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Background: Early diagnosis of non-union fractures is vital for treatment

planning, yet studies using bone morphometric parameters for this purpose are

scarce. This study aims to create a fracture micro-CT image dataset, design

a deep learning algorithm for fracture segmentation, and develop an early

diagnosis model for fracture non-union.

Methods: Using fracture animalmodels,micro-CT images from12 rats at various

healing stages (days 1, 7, 14, 21, 28, and 35) were analyzed. Fracture lesion

frames were annotated to create a high-resolution dataset. We proposed the

Vision Mamba Triplet Attention and Edge Feature Decoupling Module UNet (VM-

TE-UNet) for fracture area segmentation. And we extracted bone morphometric

parameters to establish an early diagnostic evaluation system for the non-union

of fractures.

Results: A dataset comprising 2,448 micro-CT images of the rat fracture lesions

with fracture Region of Interest (ROI), bone callus and healing characteristics was

established and used to train and test the proposed VM-TE-UNet which achieved

a Dice Similarity Coe�cient of 0.809, an improvement over the baseline’s 0.765,

and reduced the 95th Hausdor� Distance to 13.1. Through ablation studies,

comparative experiments, and result analysis, the algorithm’s e�ectiveness and

superiority were validated. Significant di�erences (p < 0.05) were observed

between the fracture and fracture non-union groups during the inflammatory

and repair phases. Key indices, such as the average CT values of hematoma and

cartilage tissues, BS/TS and BS/TV of mineralized cartilage, BS/TV of osteogenic

tissue, and BV/TV of osteogenic tissue, align with clinical methods for diagnosing

fracture non-union by assessing callus presence and local soft tissue swelling. On

day 14, the early diagnosis model achieved an AUC of 0.995, demonstrating its

ability to diagnose fracture non-union during the soft-callus phase.

Conclusion: This study proposed the VM-TE-UNet for fracture areas

segmentation, extracted micro-CT indices, and established an early diagnostic

model for fracture non-union. We believe that the prediction model can

e�ectively screen out samples of poor fracture rehabilitation caused by blood

supply limitations in rats 14 days after fracture, rather than the widely accepted
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35 or 40 days. This provides important reference for the clinical prediction of

fracture non-union and early intervention treatment.

KEYWORDS

micro-CT, fracture non-union prediction, bone morphometric parameters, deep

learning, Mamba network

1 Introduction

Fractures are a global public health issue. The Global Burden of

Disease Study 2019 (1) indicated that there were 178 million new

fracture cases worldwide in 2019, with a total of 455 million cases.

Fracture healing can be divided into four stages: the inflammatory

phase, the repair phase, which include soft-callus formation phase

and hard-callus formation phase, and the remodeling phase.

Immediately after a fracture occurs, a hematoma forms (2). In

the following weeks, the cartilage callus forms (3), which then

undergoes mineralization a few weeks or months post-fracture (4),

and finally, the original bone is remodeled over several months to

years (5). However, among all fracture cases, ∼5%−10% develop

into non-union or delayed union, particularly in instances of

compromised vascular supply (6), with the clinical diagnosis of

non-union requiring 9 months (7, 8). Non-union of fractures is

defined as a fracture that has not healed for at least 9 months and

shows no signs of healing for 3 consecutive months (9). Delayed

or non-union fractures can lead to long-term pain, disability, and

repeated surgical interventions, consequently posing a significant

economic burden and productivity loss to both the patient and

society (10–12). Thus, early diagnosis of non-union fractures is

crucial in terms of the formulation of treatment plans. Despite a

plethora of research on the assessment of the progression of fracture

healing (13–15), there is currently a lack of publicly available studies

that directly utilize bone morphometric parameters for modeling

the early diagnosis of non-union fractures.

The specific biological mechanisms behind non-union

in avascular fractures remain unclear, and early radiological

diagnostic characteristics and targets are not well-defined (13).

Ethical and technical constraints have led to a lag in clinical

prevention and early diagnosis of non-union, and existing

imaging diagnostic methods like X-rays (14, 15) and Computed

Tomography (CT) scans (16) often fail to capture the detailed

features of fracture sites. The research on fracture healing is

further hampered by the scarcity of high-quality public imaging

datasets, which inhibits more in-depth studies. Consequently, the

establishment of an imaging dataset that facilitates continuous

observation of the healing process in ischemic fractures is crucial.

Such a dataset would be invaluable for early diagnosis of non-

union and for gaining a comprehensive understanding of the

healing process.

Micro-Computed Tomography (micro-CT) technology,

characterized by its high-resolution capabilities, has become an

essential tool in non-invasive small animal imaging research (17).

However, repeated scans throughout the healing process can be

harmful to humans (18). Rats, with their strong vitality, exhibit

minimal impact on healing processes due to weekly micro-CT

imaging (19). Rats typically confirm non-union post-fracture in

about 40 days, markedly shorter than the 270 days in humans,

making them a suitable model for medical research (20). Therefore,

this study chose rats as the experimental subjects, utilizing the

research team’s previous studies on animal models (21) and

employing micro-CT imaging as the primary observation tool.

