species is observed in the GlassAHW group 
compared to the GlassBHW. The clusterings of the bacterial species 
and experimental groups are also displayed within the heatmap, 
highlighting the abundance relationships between the species and the 
differences between the different groups of samples. Clustering 
indicates how bacterial species group together based on their 
abundance and distribution across experimental groups, providing a 
visual indication of significant differences observed in the samples 
across the experimental groups.

To provide a measure of species richness and their relative 
distribution within each experimental group, the alpha-rarefaction 
curves were generated considering a sequencing depth of 20,000 to 
ensure a comprehensive assessment of microbial diversity. The analysis 
was conducted on all the 95 samples (19 subjects and 5 experimental 
groups) and the alpha-rarefaction curves are shown in Figures 8a,b. 
Shannon indexes (Figure  8a) reached a plateau around 2,000 
sequencing depth. The curves obtained from the samples of the 
TableBHW and TableAHW groups show a higher Shannon index than 

the other groups. Moving to the alpha-rarefaction curves based on 
species richness (Figure 8b), it is evident that the palm group shows 
the highest values, whereas the glass the lowest. Moreover, from both 
graphs, it is also interesting to note how in the samples taken after 
hand washing, therefore for the samples of the GlassAHW group 
compared to those of the GlassBHW group and for the samples of the 
TableAHW group compared to those of the TableBHW group, there 
is a reduction in diversity and species richness. This reduction is more 
evident in the alpha-rarefaction curves based on species richness, 
which consider only the number of identified species. In contrast, the 
Shannon index, which also takes into account the abundance of each 
species, tends to smooth out these differences.

The Shannon index for each sample is reported as violine plots in 
Figure 9. In this case, to provide a better overview of species richness 
and equity across all collected samples avoiding data loss, we used a 
sequencing depth of 2,784 reads. This depth ensures that all samples 
are preserved, providing a more accurate and complete comparison of 
microbial diversity across the different experimental groups. In 
contrast, higher depths could lead to the loss of some samples, thereby 
compromising the representation of the total microbial variability. The 
microbial diversity on the dominant palms of the volunteers’ hands 
showed a nearly symmetric unimodal pattern, with a median around 
5.4 and an interquartile range 4.8–6.0. Considering the glass surface, 
both before and after hand washing, it revealed a median microbial 
diversity similar to that of the palm. However, the distribution is 
skewed, with longer lower tail for GlassAHW. Analyzing the laminate 

FIGURE 3

Comparison of the amount of the most abundant phyla among experimental groups. These graphs illustrate the differences in the abundance of the 
(a) Proteobacteria, (b) Actinobacteriota, and (c) Firmicutes D across various experimental groups. If significant, the values are indicated as follows: *p-
adj value <0.05, **p-adj value <0.01, ***p-adj value <0.001, and ****p-adj value <0.0001.
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table groups, it was observed a slightly higher median microbial 
diversity but with highly concentrated distributions.

The beta diversity analysis through PCoA at the species level is 
shown in Figure 10. The first axis explains approximately 15.5% of the 
total variation and shows that samples taken from laminate table surface 
(TableBHW and TableAHW) had a different microbial composition 
respect to the samples taken from glass surface (GlassBHW and 
GlassAHW) and those taken from the hand palm (Palm). The second 
axis explains approximately 5.2% of the total variation and shows 
differences in before-after hand washing. The third axis represents a 
smaller component of the variation (approximately 3.3%), but which still 
helps to identify slight differences between samples especially among the 
before and after hand washing conditions particularly for glass samples.

4 Discussion

HAIs represent a major problem in global healthcare settings, 
contributing significantly to patient morbidity and mortality 

worldwide. Indeed, they are considered a great threat to 
hospitalized patients and a serious burden on public health (12, 27, 
30, 31). Surfaces in hospital environments are recognized as a 
major reservoir for the transmission of pathogens, facilitating the 
spread of this type of infection. Understanding how bacteria are 
transferred from hands to surfaces and evaluating the effectiveness 
of hand hygiene practices are critical to developing effective 
prevention strategies (21, 26–28, 38, 59, 60). This study was 
conducted with the aim of examining the differences in the type 
and amounts of bacteria transferred from the palm of the dominant 
hand of different volunteers to two types of surfaces commonly 
present in hospital environments (glass and laminate table), both 
before and after hand washing. Through the analysis of the 
collected samples, we  intended to provide a more in-depth 
understanding of the mechanisms of direct transmission of 
microorganisms to contribute to developing strategies aimed at 
preventing HAIs.

