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Whole slide images (WSIs) play a vital role in cancer diagnosis and prognosis.

However, their gigapixel resolution, lack of pixel-level annotations, and

reliance on unimodal visual data present challenges for accurate and e�cient

computational analysis. Existing methods typically divide WSIs into thousands

of patches, which increases computational demands and makes it challenging

to e�ectively focus on diagnostically relevant regions. Furthermore, these

methods frequently rely on feature extractors pretrained on natural images,

which are not optimized for pathology tasks, and overlook multimodal data

sources such as cellular and textual information that can provide critical

insights. To address these limitations, we propose the Abnormality-Aware

MultiModal (AAMM) learning framework, which integrates abnormality detection

and multimodal feature learning for WSI classification. AAMM incorporates a

Gaussian Mixture Variational Autoencoder (GMVAE) to identify and select the

most informative patches, reducing computational complexity while retaining

critical diagnostic information. It further integrates multimodal features from

pathology-specific foundation models, combining patch-level, cell-level, and

text-level representations through cross-attention mechanisms. This approach

enhances the ability to comprehensively analyze WSIs for cancer diagnosis and

subtyping. Extensive experiments on normal-tumor classification and cancer

subtyping demonstrate that AAMM achieves superior performance compared to

state-of-the-art methods. By combining abnormal detection with multimodal

feature integration, our framework o�ers an e�cient and scalable solution for

advancing computational pathology.

KEYWORDS

WSI analysis, multimodal fusion, abnormal detection, foundation model, Gaussian

Mixture Variational Autoencoder

1 Introduction

Accurate cancer diagnosis and quantitative evaluation heavily depend on pathologists

examining tissue samples through pathological images (1, 2). Recent advances in digital

slide scanning, deep learning, and the availability of large datasets have revolutionized

computational pathology. These developments enable the use of whole slide images (WSIs)

from Hematoxylin and Eosin (H&E)-stained specimens (3) for tasks such as cancer

classification (4–6), cell detection (7), and cell segmentation (8–10). However, the gigapixel

resolution of WSIs, combined with the lack of pixel-level annotations, poses significant

challenges. Developing efficient and effective methods for analyzing such high-resolution

WSIs is crucial to advancing cancer diagnosis and prognosis (11).
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Analyzing gigapixel WSIs poses significant challenges due to

their massive size and lack of pixel-level annotations. Most existing

methods rely on a standard pipeline, which involves dividing

WSIs into numerous patches, extracting patch-level features using

models pretrained on ImageNet, and training a slide-level classifier

to aggregate these features for prediction. While effective in some

cases, this pipeline struggles with several limitations. WSIs with

only slide-level labels must be divided into thousands of small

patches due to their massive size. Moreover, pretrained feature

extractors are designed for natural images, which means their

embeddings are not well-suited for the unique characteristics of

pathology data. Additionally, existing approaches predominantly

focus on visual data, missing opportunities to leverage other

complementary modalities, such as cellular information or

textual descriptions, which can provide deeper insights for

cancer diagnosis and classification. While recent pathology-

specific foundation models have made significant advancements

in providing high-quality representation features for WSI analysis,

challenges persist in efficiently selecting diagnostically relevant

regions and effectively fusing multimodal information.

To overcome these challenges, we propose a novel framework

that integrates abnormality detection with multimodal feature

learning. To address the issue of processing numerous patches, we

introduce an abnormal detection (AD)module based on a Gaussian

Mixture Variational Autoencoder (GMVAE) (12). The ADmodule,

trained exclusively on normal WSIs, identifies abnormal patches

by detecting deviations from the normal tissue distribution. This

enables the framework to focus on the most informative patches,

reducing computational overhead and mitigating issues caused by

an imbalanced distribution of positive and negative regions (13).

Our framework also tackles the limitations of unimodal feature

extraction by leveraging pathology-specific foundation models.

These models generate features aligned with pathology tasks

and support multimodal data integration. For instance, cell-level

segmentation techniques (14) provide localized cellular insights,

while large language models (LLMs) generate textual descriptions

of pathology images (15), offering additional context. However,

simple concatenation of features from different modalities often

results in sparse and noisy representations, limiting their utility. To

address this, we introduce a three-step cross-attention module that

effectively integrates patch-level, cell-level, and text-level features,

enabling a comprehensive representation for cancer diagnosis

and classification.

We present the Abnormality-Aware MultiModal (AAMM)

learning framework for WSI classification, which integrates these

components into a unified pipeline. The framework first employs

the GMVAE-based abnormal detection module to select the top-

k patches from gigapixel WSIs. Multimodal embeddings are then

generated from these selected patches using foundation models

for image, cell, and text-based features. Finally, these multimodal

features are fused using the cross-attentionmodule to enable robust

classification. Our contributions can be summarized as follows:

• We introduce a GMVAE-based abnormal detection module

that naturally and efficiently selects top-k informative patches,

reducing computational costs and enhancing the learning of

patch-level features for abnormal detection.

• We propose a novel multimodal framework that integrates

image, cell, and text-based features extracted from pathology

foundation models, achieving superior performance on both

cancer classification and subtyping datasets.

• We conduct comprehensive experiments on multiple datasets

for normal-tumor classification and cancer subtyping,

demonstrating that AAMM significantly outperforms

state-of-the-art (SOTA) methods.

This work builds upon our previous conference paper (16),

which is presented at the 15th ACM Conference on Bioinformatics,

Computational Biology, and Health Informatics (ACM BCB 2024).

In this extended version, we provide a more comprehensive

background introduction, an expanded method description, and

an in-depth discussion of experimental results. Additionally, we

significantly improve and extend the previous work in three main

aspects: 1) We introduce an improved abnormal detection module

based on a Gaussian Mixture Variational Autoencoder (GMVAE),

which offers a more robust capability to capture the inherent

variability of normal tissue and detect deviations indicative of

abnormalities. 2) We implement a weighted cross-entropy loss

for the classifier to address class imbalance and achieve better

performance, particularly for underrepresented classes. 3) We

present extensive new experimental results, including detailed

ablation studies and improved visualizations, to provide deeper

insights into the effectiveness of the proposed AAMM framework.

2 Related work

2.1 Multiple instance learning for WSI
analysis

We adopt the MIL approach for WSI classification, as MIL

effectively handles large data with only slide-level labels, given that

obtaining instance-level annotations in medical imaging is costly

and time-consuming. Particularly, each WSI is treated as a bag

of multiple instances. A bag is labeled as Yi = 1 if
∑m

j=1 yi,j ≥

1, meaning it contains at least one positive instance such as a

tumor-cropped patch, and negative when
∑m

j=1 yi,j = 0.

Current MIL methods can be broadly categorized into two

types: bag-level and instance-level. Instance-level MIL emphasizes

learning directly at the instance level, and derives bag-level

predictions by simply aggregating these instance predictions with

Mean or Max-pooling (17, 18). Bag-level MIL, on the other

hand, transforms instances into low-dimensional embeddings,

aggregating these into bag-level representations for analytical tasks.