In recent years, with the rapid development of deep learning,

models based on Convolutional Neural Networks (CNNs), such

as U-Net (22), have made achieved significant progress in

medical image processing (23). However, these models struggle

to utilize global context effectively in complex 2D medical

images (24). The incorporation of Transformer (25), including

Swin Transformer (26) and Vision Transformer (ViT) (27),

has improved segmentation accuracy but faces challenges with

small medical image datasets, which are prone to overfitting.

Recently, the Mamba model-based segmentation algorithms have

drawn interest in medical imaging. Ruan and Xiang (28)

introduced Vision Mamba UNet (VM-UNet), which combines

Mamba blocks with the U-Net structure to enhance the model’s

ability to capture long-range dependencies, replacing traditional

convolutional layers. This is particularly relevant for tasks like

fracture area segmentation that involve dynamic changes, where

there is a lack of specialized automated segmentation algorithms.

The aim of this study is to develop a high-resolution CT

image dataset, identify the most indicative parameters for fracture

non-union, and construct a predictive model for early diagnosis

of non-union. To achieve the aforementioned goals, our main

contributions are as follows:

(i) Based on our fracture animal models (21), a total of

45,275 micro-CT images were obtained from 12 rats across various

stages of fracture healing (days 1, 7, 14, 21, 28, and 35 post-

fracture). Among these, 2,448 frames containing the fracture lesion

were annotated, including fracture Region of Interest (ROI), bone

callus and healing characteristics, and a high-resolution fracture

CT image dataset was established which can not only be used

on fracture area segmentation and early diagnostic models for

fracture non-union, but also for the study of other fracture-related

algorithms and applications in medical education.

(ii) Based on the recently prominent high-performance

semantic segmentation algorithm—VM-UNet (28), we have made

adaptive improvements for the task of fracture area edge

segmentation. Consequently, we proposed the Vision Mamba

Triplet Attention and Edge Feature Decoupling Module UNet

(VM-TE-UNet), which includes the Edge Feature Decoupling

Module (EFDM) and Vision State Space Triplet Attention (VSS-

TA) blocks, and also improved the loss functions.

(iii) The fracture site was quantitatively analyzed by extracting

bone morphometric parameters based on data derived from

micro-CT images, enabling a detailed assessment of the structural

characteristics. Four micro-CT indicators were extracted and
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screened to characterize key changes in inflammatory hematoma

tissue, cartilage tissue, mineralized cartilage tissue, and osteogenic

tissue, including average CT value, Bone Area Fraction (BS/TS),

Bone Volume Fraction (BV/TV), and Bone Area to Volume Ratio

(BS/TV). On this basis, and taking into account the existing clinical

diagnostic experience, we have constructed an early diagnosis

model for non-union fractures. On the 14th day, the Area Under

the Curve (AUC) (29), Accuracy (30), and Precision (31) of the

early diagnosis model reached 0.995, 0.996, and 0.994, respectively,

achieving the diagnosis of fracture non-union during soft-callus

formation phase.

2 Material and methods

2.1 Research technical architecture

Figure 1 illustrates the technical roadmap of this study.

Through fracture modeling experiments, micro-CT images were

obtained from 12 SD rats at days 1, 7, 14, 21, 28, and 35

post-fracture, with the frames containing the fracture area being

annotated to establish a dataset. To address the issue of insufficient

image segmentation accuracy in the fracture area, this study

proposed VM-TE-UNet and conducted comparative and ablation

experiments to verify the effectiveness and advantages of the

algorithm. Four micro-CT indicators (the average CT value, BS/TS,

BV/TV, and BS/TV) were extracted and screened to characterize

key changes in inflammatory hematoma tissue, cartilage tissue,

mineralized cartilage tissue, and osteogenic tissue. Based on this,

and considering existing clinical diagnostic experience, we have

constructed an early diagnosis model for non-union fractures.

2.2 Animal model and micro-CT dataset

2.2.1 Experimental animals and surgical
procedures

All animal experiments have been approved by the

experimental animal ethics committee of Tianjin University of

China (TJUE-2021-137) and were conducted in strict accordance

with relevant regulations. The experiment used a total of 12 male

Sprague Dawley (SD) rats (aging 25–35 days, weighting 180–210 g),

which were randomly divided into two groups: the Fracture group

(F group) and the Fracture + Saphenous Artery Cut-off group

(F+S group), with 6 rats in each group. All rats were housed in

the experimental animal center of the Fourth Central Hospital of

Tianjin, China.

In the surgical procedures, first, the 12 rats were

intraperitoneally injected with 0.3% pentobarbital sodium

anesthetic at a ratio of 40–50 mg/kg. Once their breathing

stabilized, the surface of the right medial malleolus was shaved,

and the skin was incised along the long axis. Then, using a

molding instrument developed by the research team, a 1mm

wide incision was created from the distal medial side of the

ankle joint to the central medial malleolus, reaching part of the

cortical bone and trabeculae without causing bone fragments to

fall off. For the F+S group, the saphenous artery was cut off.