First, we evaluated the abundance of Bacteria domain in our five 
experimental groups (Figure 2). This general overview revealed:

FIGURE 4

Comparison of the amount of the low abundant phyla among experimental groups. These graphs illustrate the differences in the abundance of the (a) 
Bdellovibrionota E, (b) Firmicutes A, (c) Firmicutes C, (d) Fusobacteriota, (e) Patescibacteria, and (f) Bacteroidota across various experimental groups. If 
significant, the values are indicated as follows: *p-adj value <0.05, **p-adj value <0.01, ***p-adj value <0.001, and ****p-adj value <0.0001.
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 • that the generally observed higher abundance of Bacteria on the 
palm compared to that on glass and laminate table before hands 
washing may be explained by the limited transfer and adhesion 
of Bacteria which depend on the specific physico-chemical 
characteristics of both the surface and microorganisms 
(50, 61–63);

 • that after hands washing, as expected considering previous 
results (64–69), the amount of Bacteria deposited on the surface 
was significantly reduced compared to the situation before hand 
washing, especially for the glass surface;

 • that hand washing does not seem to significantly affect the 
amount of Bacteria deposited on the laminate table surface, as the 
quantity of microorganisms found on TableBHW was more 
similar to those on GlassAHW and TableAHW, rather than to 
that on GlassBHW. This may be influenced by the type of table 
surface used for this study: in particular we adopted a laminate 
table, which is known to be a type of surface with antiseptic 
features, hence which does not favor attachment and proliferation 
of microorganisms (49).

Moving to the taxonomic level of the phyla we identified the most 
abundant taxa were Actinobacteriota, Firmicutes D, and Proteobacteria 
in Palm (Supplementary Figure  1a). This is in line with previous 
studies where these phyla were identified as the most abundant phyla 
present on human hands (70, 71). Considering the human microbiota 
deposition on the two different surfaces, we observed that the phyla 
of Actinobacteriota and Firmicutes D, predominant on the palm, were 
also predominant on GlassBHW and GlassAHW, whereas the 
Proteobacteria were the most abundant phylum on TableBHW and 
TableAHW, with levels higher than those of Palm, GlassBHW, and 
GlassAHW (Supplementary Figures 1a-e; Figure 3). These findings 
align with previous literature studies, which reported these bacterial 
phyla as the main components of hand-derived microbiota on 
different surfaces (50, 72, 73). These results could be explained by the 

different nature of the phyla and their propensity to better adhere to 
different surfaces. Actinobacteriota and Firmicutes D are 
predominantly Gram-positive bacteria characterized by a thick 
peptidoglycan cell wall containing teichoic and teichuronic acids, 
which impart a negative surface charge (74–79). Although glass also 
tends to have a slightly negative surface charge, due to silanol groups 
(80, 81), these phyla adhere stably by producing EPS 
(exopolysaccharides), which facilitate bacterial adhesion, aggregation, 
and biofilm formation (82). On the other side, Proteobacteria are a 
highly diversified group of Gram-negative bacteria with a thin 
peptidoglycan layer and an outer membrane containing 
lipopolysaccharides (LPS), which give a negative charge to the bacteria 
surface (76, 78, 83, 84). In this phylum, the presence of surface 
appendages such as flagella and pili along with the production of 
bacterial cellulose (BC), enhance their ability to adhere to the 
inhospitable surface of the laminate table (76). Pili mediate initial 
adhesion on the surface itself, improving colonization capacity, 
whereas the BC acts as a “molecular glue,” allowing Proteobacteria to 
effectively adhere to surface even with antiseptic features (49, 82, 
85–87). These characteristics provide a general explanation for the 
observed differences in adhesion propensity among different phyla on 
various surfaces. However, within each phylum, alongside the 
explained predominant traits, there are also minority species with 
similar adhesion mechanisms to those found in other phyla. Together, 
these characteristics contribute to the overall potential adhesion of 
each phylum, resulting in varying amounts on the different surfaces 
(76, 87, 88).