The bag-level MIL performs better because this kind of modeling

involves less inductive bias than the instance-level MIL processing

with set weights. ABMIL (19) uses attention weights to learns

the weights of instance representations adaptively, significantly

improving robustness. However, it treats patches independently,

which limits its ability to capture contextual interactions. CLAM

(20) further enhances ABMIL by incorporating a clustering

constraint, which pulls the most and least attended instances

apart. Despite these improvements, CLAM and similar MIL-based

approaches typically treat different patches independently and do
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not account for potential cross-interactions, limiting their ability

to become context-aware. DSMIL (21) integrates self-supervised

contrastive learning and non-local operations to model relations,

improving accuracy but potentially introducing noisy signals and

high computational demands. TransMIL (22) utilizes transformer-

based MIL to model interactions between instances. Its key

component, the Pyramid Position Encoding Generator (PPEG),

requires adding additional embeddings to ensure the number of

instances in a bag is a square number, leading to redundancy

and potentially incorrect weighting of patch importance. Dual-

Query MIL (23) combines MIL and self-attention with dynamic

meta-embedding, decoupling input size from latent representation

(24) but introducing computational overhead due to fine-tuning

needs. We follow bag-level MIL as the implementation in

this study.

2.2 Pathology foundation model

Following the advent of foundation models in computer vision

(25–27) and natural language processing (28, 29), new research

has looked at the creation of foundation models in histology

based on self-supervised learning (30, 31), image-text learning

(32), segment model (14, 25), and multimodal large language

model (33). GigaPath (31), pre-trained on 1.3 billion image

patches, excels in cancer subtyping and mutation prediction by

integrating local and global features. UNI (30) uses self-supervised

learning to extract features from unlabeled data, significantly

improving prediction accuracy and reducing reliance on labeled

data. CONCH (32) enhances breast cancer diagnosis by combining

pathology images with clinical data to generate detailed textual

descriptions and reports. Trained on over 1.17 million image-text

pairs, CONCH performs tasks like image captioning and text-to-

image retrieval, making it versatile in clinical settings. The Segment

Anything Model (SAM) (25) is a versatile vision segmentation

model that creates detailed segmentationmasks from user prompts.

Trained on over 1 billion masks from 11 million images, SAM

excels in zero-shot performance on new tasks. MedSAM (34), an

adaptation for medical image segmentation, is trained on over

1.5 million medical image mask pairs and excels in segmenting

diverse anatomical structures and lesions, outperforming specialist

models. Segment Any Cell (SAC) (14) fine-tunes SAM for

nuclei segmentation in biomedical images, using Low-Rank

Adaptation (35) in the attention layer to handle complex nuclei

segmentation tasks effectively. LLaVA-Med (33), adapted for

biomedical applications through a two-stage training process with

extensive visual and textual data, significantly improves tasks like

medical visual question answering (VQA) by leveraging domain-

specific knowledge for better performance in both open and closed-

set questions. The Quilt-LLaVA model (15), using the Quilt-1M

dataset (36) with 1million paired image-text samples and the Quilt-

Instruct dataset for instruction tuning, excels in reasoning about

histopathology images, providing detailed spatial localization and

context-based analysis for enhanced performance in identifying

abnormalities and describing images. In this study, we employ

CONCH (32), Segment Any Cell (SAC) (14), and Quilt-LLaVA (15)

as the implemented foundation models for each level features.

Input: Bag of m instances Xi = {xi,1, . . .,xi,m},

with i = 1, . . .,b, threshold k ∈ (0,1]

Output: Bag-level predicted label Ŷi

Workflow:

1: Extracting patch-level embeddings

Fp ← Encp(Xi); with Fp = {fp,1, . . ., fp,m} where

Fp ∈ R
m×d3

2: Extracting reconstruction features from

frozen Abnormal Detection model

Fr ← DecGMVAE(EncGMVAE(Fp)); with

Fr = {fr,1, . . ., fr,m}

where Fr ∈ R
m×d3, d3 = 512

3: Selecting potential instances

ei ← ||fp,i − fr,i||
2
2; with (e1, . . .,em) = s ∈ R

m
+

P ← Select(k, s);F′p,F′r ← P(Fp,Fr);

4: Extracting cell-level and text-level

embeddings

F′c ← Encc(P(Xi));F
′
t ← Enct(Gencaption(P(Xi)));

where F′p,F′r ∈ R
⌈k·m⌉×d3,

F′c ∈ R
⌈k·m⌉×d1,F′t ∈ R

⌈k·m⌉×d2, with d1 = 1280

and d2 = 512

5: Integrating

H1 = Attention(Q = F′t,K =V = F′c);H2 =

Attention(Q =H1,K =V = F′p);

H3 = Attention(Q = F′r,K =V =H2);

where H1,H2 ∈ R
⌈k·m⌉×d2,H3 ∈ R

⌈k·m⌉×d3

6: Decision making

Ŷi ← Linear(Mean(H3));

where Mean(H3) ∈ R
d3

represents [cls] token

Algorithm 1. Abnormality-Aware Multimodal Learning Framework.

3 Methodology

In this section, we first provide the formulation of our proposed

AAMM. Then, we briefly introduce MIL and autoencoder-based

abnormal detection, and explain why these concepts are well-

suited for WSI-based tumor classification tasks. Finally, we

describe AAMM in detail. Algorithm 1 summarizes the detailed

implementation, and Figure 1 illustrates the workflow of our

proposed AAMM.

3.1 Problem formulation

We consider a dataset D = {(Xi,Yi)}
b
i=1 consisting of b bags,

where each bag Xi contains a variable number of instances mi,

formally defined as Xi = {xi,1, xi,2, . . . , xi,mi } for i = 1, . . . , b.

Each bag Xi is associated with a binary label Yi ∈ {0, 1}, while

the instance-level labels {yi,j}
mi
j=1 for each xi,j are unknown. The

primary objective is to develop a prediction function f (Xi) = Ŷi

that accurately estimates the true bag-level labelYi for all bags, such

that Ŷi = Yi for i = 1, . . . , b, without access to the individual

instance-level labels {yi,j}
mi
j=1.
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FIGURE 1

Pipeline of our proposed method. (A) AAMM framework: This framework processes input images by extracting patch-level features through an

encoder. These features are analyzed using a pre-trained Abnormal Detection module, which selects the top-k potential patches by measuring

reconstruction errors, flagging instances with significant abnormalities for further analysis. The selected instances are then used to extract cell-level

and text-level features, which are fused with patch and reconstruction features via cross-attention mechanisms before being classified to predict the

final label. (B) Abnormal Detection module: The process begins by dividing normal WSIs into patches and extracting patch-level embeddings using

an image encoder. These embeddings are utilized to train the Abnormal Detection module. (C) Fusion module: The selected

patch-cell-text-reconstruction embeddings are integrated using cross-attention mechanisms to combine information from multiple modalities. The

resulting fused embeddings are averaged into a bag-level representation.

In the context of pathology images, each bag Xi represents

a WSI, and each instance xi,j corresponds to a cropped image

patch extracted from the WSI. Only the bag-level labels Yi

are available, indicating the presence or absence of a particular

condition (e.g., malignancy) within the entire WSI, whereas the

labels for individual patches {yi,j}
mi
j=1 are not provided. Typically,

the number of positive patches that contain the condition of interest

is significantly smaller than the number of negative patches within

each WSI. To address this imbalance and reduce computational

redundancy, we define a selection function Select(·) :Xi → Pi,

where Pi ⊆ Xi denotes a subset of potential patches. This

function is designed to thoughtfully select a representative subset

of patches that are more likely to contain the condition of interest,

thereby guiding the MIL process to focus on the most informative

instances. Formally, the selection function can be expressed as

Pi = Select(Xi) = {xi,j | j ∈ Ji}, where Ji ⊆ {1, . . . ,mi}

is an index set determined by criteria such as reconstruction

error thresholds. By applying this selection mechanism, the MIL

framework (i.e., Section 2.1) operates on a reduced and more

relevant set of instances Pi, thereby enhancing both the efficiency

and effectiveness of the bag-level label prediction. This approach

mitigates the challenges posed by the predominance of negative

patches and facilitates more accurate and computationally feasible

learning within the MIL paradigm.