Finally, the skin of both groups was sutured and the wounds were

disinfected postoperatively.

2.2.2 Micro-CT dataset
Within 35 days post-fracture at six time points (day 1, 7, 14,

21, 28, and 35), a total of 12 rats were scanned (SkyScan-1276,

Bruker, Berlin, Germany), with an average of ∼650 micro-CT

images obtained per scan. The scans used isotropic voxel sizes of

10µm, an exposure time of 486ms, a tube voltage of 85 kV, and

a tube current of 200 µA. The eligible experimental samples were

selected from imaging workstations by two experienced radiologists

based on stringent inclusion criteria, which included complete data,

absence of significant artifacts or noise, appropriate grayscale levels,

and clear tissue differentiation. High-quality, lossless TIFF data

meeting these criteria were exported for further image processing

and analysis.

Two sets of manual segmentations for all fracture lesions were

performed independently by two different experienced radiologists.

Dice Similarity Coefficient (DSC) (32) was used to assess the

agreement between the two annotators on classifying whether a

pixel from a Micro-CT image belonged to the fracture lesion or

non-fracture lesion class.

The DSC is defined as:

DSC = 2×|A∩B|
|A|+|B| (1)

where A and B are the annotated ROI of the two physicians.

When the DSC exceeds 0.95, it indicates a high level of

consistency, and the annotation from either doctor can be selected

as the segmentation ROI. If the DSC is below 0.95, the two doctors

will discuss and reach a consensus to redefine a unified ROI.

2.3 Fracture lesion segmentation

2.3.1 VM-TE-UNet architecture
In this study, we proposed the VM-TE-UNet model

(Figure 2A) for medical image segmentation, which is an

adaption of the recently prominent high-performance semantic

segmentation algorithm—VM-UNet (28). This novel model is

designed to enhance segmentation performance through the

integration of cutting-edge modules.

The network primarily consists of an encoder, a decoder,

and the Edge Feature Decoupling Module (EFDM, Figure 2B).

The EFDM is further divided into the Noise Suppression

Module (NSM), the Texture Preservation Module (TPM), and

the Edge-Guided Module (EGM, Figure 2C). The EGM enhances

edge features through a series of atrous convolutions, batch

normalization, and activation functions, thereby improving

segmentation performance. The NSM learns the characteristics of

noise by minimizing the difference between the predicted noise

feature map and the ground truth noise mask, achieving noise

suppression. The TPM learns and retains texture information in the

fracture area by minimizing the difference between the predicted

texture feature map and the ground truth texture mask.

The encoder consists of multiple Vision State Space Triplet

Attention (VSS-TA) blocks (Figure 2D), each block followed by
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FIGURE 1

Overview of the technical roadmap.

a patch merging operation, reducing spatial dimensions and

increasing feature depth. The VSS-TA block is an integration of

the Triplet Attention mechanism (33) on the basis of the original

Vision State Space (VSS) block (34), aiming to strengthen the

capability of feature extraction. The decoder recovers the spatial

dimensions through the patch expanding operation and integrates

the EFDM blocks after each hidden layer, thereby bolstering the

segmentation accuracy.

Through this modular design, VM-TE-UNet can effectively

capture and handle complex fracture area characteristics,

significantly improving the accuracy and robustness of

segmentation. The introduction of the Triplet Attention

mechanism enhances the ability to focus on important features,

while the EFDM block further optimizes the segmentation process

through feature decoupling, ensuring accurate detection of fracture

area boundaries and effective suppression of noise.

2.3.2 Loss function
The VM-TE-UNet network was trained to minimize the total

loss that consists of four parts: loss functions for the three branches

of EFDM and the loss function for the VM-TE-UNet network. The
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FIGURE 2

Overview of the deep learning model. (A) EFDM and VSS-TA block are applied to the overall network structure of VM-UNet. (B) In the specific

implementation of EFDM, each rectangular box of the NSM module and TPM module represents a convolution layer, normalization layer and ReLU.

(C) In the module structure diagram of the EGM, the numbers in each rectangular box represent the corresponding spatial convolution rate. (D)

VSS-TA block, the improved attention mechanism network structure.

total loss is calculated as:

LTotal =
M
∑

j=1
L
j
NSM +

M
∑

j=1
L
j
TPM +

M
∑

j=1
L
j
EGM + δLSEG (2)

where the LNSM , LTPM , and LEGM are the loss functions for NSM,

TPM, and EGM, LSEG represents the segmentation loss of the VM-

TE-UNet network, and δ is used to balance the weights of the

different loss functions.

LEGM is composed of weighted dice loss LDice and focal loss

LFocal, which can be written as:

LEGM = αLFocal + (1− α) LDice (3)

where α is the weight factor.

LNSM is defined as:

LNSM = ‖Yn −Mn‖1 (4)

where Yn is the predicted noise feature map and Mn is the ground

truth noise mask.
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LTPM is defined as:

LTPM = ‖Yt −Mt‖1 (5)

where Yt is the predicted texture feature map andMt is the ground

truth texture mask.