Further comparative analyses were conducted at the level of the 
less abundant phyla. It is interesting to note the greater concordance 
between the amounts of bacteria for each phylum on the palm and 
those collected from the glass surface, which showed an opposite 
trend to those of the laminate table. Also, in this case the differences 
can essentially be explained by the characteristics of each bacterial 
phyla (Figure  4). In particular, Bdellovibrionota E, the only less 

FIGURE 5

Bacteria at genus level associated with HAIs. The graph shows HAIs-related bacteria and their average abundance across the experimental groups.
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abundant phyla that appeared to be predominant on laminate table 
surface, even if not very present on the palm or on glass, is a Gram-
negative bacterium with characteristics similar to Proteobacteria 
(Figure  4a) (89). In our study, we  observed that the Bacteroidota 
phylum maintains similar abundance levels among experimental 
groups. This uniformity in presence, although in low amount 
compared to the main phyla, suggests that the Bacteroidota possess an 
ability to adapt to various environments, highlighting a notable 
ecological versatility. This aspect makes them particularly relevant in 
the context of our research, especially considering their reported 
involvement in HAIs (Figure 4f) (30, 90).

Since this study aims to prevent HAIs, we decided to analyze the 
bacteria sampled from volunteer subjects in the various experimental 
groups, focusing on the main genera known to be associated with 
HAIs which were detected on our samples (26, 30). The most 
interesting data to highlight is the preponderance of bacteria 

belonging to the Acinetobacter, Pseudomonas, Staphylococcus, 
Stenotrophomonas, and Staphylococcus genera, with a variable 
distribution based on the surfaces (Figures 5, 6). In particular, whereas 
Acinetobacter, Pseudomonas, and Stenotrophomonas are more 
abundant in samples taken from laminate table, Staphylococcus and 
Streptococcus prevail on glass surface, in accordance with what has 
already been highlighted regarding the specific biological 
characteristics of these bacteria. Indeed, the first three genera, which 
prevailed on laminate table, are Gram-negative bacteria, whereas the 
other two are Gram-positive bacteria (76, 78, 84, 85, 87, 91). These 
results suggest the need to implement specific hygiene procedures for 
each type of surface, in order to reduce the presence of these pathogens 
and, consequently, the impact of the healthcare environment as a 
reservoir of HAIs-related pathogens (92–95).

Regarding bacterial species associated with HAIs or considered 
opportunistic pathogens, a similar result was observed (Figure 7). 

FIGURE 6

Comparison of the amount of the most abundant genera related to HAIs among experimental groups. These graphs illustrate the differences in the 
abundance of the (a) Acinetobacter, (b) Pseudomonas, (c) Pseudomonas E 648040, (d) Staphylococcus, (e) Stenotrophomonas, and (f) Streptococcus 
across various experimental groups. If significant, the values are indicated as follows: *p-adj value <0.05, **p-adj value <0.01, ***p-adj value <0.001, 
and ****p-adj value <0.0001.
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In the upper part of the heatmap, where a greater abundance is 
represented on the laminate table, Gram-negative bacteria are 
grouped (91, 96, 97). In the bottom part, instead, Gram-positive 
bacteria are grouped (98–102). The only exception is Alloprevotella 
sp900095635 which, despite being Gram-negative, shows a similar 
abundance and adhesion to the other Gram-positive bacteria. This 
is probably due to its intrinsic nature as a host of human microbiota, 
as in the case for the others reported Gram-positive bacterial 
species (98, 100–104).

The Gram-positive bacterial species present in the heatmap and 
Alloprevotella sp900095635, despite being common commensals of 
the human microbiota (98, 100–104), can act as opportunistic 
pathogens and cause various infections especially in 
immunocompromised patients. In particular: (i) Abiotrophia 
defectiva can cause bacterial meningitis or infective endocarditis, 
which may lead to a consequent stroke (99, 103, 105, 106); (ii) 
Actinomyces oris is associated with oral infections and abscesses 
(98); (iii) Anaerococcus spp. may be  involved in urogenital tract 
infections and skin infections (107, 108); (iv) Cutibacterium acnes 
is known to cause acne and may be associated with inflammatory 
diseases and implant-associated infections (101, 109); (v) Finegoldia 
magna can cause rare infections of bone and joints following 
orthopedic implant, mechanical prosthetic endocarditis and other 
skin and soft tissue infections (100, 110, 111); (vi) Alloprevotella 
sp900095635 can be  associated with oral infection (104, 112). 
Therefore, the analysis of their persistence in different healthcare 
surfaces is important to limit their impact on patient health status, 
especially to protect those who are immunocompromised.In 
contrast, Gram-negative bacterial species, clustered at the top of the 
heatmap, are more commonly associated with infections, 
particularly in healthcare settings. For example, Acinetobacter spp. 
may be isolated in healthcare settings and can cause infections such 
as pneumonia, catheter-related bloodstream infections, meningitis, 
and sepsis (96, 113–115); Brevundimonas spp., can cause invasive 