3.2 Abnormal detection module

Detecting abnormalities in histopathological images involves

identifying patterns that differ from those found in normal

instances. Variational Autoencoders (VAEs) (37) are well-suited to

this anomaly detection task. By training on normal data only, a

VAE learns a distribution pθ (z) over the latent space that captures

the variability of normal features. When given abnormal data, the
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reconstruction error increases, indicating it differs from the learned

normal distribution.

3.2.1 Variational autoencoder
A vanilla VAE consists of an encoder EncVAE and a decoder

DecVAE. Given an input x ∈ R
D (e.g., a cropped patch from WSI),

the encoder produces a latent distribution:

qφ(z|x) = N (z;µ(x), σ 2(x)I). (1)

To enable gradient-based optimization, we use the

reparameterization strategy:

z = µ(x)+ σ (x)⊙ ǫ, ǫ ∼ N (0, I), (2)

and then reconstruct the input as x̂← DecVAE(z), such that x̂ ≈ x.

The VAE is trained by minimizing the negative Evidence Lower

BOund (ELBO):

LVAE(x) = −Eqφ (z|x)[log pθ (x|z)]+ KL(qφ(z|x)‖pθ (z)), (3)

with a prior pθ (z) = N (0, I) and likelihood pθ (x|z) = N (x; x̂, I).

Under these Gaussian assumptions, the reconstruction term can be

approximated by a mean squared error (MSE), and the Kullback-

Leibler divergence (KLD) term can be expressed as follows:

LMSE =
1

N

N
∑

i=1

‖xi − x̂i‖
2
2, (4)

LKLD =
1

N

N
∑

i=1



−
1

2

D
∑

j=1

(

1+ log(σ 2
i,j)− µ2

i,j − σ 2
i,j

)



 . (5)

By training the VAE solely on N patches x = fp from a dataset

B = (Xi,Yi)
b using the objective function LVAE = LMSE +

LKLD, the latent space is shaped to model only normal variations.

Consequently, abnormal instances that diverge from this learned

distribution yield higher reconstruction errors, thereby enabling

the detection of abnormalities.

3.2.2 Gaussian mixture VAE
A single Gaussian prior may be insufficient to represent the

complex distributions arising from diverse tissue morphologies in

WSI data. To address this, we applied the Gaussian Mixture VAE

(GMVAE) (12), which replaces the single Gaussian prior with a

mixture of K Gaussian:

pθ (z) =

K
∑

k=1

πkN (z|µk, σ
2
kI), (6)

where {πk}, {µk}, and {σ 2
k
} define the mixture weights,

means, and variances, respectively. The GMVAE objective

still follows the ELBO’s form. Choosing, for simplicity,

qφ(z|x) = N (z;µ(x), σ 2(x)I), the GMVAE loss takes a form

similar to the VAE, but now the prior is a mixture:

LGMVAE(x) = −Eqφ (z|x)[log pθ (x|z)]+ KL(qφ(z|x)‖pθ (z)). (7)

As before, the first term reduces to the reconstruction cost (LMSE).

The second term expands as:

KL(qφ(z|x)‖pθ (z)) = Eqφ (z|x)[log qφ(z|x)− log pθ (z)]. (8)

Since we have:

log qφ(z|x) = −
D

2
log(2π)−

1

2

D
∑

j=1

(

(zj − µj)
2

σ 2
j

+ log(σ 2
j )

)

, (9)

and

log pθ (z) = log

(

K
∑

k=1

πkN (z;µk, σ
2
kI)

)

, (10)

the objective encourages qφ(z|x) to align with one of the mixture

components, allowing the latent space to cluster and represent

multiple modes of normal variation. Thus, we have:

LGMVAE = LMSE + Eqφ (z|x)[log qφ(z|x)− log pθ (z)]. (11)

Once the GMVAE is trained and has learned a latent

representation of normal patches, we freeze its parameters. Given

a patch fp, we obtain its reconstruction embedding:

fr = DecGMVAE(EncGMVAE(fp)). (12)

These embeddings are then integrated into the AAMM

model. By leveraging the GMVAE’s richer latent structure,

subsequent classification and analysis tasks achieve improved

performance in detecting and characterizing abnormalities in

histopathological images.

3.3 Multimodal feature extraction

In this study, we consider each bag X = {xi}
m
i=1 as a

collection of image patches, each measuring 1024 × 1024 pixels,

from which we derive a rich set of multimodal features. We begin

by processing each patch xi using the CONCH (32) foundation

model, which employs a ViT-Base-16 backbone, to obtain a patch-

level embedding fp ∈ R
512. Letting Fp = {fp,1, . . . , fp,m} denote

the set of all patch-level embeddings, we then apply a GMVAE-

based abnormality detection module to produce reconstructed

embeddings Fr = {fr,1, . . . , fr,m}, with fr ∈ R
512. Evaluating the

reconstruction error ei = ‖fp,i − fr,i‖
2
2 enables the identification of

patches exceeding a predefined threshold k, thus selecting them for

further cell and text feature extraction steps.

For each selected patch, we further enrich our representations

by extracting cell-level features fc ∈ R
1280. To achieve this,

we leverage a segmentation-adapted ViT encoder from the SAC

model (14). In addition, we integrate textual context to enhance

interpretability. Using the Quilt-LLaVA (15) foundation model, we

generate descriptive phrases for each patch. These text descriptions

of arbitrary length are then encoded by the CONCH model’s text

encoder to obtain fixed-size text-based embeddings ft ∈ R
512.

The prompts for the CAMELYON16, TCGA-Lung, and SLN-

Breast datasets emphasize histopathological attributes, including

visible features, tumor presence, and diagnostic properties. To
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generate patch descriptions with Quilt-LLaVA, we utilize prompts

designed for short conversations, detailed descriptions, and

complex medical reasoning. These prompts are adapted with

relevant medical terms based on the tumor or subtype classification

tasks, with response lengths limited to a maximum of 1024 tokens.

The prompts used for each dataset are as follows:

“Can you describe the main features visible in this histopathology

image? In a few words, what does the histopathology image depict?

Is there a tumor in this pathology image? Are there abnormal,

neoplastic, atypical, or metastatic cells in this pathology image? Make

a diagnosis based on this single patch of histopathology image.”

“Can you describe the main features visible in this histopathology

image? In a few words, what does the histopathology image depict? Is

it lung adenocarcinoma or lung squamous cell carcinoma?”

“Can you describe the main features visible in this histopathology

image? In a few words, what does the histopathology image depict? Is

it positive or negative for breast carcinoma?”

Finally, each selected patch is represented by themultimodal set

{fp, fr , fc, ft}, collectively capturing visual, reconstructive, cellular,

and textual cues. These comprehensive embeddings facilitate

robust bag-level classification by leveraging multiple information

streams to enhance decision-making.

3.4 Abnormality-aware multimodal
learning

Feature encoding with foundation models Given m cropped

patches from the bag Xi, we derive cell features Fc ∈ R
m×d1 ,

patch features, and reconstruction features Fp, Fr ∈ R
m×d3 using

SAC (14), CONCH (32), and the AD module, respectively. For

text features, Quilt-LLaVA (15) is applied as a caption generation

function Gencaption(Xi) to produce patch descriptions, which are

then encoded by the CONCH text encoder to obtain Ft ∈ R
m×d2 .

The feature extraction methods are detailed in Section 3.3.