LSEG is composed of binary cross-entropy loss LBce and dice loss

LDice, which can be written as:

LSEG = λ1LBce + λ2LDice (6)

where the weight factors of λ1 and λ2 are initially set to 1.

2.3.3 Implementation details
In our experiments, the proposed VM-TE-UNet network is

trained with Adam optimizer with a learning rate of 1e−5 and a

batch size of 16. All the models are built using PyTorch platform

and trained on a NVIDIA RTX 3090 GPUwith a memory of 24 GB.

2.3.4 Evaluation metrics
We employed three metrics to evaluate the performance of our

model, which are as follows:

(i) The DSC is defined as the Equation 1, where A and B are

the manual and predicted segmented masks, respectively. It is a

statistical tool for comparing the similarity and consistency of

sample sets.

(ii) The Hausdorff Distance (HD) (35) is the greatest of all the

distances from a point in one set to the closest point in the other set,

measuring the accuracy of boundary segmentation. It’s defined as:

h (A,B) = max
a∈B

min
b∈B

d
(

a, b
)

(7)

HD (A,B) = max
(

h (A,B) , h (B,A)
)

(8)

where A and B are the two sample sets and d (a, b) is the Euclidean

distance between A and B. The 95th Hausdorff Distance (HD95)

mitigates the impact of outliers by calculating the distance at the

95th percentile, making it more suitable for measuring boundary

differences in medical imaging.

2.4 Early diagnosis of avascular fracture
non-union

2.4.1 Indices extraction
The following indices of inflammatory hematoma tissue,

cartilage tissue, mineralized cartilage tissue, and osteogenic tissue

structure and composition were evaluated from the micro-CT

images: the average CT value, BS/TS, BV/TV, and BS/TV (36). The

segmentation of tissues within the fracture lesion was performed

using specific Hounsfield Unit (HU) thresholds: inflammatory

hematoma tissue was delineated at 0–224 HU, cartilage tissue at

225–330 HU, mineralized cartilage tissue at 331–700 HU, and

osteogenic tissue at 701–1,000 HU (37).

The bone morphometric parameters were analyzed in

this study to evaluate the structural characteristics of tissues,

with all measurements conducted using CTvox (https://www.

microphotonics.com/micro-ct-systems/visualization-software/)

to ensure precision and consistency. The average CT value of

a specific tissue was determined by averaging the CT values

of all pixels within that tissue. For the four segmented tissues,

the pixel count in each tissue was calculated for every image,

yielding the Bone Area (BS). By summing the BS of all tissues,

the Total Area (TS) was obtained. Similarly, micro-CT images

of each sample were analyzed to calculate the Bone Volume

(BV) and Total Volume (TV). These parameters were further

used to derive ratios such as BS/TS, BV/TV, and BS/TV for

each tissue, providing a comprehensive assessment of their

structural properties.

2.4.2 Early diagnosis model
Based on the extracted data, we performed statistical analyses

and selected relevant indices to construct an early diagnostic

model for fracture non-union by integrating clinical diagnostic

approaches. This study employed a variety of machine learning

classification methods to enhance the performance and robustness

of the model, including Support Vector Machine (SVM) (38),

Multilayer Perceptron (MLP) (39), Decision Tree (40), and

Random Forest (41). The evaluation metrics include Accuracy

(30), Precision (31) and F1 Score (42), which are defined

as follows:











Accuracy = TP+TN
TP+TN+FP+FN

Precision = TP
TP+FP

F1 = Precision×Recall
Precision+Recall

× 2

(9)

where TP is true positives, TN is true negatives, FP is false

positives, and FN is false negatives (43).

Additionally, the AUC (29), which stands for the area under

the Receiver Operating Characteristic (ROC) curve, is also used

to evaluate the performance of the model. The five-fold cross-

validation was adopted.

3 Results

3.1 Fracture non-union dataset

Within 35 days after the fracture, at six time points (day 1, 7,

14, 21, 28, and 35), a total of 12 rats were scanned, collecting 45,275

micro-CT images, of which 2,448 frames contained the fracture

lesion. Figure 3 shows the scan results of two rats in two groups.We

made an incision in the medial malleolus of the rats (Figures 3A,

C). After 5 weeks of healing, the medial malleolus of the group F rat

finally healed at week 5 (Figure 3B), but there was no sign of healing

in the F+S group (Figure 3D).

In the fracture segmentation part of this study, 9 rats were

used as the segmentation training set, 1 rat as the validation

set, and 2 rats as the test set. For the early fracture non-union

prediction, all 12 rats were utilized in a five-fold cross-validation

approach for machine learning, ensuring robust model evaluation

and performance assessment.
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FIGURE 3

Micro-CT images of two rats in two groups. (A, B) Are micro-CT images of a group F rat on days 1 and 35 post-fracture. (C, D) Are micro-CT images

of a group F+S rat on days 1 and 35 post-fracture.
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TABLE 1 The segmentation accuracy of di�erent methods.