and severe infections of different nature which can involves, among 
the others, bloodstream and urinary tract (97, 116); and 
Stenotrophomonas spp. is known to cause respiratory and blood 
infections and to have an high rate of antimicrobial resistance (91, 
117, 118). Their correlation with HAIs was already showed at the 
genus level (Figure 5) (30), except for Brevundinomas spp. which is 
not yet considered among the major HAIs-related pathogens even 
though it has the ability to cause potentially harmful infection. In 
this prospective, Ryan et  al. suggested to include this bacterial 
species in healthcare screening and prevention program. However, 
the overall distinction between Gram-positive and Gram-negative 
in the heatmap highlights, again, how these bacterial species have 
different behaviors in adhesion to surfaces. It is crucial to consider 
these differences when implementing preventive and hygiene 
measures. Understanding specific adhesion patterns can help to 
develop more effective strategies for cleaning and disinfection, 
thereby reducing the risk of HAIs and improving patient safety.

Moreover, it is important to remember that Gram-negative 
bacteria are considered one of the most significant public health 
problems due to their resistance to environment and to antibiotics 
treatments which make them more directly implicated in HAIs 
compared to Gram-positive bacteria (119, 120). This resistance may 
explain the reason why, for these bacterial species, a slight increase in 
abundance is observed on the laminate table after hand washing and, 
in some samples, also on the glass surface (Figure 7). Although there 
is a general reduction in the total number of bacteria after hand 
washing, as we have already described (Figure 2), in this specific case 
the resistance of Gram-negative bacteria means that they are 
eliminated less during hand washing than other pathogens. As a result, 
a slight enrichment of these bacteria occurs on the surfaces of the 
laminate table and glass after hand washing. In contrast, for other 
bacterial species, which are generally less resistant, a slight decrease in 
abundance is observed on both surfaces after hand washing. This can 
be explained by their less resistant nature, which makes them more 

FIGURE 7

Heatmap of species abundance. This heatmap shows the standardized species abundances across samples clustered based on similar behavior.
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susceptible to hygiene procedures. Therefore, a normal hand washing 
with water and antibacterial soap can reduces the overall number of 
bacteria on human hands leading to the prevalence of the most 
resistant bacteria, compared to those which decrease after hand 
washing, on surfaces. This confirms how much effort still needs to 
be  made to develop effective infection prevention strategies 
concerning the transfer of bacteria from hands to surfaces within 
healthcare settings.

The characterization of the microbial communities was 
performed through the inter-group and intra-group diversity by 
generating the alpha-rarefaction curves with both Shannon index 
and species richness in the different experimental groups. Moreover, 
the Shannon entropy of the samples, across the experimental 
groups, and the beta-diversity of the samples, with Aitchison 
distance, were also assessed. The Shannon index takes into account 
both the richness of the species and their equity, therefore giving an 
idea of the number of species and their balance from an abundance 

point of view (121). Since the alpha-rarefaction curves, generated 
at sequencing depth of 20,000, reach a plateau around 2,000 reads, 
this analysis ensures a comprehensive assessment of microbial 
diversity indicating that deeper sequencing does not significantly 
increase the observed diversity (Figure 8a). It is interesting to note 
that the average Shannon indexes of the samples taken from the 
laminate table, both before and after hand washing, are the highest 
(Figures 8a, 9) despite the species richness in these samples being 
lower than that of the group of Palm (Figure 8b). However, from 
Figure  8 is possible to observe how the variability among the 
individuals is higher if considering palm, GlassBHW, and 
GlassAHW, whereas the individuals seem to be  more similar if 
considering the groups collected from the laminate table 
(TableBHW and TableAHW). The laminate table, designed to 
prevent the adhesion of microorganisms, is characterized by 
approximately 80% bacteria from the Proteobacteria phylum 
(Supplementary Figures 1d-e). This phylum is known for its species 

FIGURE 8

Alpha-rarefaction curves considering a sequencing depth of 20,000. This figure illustrates different curves of alpha rarefaction based on different 
parameters: (a) rarefaction curves based on Shannon index for the different experimental groups and (b) rarefaction curves based on species richness 
for the different experimental groups.
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FIGURE 10

Three-dimensional PCoA plot. The graph represents beta diversity analysis using Aitchison distance where experimental groups are differentiated 
based on color scale.