Integrating multimodal features Let F = (Fp, Fc, Ft , Fr)

denote the quadruplet of feature matrices obtained from each

modality, as described in Section 3.3. Given a MIL setup, our

objective is to predict a bag-level label. Formally:

Ŷi = g
(

l(Select(F))
)

, (13)

where g(·) is a bag-level classifier and Select(·) is a selection function

that returns a list of potential patches to be processed by the

aggregation function l(·).

To integrate information from the different feature modalities,

we design l(·) as a cascade of three cross-attention blocks (38). Each

cross-attention operation is defined as:

Attention(Q,K,V) = softmax
(QKT

√

dk

)

V, (14)

where dk is the dimension of the key vectors.

For the first block, we incorporate textual information into cell

features, which results H1 ← Attention(Ft , Fc, Fc). In the second

block, we integrate patch features with the result of the first block:

H2 ← Attention(H1, Fp, Fp). In the third block, reconstructed

patch features guide the integration, using H2 as keys and values:

H3 ← Attention(Fr ,H2,H2). We then aggregate the instances

by averaging the outputs of the third block: H̄3 =
1
m

∑m
j=1 H3,j.

Finally, we apply a linear layer to the aggregated cls token, H̄3, to

obtain the logits← Linear(H̄3) for the downstream tasks.

For classification, we use the Weighted Cross-Entropy loss to

handle class imbalances:

L = −
1

b

b
∑

i=1

C
∑

c=1

wc,Yi,c log(Ŷi,c), (15)

where wc =
Ntotal
C·Nc

, Ntotal =
∑C

c=1 Nc. Here, wc is the weight for

class c, Nc is the number of samples in class c, C is the total number

of classes, and Yi,c is the ground-truth label. This weighting scheme

ensures that classes with fewer samples have a larger impact on the

training process.

Scaling AAMM with Perceiver IO The standard Transformer

architecture suffers from quadratic complexity O(m2) when

attending over m instances, resulting in substantial computational

and memory overhead. To alleviate this issue, we adopt the

Perceiver IO framework (39), which replaces direct attention

over the input space with attention over a latent space of

fixed dimension.

Scaling AAMM with reconstruction error Beyond

architectural optimization, we further reduce the computational

load by selecting only a subset of instances for the feature extraction

and full multimodal processing stages.

Given a fraction k ∈ (0, 1], the selected subset S has size

⌈km⌉. Consequently, the number of processed instances decreases

by (1 − k) × 100%, significantly reducing computational costs

while preserving critical information. Let Fp = {fp,1, . . . , fp,m} and

Fr = {fr,1, . . . , fr,m} be the original and reconstructed features of

the m instances from a given bag X, respectively. We define the

reconstruction error for the i-th instance as ri = ‖fp,i − fr,i‖
2
2.

Based on the set of reconstruction errors {ri}
m
i=1, we consider two

selection strategies.

1.Maximum Selection: Select the top-⌈k ·m⌉ instances with the

largest errors:

Given {r1, r2, . . . , rm}, let π be a permutation of {1, 2, . . . ,m}

such that rπ(1) ≥ rπ(2) ≥ · · · ≥ rπ(m).

Then, we define:

Smax = {π(1),π(2), . . . ,π(⌈km⌉)}. (16)

This strategy focuses on instances that are likely to contain

tumor regions or hard-to-reconstruct patterns, thus potentially

providing informative signals for classification.

2. MinMax Selection: Using the same sorted reconstruction

scores rπ(1) ≥ rπ(2) ≥ · · · ≥ rπ(m), define h =
⌈km⌉
2 . The MinMax

selection strategy then chooses the top h indices corresponding

to the largest errors and the top h indices corresponding to the

smallest errors:

Sminmax = {π(1),π(2), . . . ,π(h)} ∪

{π(m− h+ 1),π(m− h+ 2), . . . ,π(m)}. (17)
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By including instances with both minimal and maximal

reconstruction errors, this approach balances the feature space,

prevents overconfidence, and can potentially reduce false negatives.

4 Experiments

4.1 Datasets

To evaluate the effectiveness of the proposed method,

we conduct experiments on four histopathological datasets:

CAMELYON16 (40), TCGA-LUAD (41), TCGA-LUSC (42),

and SLN-Breast (43). The tasks include cancer classification

and subtype classification. The TCGA-LUAD and TCGA-LUSC

datasets are combined into a unified dataset for cancer subtype

classification, which is referred to as TCGA-Lung. The datasets

are preprocessed by dividing each WSI into 1024×1024 non-

overlapping patches. Patches are extracted at magnifications of

40× for CAMELYON16, 20× for TCGA-Lung, and 40× for SLN-

Breast. Before further processing, Macenko color normalization

(44) is applied to address staining variability, and patches withmore

than 30% background are removed to enhance data quality. The

CAMELYON16 dataset contains 398 WSIs, divided into 569,533

patches, while TCGA-Lung comprises 1,042 WSIs, resulting in

729,193 patches. Similarly, the SLN-Breast dataset contains 130

WSIs, divided into 29,497 patches. All three datasets are split into

5-fold cross-validation, with a standalone test set allocated for final

performance evaluation. For CAMELYON16, the official test set is

used. For TCGA-Lung, we adopt the test set provided in the DSMIL

GitHub repository (21) to ensure fair comparisons. For SLN-Breast,

we randomly selected 20% of the slides from the entire dataset

to construct a testing set, maintaining the same distribution of

negative and positive instances as the original dataset. The training

and testing splits are in a ratio of 269:129 for CAMELYON16,

828:214 for TCGA-Lung, and 104:26 for SLN-Breast.

4.2 Baseline methods

We compare our method with nine baselines. Specifically,

• Mean pooling aggregates instance embeddings {hi}
m
i=1 by

computing the average z = 1
m

∑m
i=1 hi, where hi can be the

patch features or the concatenated feature vector of patch-cell-

text features, depending on the uni- or multimodal settings.

• Max pooling selects the most salient instance

z ← maxi=1,...,m hm by taking the element-wise

maximum, generating a fixed-size bag-level representation

for classification.

• ABMIL (19) proposes the attention-based poolingmechanism

for MIL, where a neural network assigns trainable weights

to instances in a bag, enabling the aggregation of instance

embeddings into a bag-level representation.

• CLAM-SB/CLAM-MB (20) is a weakly-supervised deep

learning method that uses attention-based learning to

assign weights to sub-regions of a whole slide for accurate

classification and applies instance-level clustering to

refine the feature space based on the most diagnostically

relevant regions.

• DSMIL (21) combines a dual-stream MIL framework with

self-supervised contrastive learning and multiscale feature

fusion, where one stream usesmax pooling to identify a critical

instance and the other stream measures instance-to-critical-

instance similarity to aggregate instance embeddings into a

bag-level embedding.

• TransMIL (22) introduces a transformer-based MIL

framework, leveraging self-attention to model correlations

between instances and employing a Transformer Pyramid

Position Encoding Generator (PPEG) to integrate spatial and

morphological information.

• ILRA-MIL (45) uses low-rank matrix to capture global

features and identify relationships between instances

and incorporates a pathology-specific contrastive

loss (LRC) to improve feature representation and

classification performance.

• MFMF (16) uses the vanilla VAE as the backbone of the

AD module and adopts the conventional cross-entropy loss

for optimization.

To demonstrate the robustness of our method, we evaluate it

against these baselines in both unimodal and multimodal settings.

To ensure fairness, all methods use the same input features.

4.3 Evaluation metrics

We evaluate the performance of our proposed AAMM

approach and nine baseline methods on the WSI classification

task using 5-fold cross-validation. To ensure a comprehensive

evaluation, we report the mean and standard deviation for three

metrics: Area Under the Curve (AUC), Accuracy, and Recall.