Method DSC HD95

UNet (22) 0.752 (0.702, 0.844) 18.7 (17.1, 20.3)

Vit (27) 0.694 (0.663, 0.751) 22.9 (22.3, 23.5)

Swin-UNet (44) 0.703 (0.652, 0.772) 24.6 (24.0, 25.2)

SegResNet (45) 0.729 (0.689, 0.778) 20.1 (19.2, 21.0)

EfficientNet (46) 0.731 (0.656, 0.828) 14.7 (14.0, 15.4)

VM-UNet (28) 0.765 (0.738, 0.882) 16.9 (15.1, 18.7)

nnUNet (52) 0.776 (0.696, 0.865) 15.8 (15.0, 16.6)

VM-TA-UNet (our) 0.798 (0.734, 0.876) 15.4 (13.4, 17.4)

VM-TE-UNet (our) 0.809 (0.752, 0.939) 13.1 (12.1, 14.1)

Ninety five percentage confidence interval is reported.

3.2 Experimental results on fracture
non-union dataset

3.2.1 Comparison of di�erent methods’
segmentation results

The comparison of the proposed VM-TE-UNet with previous

state-of-the-art methods on the avascular fracture non-union

micro-CT dataset is presented in Table 1. In the domain of medical

image segmentation, UNet (22) and Vision Transformer (ViT) (27)

are established models, yet they exhibit suboptimal performance

in this particular task. Specifically, ViT underperforms relative to

UNet across all metrics, showing its limitations in segmenting

fracture lesions. Conversely, Swin-UNet (44) and SegResNet

(45) have demonstrated some performance improvements, albeit

not markedly. EfficientNet (46) has achieved mixed results,

with a DSC of 0.7313, indicating a marginal advancement in

boundary treatment.

In comparison to the conventional UNet, VM-UNet (28) has

substantially enhanced segmentation accuracy by incorporating the

VSS block, achieving a DSC of 0.765. Furthermore, VM-TA-UNet,

which introduces a Triplet Attentionmechanism (33), has bolstered

feature extraction capabilities, increasing the DSC to 0.798

and demonstrating superior performance in managing complex

boundaries. Notably, the proposed VM-TE-UNet outperforms all

other models across evaluation metrics, with a DSC and HD95 of

0.809, and 13.1, respectively. The experimental outcomes indicate

that the proposed methodology effectively mitigates issues related

to boundary noise and texture information interference.

Figure 4 shows a more precise and fine segmentation output

of the proposed network than the existing baselines. It is apparent

that traditional UNet and ViT models exhibit subpar performance

when segmenting complex boundaries, often resulting in notable

false positive issues. Although Swin-UNet and SegResNet have

marginally improved boundary segmentation and reduced some

false positive occurrences, the segmentation results remain

inaccurate due to the models’ inability to fully capture the complex

fracture boundaries.

In contrast, the VM-UNet model significantly enhances the

recognition of complex boundary areas. However, due to the

Mamba architecture’s approach to image sequence processing,

the model pays less attention to boundary information during

segmentation, especially when dealing with irregular or blurred

boundaries, leading to local information loss and boundary

blurring. The VM-TA-UNet, which significantly improves

segmentation performance, still experiences missegmentation

in certain areas, particularly with more complex structures,

indicating that despite the reduction in false positive phenomena,

the model has not yet fully eliminated errors. Finally, the VM-

TE-UNet, which integrates the EFDM, further enhances the

model’s segmentation capabilities. As can be seen from the

figures, the segmentation results after EFDM improvement are

smoother, with significantly enhanced boundary accuracy and

effective control over false positive issues. Compared to other

segmentation algorithms, VM-TE-UNet excels in processing noise

information and capturing subtle boundary features, resulting

in more precise and complete segmentation of fracture areas,

providing more valuable technical support for the early diagnosis

of fracture non-union.

3.2.2 Attention improvement contrast experiment
Table 2 presents the performance of the different attention

mechanisms in the fracture lesion segmentation task. A

comparison was made among multiple spatial, channel, and

hybrid attention mechanisms to evaluate their impact on

segmentation accuracy (DSC and HD95). It is observed that

single-type attention mechanisms, such as Non-local and SE,

do not significantly enhance segmentation performance. In

contrast, hybrid attention mechanisms like CBAM (47) and

DANet (48) integrate feature attention across different dimensions,

allowing for more accurate capture of complex structures in

fracture areas. Notably, the Triplet Attention mechanism (33)

demonstrates superior segmentation outcomes, achieving an

encouraging DSC of 0.798 and significantly reducing HD95 to 15.4.

By processing input tensors through rotations in height, width,

and channel dimensions, Triplet Attention efficiently captures

three-dimensional feature interactions, enhances local detail focus,

improves global context understanding, and is computationally

suitable for high-resolution medical imaging.

Enhancing VM-UNet’s performance, these improvements

also pave the way for integrating Mamba architecture with

attention mechanisms, potentially increasing segmentation

accuracy and fostering innovative, precise solutions in medical

image segmentation.

3.2.3 Ablation study
To verify the effectiveness of each branch within the EFDM, we

conducted an ablation study. The results are shown in Table 3.