diversity, which may contribute to differentiating the microbial 
community by increasing species richness for these samples (122). 
However, this variability, given the alpha-rarefaction curves of 
species richness for these groups, is not sufficient to explain a higher 
Shannon index than that of the samples collected from volunteers’ 
dominant palm. Consequently, this result could be explained by 
considering the intrinsic nature of the Shannon index, which also 

considers the uniformity of the species distribution within the 
TableBHW and TableAHW groups. This result agrees with another 
study where a high Shannon index was observed in samples with a 
predominance of the phylum Proteobacteria (123). Moreover, it is 
also important to note that the Palm group has a wide distribution 
of Shannon index values between samples, indicating great 
individual variability. Unlike the table groups, for which the 
variability of the Shannon index between subjects is concentrated 
around the median value, a result similar to that observed from the 
palm samples is also observable in the GlassBHW and GlassAHW 
groups, suggesting a wider individual variability in the microbial 
component that adheres to this surface (Figure 9). Another relevant 
aspect (Figures 8, 9) is the decrease in diversity and species richness 
of the samples collected from the glass and the table after hand 
washing compared to those of the samples collected from the same 
surfaces before hand washing, suggesting a role of hand washing in 
reducing microbial diversity.

The beta diversity analysis using the Aitchison distance supports 
previous results obtained from the alpha diversity analysis. The clear 
separation of groups in the PCoA plot (Figure 10) confirms significant 
differences in microbial composition between the analyzed samples. 
This is particularly evident in the samples taken from the laminate 
table compared to the other groups, suggesting, as already highlighted, 
that the differences in microbial engraftment on the laminate table are 
closely related both to the characteristics of the surfaces and the 
adhesion capabilities of the different bacteria. Further confirmation of 
the impact of hand washing on microbial diversity is observed when 
considering axis 2 of the PCoA plot, where samples from the 
GlassAHW and TableAHW groups are more concentrated toward the 
bottom compared to those from the GlassBHW and TableBHW 
groups, which show a wider distribution along this axis toward 
the top.

FIGURE 9

Alpha diversity violine plots. The figure shows five violine plots each 
one based on Shannon entropy of different experimental groups, 
whit a sequencing depth of 2,785.
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Despite the significant findings, we are aware of the inherent 
limitations of our study that need to be considered. First, the types 
of surfaces and the use of a small number of healthy volunteers may 
not be representative of different healthcare environment, and it is 
therefore difficult to generalize the results. Furthermore, the 
analyses were conducted considering only time zero and do not take 
into account the dynamics that the deposited microbial community 
may have over time. Therefore, although this study provides a basis 
for understanding the mechanisms of direct transfer on different 
surfaces in the healthcare context, there is a clear need to conduct 
future studies with a larger and more diverse sampling, both in 
terms of individuals and surfaces, for a more detailed healthcare 
microbiota characterization. Additionally, it would be  useful to 
conduct further research considering different timescales to 
confirm the persistence of the highlighted bacteria and evaluate the 
effectiveness of different hygiene procedures, both for hand washing 
and surface disinfection, in order to develop more targeted and 
effective interventions. Moreover, the consideration of also viral and 
fungal contamination could be  evaluated, since they are also 
relevant to HAIs. However, this work is intended to represent a 
starting point for future investigations and improvements in 
infection control practices.

5 Conclusion

The study revealed the highest bacterial abundance in the Palm 
group compared to the other groups with a significant reduction after 
hand washing, especially in GlassAHW group. The analysis of microbial 
adhesion on different surfaces before and after hand washing revealed 
the presence of HAIs-related bacteria, with Gram-positive characterizing 
Palm and Glass groups and Gram-negative characterizing Table groups. 
Although the specific bacterial species identified in our microbial 
samples not always correspond to the most common pathogen bacteria 
associated with HAIs, their environmental persistence still suggests a 
potential risk of environmental contamination and pathogen 
transmission within the healthcare environment, given their potentiality 
to cause severe infection in humans. Our results highlight the 
importance of microbial surveillance and preventive measures, not only 
for well-known bacterial species, but also for other opportunistic 
bacteria with potentially pathogenic characteristics, to ensure safe 
healthcare environments and reduce the risk of HAIs. It is important to 
focus on achieving improved hygiene practices and targeted 
interventions to reduce the presence of bacteria on healthcare surfaces. 
Therefore, further studies on hand to surface microbial contamination 
are essential in order to implement more effective guidelines for surface 
disinfection and hand washing and to promote the safety of patients and 
healthcare professionals through the adoption of more informed and 
targeted preventive measures.
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