These metrics provide a comprehensive view of the model’s ability

to distinguish between classes, maintain overall correctness, and

correctly identify positive instances. The AUC metric evaluates the

discriminative capacity of the model across various classification

thresholds, which is defined as:

AUC =

∫ 1

0
TPR(FPR−1(x)) dx. (18)

TPR = TP
TP+FN and FPR = FP

FP+TN are the True Positive Rate

and False Positive Rate, respectively, and TP,TN, FP, FN denote

the counts of True Positives, True Negatives, False Positives, and

False Negatives.

Accuracy is another key metric, which quantifies the overall

correctness of the classifier by computing the proportion of samples

classified correctly among all samples.

Accuracy =
TP + TN

TP + TN + FP + FN
, (19)

Lastly, Recall measures the model’s ability to identify positive cases,

which is defined as:

Recall =
TP

TP + FN
, (20)

A higher Recall indicates better detection of positive samples.
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5 Results

We conduct experiments using both unimodal and multimodal

settings for a comprehensive analysis of the model’s performance

under varying input modalities. In the unimodal configuration, the

input to all baselines is a set of patch feature vectors Fp, which are

extracted using the foundation CONCH model. For the proposed

AAMMmodel, these Fp serve as the key and value inputs, while the

reconstruction features Fr are used as the query. The two features

are integrated through a single Perceiver IO block.

In the multimodal setting, the input comprises tuples of image,

cell, and text features, denoted as Fp + Fp + Fp in the results

tables. To adapt the multimodal setup for the baseline methods,

these features are concatenated following the approach described

in (23). For training the Abnormal Detection (AD) module, the

normal class from CAMELYON16, the LUSC class from TCGA-

Lung, and the negative class from SLN-Breast are designated as the

training data.

5.1 Quantitative results

We first evaluate the performance of WSI classification on

the CAMELYON16 dataset, where the results are shown in

Table 1. In the unimodal setting, our AAMM variants consistently

outperform or match the strongest baselines. Specifically, AAMM

(MinMax) achieved an AUC of 0.9436, an accuracy of 0.9364,

and a recall of 0.9179, surpassing most competing methods and

highlighting its strong capability to correctly identify positive

instances. AAMM(Max) andAAMMw/o Top-k also demonstrated

robust performance, with AUC values above 0.94 and high recall

scores. Compared with our conference version, AAMM with

GMVAE achieves an AUC of 0.9432, higher than the 0.9402

obtained MFMF with VAE.

When integrating the multimodal features, the performance

of AAMM is further improved. AAMM (Max) yields an

AUC of 0.9773, an accuracy of 0.9597, and a recall of

0.9469, outperforming all other methods and demonstrating the

effectiveness of incorporating multiple feature modalities. Notably,

AAMM (MinMax) and AAMM w/o Top-k also attain superior

results, indicating that the integration of cell-level and text-level

information enhances the overall discriminative power of AAMM.

AAMM with GMVAE improves performance across all metrics,

achieving an AUC of 0.9773, accuracy of 0.9597, and recall of 0.9469

compared to MFMF’s 0.9746, 0.9566, and 0.9429 respectively.

Table 2 shows the WSI classification results on the TCGA-Lung

dataset. In the unimodal configuration, AAMMagain demonstrates

high performance. For instance, AAMM (Max) achieves an AUC

of 0.9738, an accuracy of 0.9178, and a recall of 0.9183, surpassing

most baseline methods and showing its robustness in a different

pathological context. AAMM (MinMax) and AAMM w/o Top-k

also maintain strong performance, with all variants consistently

achieving high recall values. In the multimodal setting, AAMM

(Max) and AAMM (MinMax) both reach an AUC of 0.9817.

Among these, AAMM (Max) achieves the highest accuracy (0.9383)

and recall (0.9385).

Table 3 shows the WSI classification results on the SLN-

Breast dataset. In the unimodal configuration, AAMM exhibits

strong performance, with AAMM (MinMax) achieving the highest

AUC of 0.9865, outperforming the baseline methods and other

AAMM variants. Similarly, AAMM (Max) and AAMM w/o Top-

k also demonstrate competitive results, maintaining high accuracy

and recall values, highlighting their robustness even without

multimodal inputs.

In the multimodal setting, AAMM (MinMax) achieves the best

performance, with an AUC of 0.9970, an accuracy of 0.9646, and

a recall of 0.9314. These results surpass all competing methods,

including the second-best MFMF, which achieves an AUC of

0.9849. AAMM (Max) and AAMMw/o Top-k also maintain strong

performance, with AUCs of 0.9920 and 0.9939, respectively. The

results confirm that the integration of multimodal features and

the application of Top-k selection strategies, particularly MinMax,

significantly enhance classification accuracy and robustness in

capturing abnormalities within all three observed datasets.

Furthermore, Tables 1–3 demonstrate that most SOTA

methods achieve comparable performance on both the

CAMELYON16, TCGA-Lung, and SLN-Breast datasets in

unimodal settings. However, despite their complex architectures,

these models struggle to maintain their performance when

processing multimodal features. Traditional integration

approaches, such as feature concatenation, fail to effectively

manage scenarios where only one feature type (e.g., image)

performs well while others introduce noise. Similarly, on the

TCGA-Lung dataset, in the unimodal setting, AAMM achieves an

AUC of 0.9738, very slightly higher than MFMF’s 0.9737. In the

multimodal setting, AAMM outperforms MFMF across all metrics,

with an AUC of 0.9817 vs. 0.9815, accuracy of 0.9383 vs. 0.9355,

and recall of 0.9385 vs. 0.9358.

The proposed AAMM approach consistently achieves higher

recall scores compared to other methods. This is a crucial

advantage in medical applications, as higher recall reduces the

likelihood of missing critical abnormalities. Additionally, the

substantial improvements observed when utilizing multimodal

features highlight the importance of integrating diverse data

representations. By leveraging multiple information streams,

AAMM enhances the model’s overall classification performance

and reliability, demonstrating its potential for broader applications

in histopathological image analysis.

5.2 Qualitative results

To demonstrate the robustness of our approach, we visualize

bag embeddings generated by four different methods on the

CAMELYON16 test set under multimodal conditions. As shown

in Figure 2, the AAMM model’s scatter plot distinctly separates

the ‘Normal’ and ‘Tumor’ categories, highlighting its superior

capability in differentiating tissue types. In contrast, the other

methods exhibit greater category overlap, indicating less effective

feature integration and classification performance.

Furthermore, as illustrated in Figure 3, our proposed method

continues to outperform others on the TCGA-Lung test set in

distinguishing between the two subtypes, “LUAD” and “LUSC”,
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TABLE 1 Classification performance comparison on CAMELYON16.