Compared to the basic VM-UNet without the introduction

of any EFDM branches and with only the VSS block improved,

the addition of the EGM branch alone increased the DSC to

0.804, and reduced HD95 to 14.9. Further inclusion of the NSM

branch enhanced the DSC to 0.806, with HD95 lowering to 14.4.

Ultimately, the incorporation of the TPM branch achieved the

highest DSC of 0.809, with HD95 reducing to 13.1. The results

indicate that EGM, NSM, and TPM branches, respectively, refine
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FIGURE 4

The segmentation results of di�erent methods.
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TABLE 2 Results of comparative experiments with di�erent attention mechanisms.

Attention mechanism category Method DSC HD95

Baseline model VM-UNet 0.765 (0.738, 0.882) 16.9 (15.1, 18.7)

Spatial attention +Non-local (53) 0.756 (0.708, 0.803) 21.3 (20.5, 22.7)

Spatial attention +SK (54) 0.744 (0.663, 0.824) 12.1 (11.2, 13.6)

Channel attention +SE (55) 0.716 (0.673, 0.759) 24.0 (23.1, 25.4)

Channel attention +ECA (56) 0.722 (0.687, 0.757) 23.0 (22.3, 24.2)

Hybrid attention +CBAM (47) 0.756 (0.676, 0.836) 21.3 (20.2, 23.0)

Hybrid attention +DANet (48) 0.785 (0.725, 0.846) 15.7 (14.9, 16.8)

Hybrid attention +AFF (57) 0.744 (0.673, 0.815) 20.6 (19.4, 22.3)

Hybrid attention (VM-TA-UNet) Triplet attention (33) 0.798 (0.734, 0.876) 15.4 (13.4, 17.4)

Hybrid attention +AxialAttention (58) 0.736 (0.703, 0.768) 24.6 (24.4, 24.7)

Ninety five percentage confidence interval is reported.

TABLE 3 Ablation study on the impact of EFDM.

Method EGM NSM TPM DSC HD95

VM-TA-UNet – – – 0.798 (0.734, 0.876) 15.4 (13.4, 17.4)

√
– – 0.804 (0.746, 0.862) 14.9 (14.1, 15.7)

√ √
– 0.806 (0.724, 0.887) 14.4 (13.2, 15.6)

VM-TE-UNet
√ √ √

0.809 (0.752, 0.939) 13.1 (12.1, 14.1)

Ninety five percentage confidence interval is reported.

and enhance the segmentation results by strengthening boundary

features, eliminating noise, and preserving texture information.

3.3 Early diagnosis of avascular fracture
non-union

3.3.1 Micro-CT indices
The average CT value, BS/TS, BS/TV, and BV/TV for both

groups of rats are shown in Table 4.

On day 1 postoperatively, the average CT value of the

inflammatory hematoma tissue in the F group was 88.5 HU, and

in the F+S group, it was 76.0 HU, with no significant difference.

However, on days 7, 14, 21, and 28 post-fracture, the values in the F

group (79.0, 103, 85.9, and 105 HU) were significantly higher than

in the F+S group (59.2, 50.4, 64.8, and 71.3 HU). Similarly, the

average CT value of the cartilage tissue in the F group (211, 174,

203, 204, and 196 HU) were significantly higher than in the F+S

group (155, 149, 144, 145, and 156 HU) on days 1, 7, 14, 21, and

28 post-fracture.

On days 1, 7, 14, 21, and 28 post-fracture, the BS/TS of

the inflammatory hematoma tissue and cartilage tissue in the F

group (4.83%, 5.54%, 3.97%, 2.31%, and 6.89% for inflammatory

hematoma tissue, respectively; 5.27%, 5.26%, 4.16%, 3.14%, and

6.25% for cartilage tissue, respectively) were significantly lower

than in the F+S group (13.0%, 8.35%, 5.29%, 4.13%, and 10.5%

for inflammatory hematoma tissue; respectively, 6.11%, 5.74%,

5.00%, and 7.46% for cartilage tissue, respectively). On day 21 post-

fracture, the BS/TS of the mineralized cartilage tissue in the F group

(30.4%) was lower than in the F+S group (35.4%). However, on

days 28 and 35 post-fracture, the values in the F group (37.2%

and 33.2%) were significantly higher than in the F+S group (33.9%

and 30.8%).

On day 1 postoperatively, the BS/TV of the inflammatory

hematoma tissue and cartilage tissue in the F group (0.0661 and

0.0612 mm−1) were significantly higher than in the F+S group

(0.182 and 0.139 mm−1). On day 1 postoperatively, the BS/TV of

the mineralized cartilage tissue in the F group (0.300 mm−1) was

lower than in the F+S group (0.570 mm−1). However, on days 21,

28, and 35 post-fracture, the values in the F group (0.344, 0.346,

and 0.346 mm−1) were significantly higher than in the F+S group

(0.266, 0.290, and 0.224mm−1). The BS/TV of the osteogenic tissue

in the F group (0.336 mm−1) was lower than in the F+S group

(0.648 mm−1) on day 1 postoperatively. However, the values in

the F group (0.490, 0.598, 0.674, 0.439, and 0.519 mm−1) were

significantly higher than in the F+S group (0.400, 0.410, 0.311,

0.310, and 0.370 mm−1) on days 7, 14, 21, 28, and 35 post-fracture.