Feature Fp Fp+Fc+Ft

Method AUC Accuracy Recall AUC Accuracy Recall

Mean Pooling 0.6371 ±0.027 0.7023 ±0.009 0.6200 ±0.011 0.6194 ±0.028 0.5953 ±0.026 0.5346 ±0.031

Max Pooling 0.8018 ±0.012 0.7721 ±0.006 0.7087 ±0.008 0.6831 ±0.044 0.5581 ±0.137 0.5607 ±0.074

ABMIL 0.9302 ±0.003 0.9108 ±0.008 0.7837 ±0.021 0.7711 ±0.011 0.8031 ±0.013 0.5020 ±0.010

CLAM-SB 0.9233 ±0.001 0.9077 ±0.008 0.7633 ±0.016 0.7446 ±0.024 0.7769 ±0.034 0.4449 ±0.047

CLAM-MB 0.9092 ±0.012 0.8954 ±0.010 0.7265 ±0.021 0.7417 ±0.018 0.7538 ±0.019 0.4000 ±0.031

DSMIL 0.9334 ±0.003 0.9339 ±0.006 0.8367 ±1.1e−16 0.8090 ±0.027 0.8154 ±0.026 0.6000 ±0.042

TransMIL 0.9373 ±0.003 0.9132 ±0.013 0.8928 ±0.012 0.8283 ±0.027 0.8248 ±0.023 0.7923 ±0.014

ILRA-MIL 0.9402 ±0.006 0.9400 ±0.003 0.8489 ±0.010 0.7742 ±0.050 0.7723 ±0.059 0.5469 ±0.076

MFMF 0.9402 ±0.013 0.9302 ±0.011 0.9090 ±0.015 0.9746 ±0.010 0.9566 ±0.008 0.9429 ±0.010

AAMM w/o Top-k 0.9418 ±0.022 0.9302 ±0.011 0.9089 ±0.015 0.9576 ±0.005 0.9488 ±0.011 0.9350 ±0.013

AAMM (MinMax) 0.9436 ±0.022 0.9364 ±0.013 0.9179 ±0.019 0.9768 ±0.006 0.9504 ±0.013 0.9347 ±0.017

AAMM (Max) 0.9432 ±0.023 0.9287 ±0.009 0.9069 ±0.013 0.9773 ±0.007 0.9597 ±0.006 0.9469 ±0.008

The best result is shown in bold, the second-best result is underlined, and the third-best result is in italics. “AAMM ∗” represents our methods.

TABLE 2 Classification performance comparison on TCGA-Lung.

Feature Fp Fp+Fc+Ft

Method AUC Accuracy Recall AUC Accuracy Recall

Mean pooling 0.9695 ±0.003 0.9075 ±0.667 0.9075 ±0.007 0.9120 ±0.005 0.8458 ±0.010 0.8452 ±0.010

Max pooling 0.9711 ±0.002 0.9071 ±0.005 0.9069 ±0.005 0.8586 ±0.005 0.7116 ±0.010 0.7109 ±0.010

ABMIL 0.9756 ±0.003 0.9131 ±0.005 0.8972 ±0.014 0.9656 ±0.006 0.9112 ±0.009 0.9101 ±0.016

CLAM-SB 0.9729 ±0.004 0.9084 ±0.010 0.9083 ±0.008 0.9662 ±0.004 0.9140 ±0.011 0.9046 ±0.015

CLAM-MB 0.9738 ±0.005 0.9234 ±0.008 0.9083 ±0.016 0.9698 ±0.006 0.9168 ±0.004 0.9064 ±0.016

DSMIL 0.9685 ±0.006 0.9112 ±0.005 0.9266 ±0.015 0.9506 ±0.006 0.8757 ±0.012 0.9028 ±0.018

TransMIL 0.9706 ±0.005 0.9121 ±0.018 0.9126 ±0.018 0.9405 ±0.016 0.8738 ±0.015 0.8739 ±0.014

ILRA-MIL 0.9742 ±0.006 0.9206 ±0.008 0.9276 ±0.025 0.9531 ±0.005 0.8869 ±0.012 0.8844 ±0.018

MFMF 0.9737 ±0.003 0.9271 ±0.003 0.9269 ±0.003 0.9815 ±0.003 0.9355 ±0.006 0.9358 ±0.006

AAMM w/o Top-k 0.9706 ±0.001 0.9150 ±0.007 0.9151 ±0.007 0.9794 ±0.004 0.9215 ±0.010 0.9217 ±0.011

AAMM (MinMax) 0.9744 ±0.003 0.9140 ±0.008 0.9142 ±0.008 0.9817 ±0.003 0.9355 ±0.006 0.9358 ±0.006

AAMM (Max) 0.9738 ±0.008 0.9178 ±0.008 0.9183 ±0.008 0.9817 ±0.003 0.9383 ±0.005 0.9385 ±0.005

The best result is shown in bold, the second-best result is underlined, and the third-best result is in italics. “AAMM ∗” represents our methods.

with each category forming clearly defined clusters. This consistent

performance across different datasets emphasizes the effectiveness

of the AAMM model in feature integration and classification

tasks, highlighting its potential for broader applications in

histopathological image analysis.

5.3 Ablation study

5.3.1 Observations
We analyze the robustness of each feature type (i.e., image,

cell, text) in classification tasks, providing deeper insights into the

structure of AAMM. The classification performance of TransMIL

for different modalities on both datasets shows that patch features

Fp substantially outperform other modalities. From Table 4, we

observe that patch embeddings effectively capture the critical

spatial and structural information present in histopathological

images, leading to better classification outcomes. In contrast, cell

and text embeddings show lower performance due to their inability

to capture such detailed information.

In text descriptions, most prepositions and conjunctions may

not be important for the tasks; only words related to tumors

might be crucial. Additionally, the generative patch description

sometimes contains a lot of unnecessary or noisy information.

Here is an example of a generative patch description for a WSI

with ID: tumor111 in CAMELYON16: “The image presents a

clear view of the bone marrow. The most striking feature is the

presence of cells that are identified as megakaryocytes. These are
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TABLE 3 Classification performance comparison on SLN-Breast.

Feature Fp Fp+Fc+Ft

Method AUC Accuracy Recall AUC Accuracy Recall

Mean Pooling 0.8850 ±0.000 0.8846 ±0.000 0.7857 ±0.000 0.8308 ±0.041 0.6385 ±0.301 0.6714 ±0.139

Max Pooling 0.8895 ±0.006 0.8846 ±0.000 0.7857 ±0.000 0.8323 ±0.021 0.7769 ±0.038 0.7895 ±0.039

ABMIL 0.9674 ±0.000 0.9615 ±0.000 0.8571 ±0.000 0.9414 ±0.019 0.8923 ±0.051 0.8285 ±0.057

CLAM-SB 0.9424 ±0.000 0.9615 ±0.010 0.8571 ±0.000 0.9474 ±0.026 0.9384 ±0.031 0.8571 ±0.000

CLAM-MB 0.9499 ±0.000 0.9615 ±0.000 0.8571 ±0.000 0.9504 ±0.014 0.9000 ±0.039 0.7429 ±0.057

DSMIL 0.9670 ±0.004 0.8462 ±0.000 0.8286 ±0.000 0.9504 ±0.006 0.8769 ±0.057 0.7571 ±0.000

TransMIL 0.9684 ±0.014 0.9615 ±0.000 0.9286 ±0.000 0.9053 ±0.042 0.8999 ±0.052 0.8233 ±0.081

ILRA-MIL 0.9774 ±0.000 0.9615 ±0.024 0.8571 ±0.090 0.9534 ±0.006 0.9077 ±0.019 0.8571 ±0.000

MFMF 0.9749 ±0.001 0.9615 ±0.000 0.9286 ±0.002 0.9849 ±0.001 0.9615 ±0.005 0.9286 ±0.004

AAMM w/o Top-k 0.9749 ±0.000 0.9615 ±0.024 0.9286 ±0.045 0.9939 ±0.007 0.9615 ±0.018 0.9286 ±0.035

AAMM (MinMax) 0.9865 ±0.005 0.9615 ±0.019 0.9286 ±0.035 0.9970 ±0.006 0.9646 ±0.000 0.9314 ±0.000

AAMM (Max) 0.9839 ±0.023 0.9615 ±0.024 0.9286 ±0.045 0.9920 ±0.015 0.9615 ±0.000 0.9286 ±0.000

The best result is shown in bold, the second-best result is underlined, and the third-best result is in italics. "AAMM ∗" represents our methods.

FIGURE 2

t-SNE visualizations of the CAMELYON16 test set in multimodal mode. (A) ABMIL. (B) TransMIL. (C) ILRA-MIL. (D) AAMM (ours).

FIGURE 3

t-SNE visualizations of the TCGA-Lung test set in multimodal mode. (A) ABMIL. (B) TransMIL. (C) ILRA-MIL. (D) AAMM (ours).

TABLE 4 Classification performance of TransMIL for di�erent modalities on CAMELYON16 (left) and TCGA-Lung (right).

Feat. AUC Accuracy Recall AUC Accuracy Recall

Fp 0.9373± 0.003 0.9132± 0.013 0.8928± 0.012 0.9706± 0.004 0.9121± 0.017 0.9126± 0.018

Fc 0.7245± 0.032 0.7643± 0.009 0.7135± 0.006 0.8656± 0.017 0.7832± 0.021 0.7823± 0.022

Ft 0.6406± 0.008 0.6667± 0.031 0.6016± 0.019 0.7859± 0.023 0.7131± 0.033 0.7147± 0.033
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large, multinucleated cells that are responsible for the production

of platelets, which are crucial for blood clotting. The presence of

these cells, along with the absence of any abnormal or neoplastic

cells, suggests that this is a healthy bone marrow sample. There

is no evidence of a tumor or any other pathological condition

in this patch.” Similarly, here is an example of a generative

patch description for aWSI with ID: TCGA-6A-AB49-01Z-00-DX1

in TCGA-LUSC: “The image presents a complex scenario, with

features that could be indicative of either lung adenocarcinoma

or squamous cell carcinoma. The tissue architecture shows some

ambiguity, making it challenging to definitively categorize the

pathology.” Regarding cell-level features, intuitively, each WSI

contains thousands of cells, but only a small portion of tumor-

related cells contribute to the classification tasks.

5.3.2 Top-k selection
Improving performance: We conducted a grid search

experiment to further evaluate the Maximum and MinMax

selection strategies, with the results summarized in Tables 5–7.

On the CAMELYON16 dataset, the Maximum selection strategy

slightly outperforms MinMax at certain k values. For instance, at

k = 0.3, Maximum selection achieves an AUC of 0.9773 compared

to MinMax’s 0.9687, while at k = 0.2, MinMax selection nearly

matches the performance of Maximum selection (AUC = 0.9768).

For the TCGA-Lung dataset, both strategies achieve their best

performance at k = 0.6, with an AUC of 0.9817. Maximum

selection shows slightly higher accuracy (0.9383) and recall (0.9385)

compared to MinMax (accuracy: 0.9355, recall: 0.9358). As k

decreases, MinMax exhibits greater performance variability, with

its AUC dropping to 0.9639 at k = 0.2, whereas Maximum remains

more stable at 0.9762.

In the SLN-Breast dataset, MinMax selection consistently

outperforms Maximum selection, particularly at k = 0.2, where

MinMax achieves an AUC of 0.9970 compared to Maximum’s

0.9920, while maintaining strong accuracy (0.9646) and recall

(0.9314). For all three datasets, even at less optimal k values, both

selection strategies remain competitive with baseline approaches.

This overall robustness highlights the reliability and effectiveness

of our instance selection strategy.

Mitigating the noise problem in text features: While text

features add value, their use introduces potential challenges,

primarily arising from errors in text generation and feature

extraction. Text descriptions may contain noise or irrelevant

information, as discussed in Section 5.3.1. For instance,

unnecessary details about non-pathological elements can dilute

the utility of these features. Additionally, if the text encoder fails

to effectively filter out unimportant words, irrelevant information

may propagate through the classification pipeline, further

impacting performance. To address these issues, the proposed

Top-k selection strategies mitigate noise by selecting potential

patches based on their reconstruction errors, thereby reducing the

likelihood of generating irrelevant or noisy text descriptions.

To evaluate the effectiveness of the Top-k selection strategies

in reducing noise within text features, we conduct an experiment

using only text features Ft with a single Perceiver IO block and

compare the model’s performance with and without the selection

methods. Table 8 demonstrates that using the full text embeddings

without selection methods results in lower performance compared

to employing selection methods. This result indicates that by

selecting the patches with the highest reconstruction errors, which

are likely to contain clear abnormal information, Top-k selection

helps reduce the number of irrelevant patches and enhances the

overall performance of the system. The Max strategy consistently

outperforms both the MinMax and W/o Top-k approaches across

all datasets, particularly on SLN-Breast, where the AUC improves

from 0.9135 to 0.9361. These findings validate the hypothesis that

Top-k selection significantly enhances the utility of text features by

prioritizing potential inputs.

5.3.3 Abnormal detection module
Improving performance: The primary motivations for

incorporating the AD module are twofold: first, to reduce the

number of processing instances, as demonstrated in the previous

table; and second, to improve performance across key metrics.

The results of our ablation experiments, detailed in Tables 9, 10

below, show that the inclusion of the AD module not only reduces

computational costs but also significantly enhances the Recall

metric, which is essential for reliable WSI classification in medical

applications. To the best of our knowledge, this is the first work to

apply reconstruction features Fr as queries (Q) in a cross-attention

mechanism, enhancing WSI-based cancer classification by using

reconstruction errors to specifically target tumor instances, which

are scarce and limited in the dataset.

As shown in Table 9, adding the AD component to the AAMM

model on CAMELYON16 increases the AUC from 0.9478 to 0.9576,

accuracy from 0.9395 to 0.9488, and recall from 0.9236 to 0.9350.

For TCGA-Lung (Table 10), the AUC rises from 0.9782 to 0.9794,

accuracy from 0.9211 to 0.9215, and recall from 0.9211 to 0.9217.

These consistent numeric gains highlight the importance of AD

component in improving the classification performance.

Reducing computational cost: One of our motivations is

that obtaining instance-level annotations is time-consuming.

To address this, our proposed AAMM reduces the number

of processing instances required during text generation, text

feature extraction, and cell feature extraction by employing

Maximum/MinMax selection strategies. This reduction directly

impacts computational cost. We compare and report data

preprocessing times with and without the Abnormal Detection

(AD) module in Table 11. Given that the total number of instances

in CAMELYON16 and TCGA-Lung are
∑b

i mi = 569,533 and
∑b

i mi = 729,193, respectively, where mi is the number of

instances in the i-th bag, k ∈ [0, 1) represents the percentage of

instances in the bag to be processed, and b is the number of bags

in dataset. Although training the AD module and extracting Fr
features adds some overhead, the time saved by not processing

(1 − k) ×
∑b

i mi instances during cell and text feature extraction

is substantial. For example, in the cell feature extraction step for

the CAMELYON16 dataset (k = 0.3, maximum selection), we save

approximately (1−0.3)×569,533×3.6992
batch

= 1,474,771.1616
16 seconds, which

is approximately 25 hours, by not processing 398,673 instances

using the top-k approach.
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TABLE 5 Classification performance for di�erent instance selection strategies on CAMELYON16.

Maximum selection MinMax selection

Top-k AUC Accuracy Recall AUC Accuracy Recall

k = 0.4 0.9648± 0.0124 0.9442± 0.0158 0.9265± 0.0208 0.9708± 0.0109 0.9426± 0.0267 0.9245± 0.0351

k = 0.3 0.9773± 0.0072 0.9597± 0.0058 0.9469± 0.0076 0.9687± 0.0090 0.9426± 0.0222 0.9245± 0.0293

k = 0.2 0.9672± 0.0086 0.9488± 0.0144 0.9334± 0.0197 0.9768± 0.0062 0.9504± 0.0126 0.9347± 0.0166

k = 0.1 0.9606± 0.0193 0.9380± 0.0130 0.9215± 0.0154 0.9627± 0.0108 0.9442± 0.0237 0.9273± 0.0316

TABLE 6 Classification performance for di�erent instance selection strategies on TCGA-Lung.