On day 21 post-fracture, the BV/TV of the osteogenic tissue in

the F group was 61.7%, while in the F+S group, it was 47.6%, with

a significant difference.

3.3.2 Early diagnosis model
According to the analysis presented in Section 3.3.1, we selected

the following 10 indices for constructing the early diagnosis model

of fracture non-union: (i) the average CT value of inflammatory

hematoma and cartilage tissues, (ii) the BS/TS for all four types

of tissues, (iii) the BS/TV of mineralized cartilage and osteogenic

tissues, and (iv) the BV/TV of osteogenic tissue. Table 5 lists
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TABLE 4 The average CT values, BS/TS, BS/TV, and BV/TV of the F group and F+S group on days 1, 7, 14, 21, 28, and 35 post-fracture.

Group Tissue Day 1 Day 7 Day 14 Day 21 Day 28 Day 35

Average CT Value (HU)

F Inflammatory hematoma 88.5± 30.2 79.0 ± 12.9 103 ± 29.7 85.9 ± 32.1 105 ± 24.7 92.8± 38.4

Cartilage 211 ± 50.0 174 ± 88.9 203 ± 73.8 204 ± 89.7 196 ± 30.3 203± 70.3

Mineralized cartilage 482 ± 61.7 465 ± 80.2 491± 88.0 513± 78.9 457 ± 48.7 495 ± 50.0

Osteogenic 672 ± 88.9 672 ± 84.6 698± 83.7 720 ± 58.2 633± 64.3 685 ± 75.1

F+S Inflammatory hematoma 76.0± 38.0 59.2 ± 35.4 54.0 ± 21.6 64.8 ± 38.4 71.3 ± 18.6 82.5± 33.6

Cartilage 155 ± 47.5 149 ± 109 144 ± 129 145 ± 126 156 ± 87.6 198± 85.0

Mineralized cartilage 383 ± 72.5 448 ± 123 482± 126 500± 88.9 435 ± 94.9 534 ± 45.7

Osteogenic 564 ± 90.6 642 ± 129 681± 120 685 ± 89.7 620± 103 737 ± 55.2

BS/TS (%)

F Inflammatory hematoma 4.83 ± 5.58 5.54 ± 4.56 3.97 ± 5.00 2.31 ± 2.55 6.89 ± 4.80 3.66 ± 2.91

Cartilage 5.27 ± 3.71 5.26 ± 3.11 4.16 ± 3.23 3.14 ± 2.11 6.25 ± 2.38 4.33 ± 2.30

Mineralized cartilage 35.0± 7.81 32.4± 8.45 32.1± 6.76 30.4 ± 7.81 37.2 ± 4.29 33.2 ± 7.78

Osteogenic 54.9 ± 15.1 56.8 ± 14.2 59.8 ± 12.7 64.2 ± 11.0 49.6 ± 9.19 58.8 ± 11.9

F+S Inflammatory hematoma 13.0 ± 8.07 8.35 ± 9.4 5.29 ± 5.40 4.13 ± 3.36 10.5 ± 7.35 1.47 ± 1.55

Cartilage 8.94 ± 3.59 6.11 ± 4.34 5.74± 4.72 5.00 ± 3.35 7.46 ± 3.79 2.64 ± 2.07

Mineralized cartilage 36.2± 5.73 32.9± 10.1 32.9± 13.5 35.4 ± 11.2 33.9 ± 7.37 30.8 ± 8.01

Osteogenic 41.8 ± 11.1 52.6 ± 18.8 56.1± 21.7 55.5 ± 16.7 48.1± 15.5 65.1 ± 10.8

BS/TV (1/mm)

F Inflammatory hematoma 0.0661 ± 0.107 0.0552± 0.0627 0.0646± 0.103 0.0333± 0.0906 0.0689± 0.0599 0.0460± 0.0537

Cartilage 0.0612± 0.0879 0.0532± 0.0555 0.0608± 0.0734 0.0412± 0.0851 0.0593± 0.0388 0.0509± 0.0491

Mineralized cartilage 0.300 ± 0.325 0.313± 0.257 0.381± 0.292 0.344 ± 0.335 0.346 ± 0.187 0.346 ± 0.274

Osteogenic 0.336 ± 0.237 0.490 ± 0.400 0.598 ± 0.367 0.674 ± 0.574 0.439 ± 0.232 0.519 ± 0.333

F+S Inflammatory hematoma 0.182 ± 0.128 0.0763± 0.0835 0.0655± 0.0734 0.0343± 0.0336 0.0985 ± 0.089 0.0146± 0.0247

Cartilage 0.139 ± 0.0957 0.0619± 0.0631 0.0710± 0.0683 0.0419± 0.0369 0.0704± 0.0674 0.0241± 0.0359