Maximum selection MinMax selection

Top-k AUC Accuracy Recall AUC Accuracy Recall

k = 0.8 0.9769± 0.0038 0.9299± 0.0029 0.9303± 0.0028 0.9744± 0.0046 0.9168± 0.0075 0.9168± 0.0075

k = 0.6 0.9817± 0.0025 0.9383± 0.0054 0.9385± 0.0054 0.9817± 0.0027 0.9355± 0.0062 0.9358± 0.0058

k = 0.4 0.9769± 0.0038 0.9308± 0.0019 0.9312± 0.0018 0.9736± 0.0018 0.9206± 0.0066 0.9209± 0.0069

k = 0.2 0.9762± 0.0018 0.9280± 0.0023 0.9286± 0.0022 0.9639± 0.0097 0.9001± 0.0179 0.8999± 0.0183

TABLE 7 Classification performance for di�erent instance selection strategies on SLN-Breast.

Maximum selection MinMax selection

Top-k AUC Accuracy Recall AUC Accuracy Recall

k = 0.4 0.9774± 0.0415 0.9385± 0.0188 0.8857± 0.0350 0.9865± 0.0120 0.9615± 0.0000 0.9286± 0.0000

k = 0.3 0.9744± 0.0335 0.9538± 0.0154 0.9143± 0.0286 0.9835± 0.0262 0.9615± 0.0000 0.9286± 0.0000

k = 0.2 0.9920± 0.0155 0.9615± 0.0000 0.9286± 0.0000 0.9970± 0.0060 0.9646± 0.0000 0.9314± 0.0000

k = 0.1 0.9263± 0.0354 0.9154± 0.0923 0.8429± 0.1714 0.9549± 0.0463 0.9154± 0.0923 0.8429± 0.1714

TABLE 8 Performance comparison of WSI classification using text features Ft with and without Top-k selection strategies.

Selection
strategy

CAMELYON16 TCGA-lung SLN-breast

AUC Acc. Recall AUC Acc. Recall AUC Acc. Recall

W/o Top-k 0.6048 0.6744 0.6197 0.8108 0.7429 0.7499 0.9135 0.8654 0.7500

MinMax 0.6635 0.7364 0.6807 0.8110 0.7617 0.7617 0.9211 0.8846 0.7857

Max 0.6727 0.7442 0.6949 0.8056 0.7617 0.7622 0.9361 0.9038 0.8440

TABLE 9 Performance of AAMMw/o Top-k with di�erent feature combinations on CAMELYON16.

Feature AUC Accuracy Recall Precision

Fp + Fc 0.9326± 0.0202 0.9164± 0.0114 0.8987± 0.0165 0.9097± 0.0061

Fp + Fc + Fr 0.9513± 0.0145 0.9411± 0.0167 0.9272± 0.0182 0.9294± 0.0189

Fp + Ft 0.9420± 0.0081 0.9341± 0.0133 0.9152± 0.0179 0.9185± 0.0091

Fp + Ft + Fr 0.9524± 0.0024 0.9380± 0.0126 0.9184± 0.0166 0.9431± 0.0087

Fp + Fc + Ft 0.9478± 0.0159 0.9395± 0.0076 0.9236± 0.0113 0.9306± 0.0058

Fp + Fc + Ft + Fr 0.9576± 0.0057 0.9488± 0.0105 0.9350± 0.0133 0.9582± 0.0090

Additionally, AAMM is an attention-based model, and

one well-known drawback of attention mechanisms is

the quadratic complexity m2. By reducing the number of

instances, the computational cost for training attention-based

models is also reduced proportionally (i.e., reducing by

the factor of k). In summary, the AD module efficiently

reduces computational costs in both the preprocessing and

training stages.
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TABLE 10 Performance of AAMMw/o Top-k with di�erent feature combinations on TCGA-lung.

Feature AUC Accuracy Recall Precision

Fp + Fc 0.9753± 0.0030 0.9190± 0.0075 0.9191± 0.0076 0.9149± 0.0077

Fp + Fc + Fr 0.9777± 0.0024 0.9213± 0.0080 0.9213± 0.0081 0.9152± 0.0080

Fp + Ft 0.9756± 0.0019 0.9211± 0.0091 0.9212± 0.0093 0.9120± 0.0089

Fp + Ft + Fr 0.9785± 0.0033 0.9213± 0.0069 0.9215± 0.0065 0.9173± 0.0054

Fp + Fc + Ft 0.9782± 0.0032 0.9211± 0.0087 0.9211± 0.0087 0.9215± 0.0085

Fp + Fc + Ft + Fr 0.9794± 0.0041 0.9215± 0.0104 0.9217± 0.0106 0.9231± 0.0107

TABLE 11 Comparison of computational time and processing instances with and without the AD module.

Step W/o AD module With AD module Processing time per step/instance (second)

Train AD module No Yes 128.4508± 43.470 (CAM16)

147.3088± 40.563 (TCGA)

Compute reconstruction

error and Fr

No
∑b

i mi 0.1054± 0.0509

Extract Fc
∑b

i mi

∑b
i k×mi 3.6992± 0.0599

Generate patch description
∑b

i mi

∑b
i k×mi 2.1242± 0.1224

Extract Ft
∑b

i mi

∑b
i k×mi 0.0643± 0.0012

5.4 Discussion

Our framework is designed for versatility and flexibility,

enabling the integration and use of features from a diverse array

of foundation models. It utilizes features from models such as

CONCH, SAC, and Quilt-LLaVA. As more powerful and robust

foundation models emerge, they can be smoothly incorporated

into our existing framework, further enhancing its capability

and scope. Furthermore, our framework is flexible due to its

inheritance of Perceiver IO’s capacity to handle diverse types and

sizes of input data. This feature facilitates the efficient processing

of varied data modalities. Moreover, the layered structure of

our AAMM enhances its adaptability, supporting a plug-and-

play methodology that allows for the straightforward addition or

removal of modalities without necessitating extensive redesigns.

This flexibility ensures that the framework can be rapidly adapted

to meet the specific demands of different applications, making it a

robust and evolving solution in line with continuous advancements

in foundation models and data processing technologies. In

the future, we plan to establish a benchmark to evaluate the

effectiveness of various SOTA foundation model combinations

within our framework. This approach will help us continuously

improve and adapt our method to enhance its performance in WSI

classification tasks.

6 Conclusions

In this study, we introduced the Abnormality-Aware

Multimodal (AAMM) framework to address the challenges

of WSI classification in histopathology. The AAMM framework

effectively leverages multimodal data to enhance the performance

in both normal-tumor and cancer subtype classification tasks. The

incorporation of a Gaussian Mixture Variational Autoencoder

(GMVAE) for abnormality detection further improves

computational efficiency and model accuracy by selectively

focusing on the most relevant instances. Our comprehensive

experiments on the CAMELYON16 and TCGA-Lung datasets

demonstrate the superiority of the AAMM framework over SOTA

methods. The results highlight the importance of combining

diverse modalities and utilizing abnormality-guided instance

selection for robust WSI analysis. Additionally, the framework’s

flexibility allows for the seamless integration of various foundation

models, making it a scalable solution for future advancements in

computational pathology.
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