Mineralized cartilage 0.570 ± 0.336 0.328± 0.321 0.355± 0.270 0.266 ± 0.192 0.290 ± 0.260 0.224 ± 0.242

Osteogenic 0.648 ± 0.367 0.400 ± 0.262 0.410 ± 0.240 0.311 ± 0.203 0.310 ± 0.195 0.370 ± 0.243

BV/TV (%)

F Inflammatory hematoma 8.66± 4.23 6.05± 2.14 5.85± 3.73 3.04± 1.14 7.55± 1.95 4.79± 2.40

Cartilage 8.01± 2.24 5.83± 1.55 5.50± 1.60 3.77± 0.843 6.50± 0.755 5.30± 1.30

Mineralized cartilage 39.3± 5.90 34.3± 5.51 34.5± 0.41 31.5± 3.35 37.9± 0.83 36.0± 4.52

Osteogenic 44.0± 8.36 53.8± 9.19 54.2± 4.92 61.7 ± 3.83 48.1± 1.88 54.0± 8.22

F+S Inflammatory hematoma 11.8± 3.32 8.80 8 4.00 7.27± 3.71 5.25± 3.50 12.8± 4.03 2.30 3 4.96

Cartilage 9.00± 2.53 7.14± 1.14 7.88± 1.93 6.41± 1.27 9.15± 2.32 3.82± 1.45

Mineralized cartilage 37.0± 3.87 37.9± 5.63 39.4± 1.01 40.7± 1.37 37.7± 2.41 35.4± 5.38

Osteogenic 42.1± 9.72 46.2± 3.70 45.5± 3.64 47.6 ± 3.28 40.3± 5.12 58.5± 5.00

Bold indicates p < 0.05 in comparison of the two groups in the same day. Mean and standard deviations are reported.

the AUC, Accuracy, Precision, and F1 Score of SVM, MLP,

Decision Tree, and Random Forest models at different time

points post-fracture.

On the first day post-fracture, due to inter-individual

variations among rats, the micro-CT indices exhibited significant

discrepancies, which impacted the early diagnostic model.

Therefore, we excluded the data of the first day when establishing

themodel. The SVM,MLP, decision tree, and random forest models

demonstrated optimal performance on days 28, 14, 28, and 28,

respectively. Moreover, among all models and time points, theMLP
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TABLE 5 The performance of SVM, MLP, decision tree, and random forest models at di�erent time points post-fracture.

Model Day AUC Accuracy Precision F1 Score

SVM 7 0.917 (0.895, 0.940) 0.916 (0.893, 0.939) 0.922 (0.906, 0.937) 0.916 (0.893, 0.939)

14 0.966 (0.937, 0.994) 0.962 (0.930, 0.993) 0.987 (0.974, 1.001) 0.970 (0.945, 0.994)

21 0.797 (0.772, 0.822) 0.866 (0.842, 0.890) 0.886 (0.868, 0.905) 0.910 (0.889, 0.930)

28 0.970 (0.944, 0.996) 0.979 (0.962, 0.997) 0.970 (0.946, 0.994) 0.985 (0.972, 0.997)

35 0.814 (0.804, 0.824) 0.796 (0.773, 0.819) 0.896 (0.84, 0.952) 0.811 (0.788, 0.833)

MLP 7 0.971 (0.959, 0.982) 0.970 (0.957, 0.983) 0.967 (0.936, 0.997) 0.970 (0.954, 0.986)

14 0.995 (0.978, 1.012) 0.996 (0.980, 1.01) 0.994 (0.975, 1.01) 0.997 (0.98, 1.01)

21 0.934 (0.923, 0.944) 0.950 (0.94, 0.961) 0.967 (0.955, 0.979) 0.965 (0.957, 0.974)

28 0.983 (0.963, 1.00) 0.988 (0.971, 1.01) 0.984 (0.964, 1.00) 0.992 (0.977, 1.01)

35 0.901 (0.894, 0.908) 0.900 (0.894, 0.905) 0.928 (0.920, 0.935) 0.912 (0.908, 0.916)

Decision tree 7 0.950 (0.924, 0.977) 0.950 (0.922, 0.978) 0.959 (0.901, 1.02) 0.950 (0.916, 0.983)

14 0.964 (0.952, 0.977) 0.973 (0.962, 0.985) 0.979 (0.964, 0.994) 0.980 (0.968, 0.992)

21 0.935 (0.917, 0.954) 0.948 (0.938, 0.959) 0.971 (0.952, 0.989) 0.966 (0.956, 0.975)

28 0.964 (0.940, 0.989) 0.973 (0.959, 0.987) 0.966 (0.955, 0.976) 0.980 (0.972, 0.988)

35 0.840 (0.816, 0.865) 0.841 (0.825, 0.856) 0.867 (0.841, 0.894) 0.865 (0.852, 0.877)

Random forest 7 0.970 (0.962, 0.978) 0.970 (0.963, 0.977) 0.974 (0.974, 0.974) 0.970 (0.962, 0.978)

14 0.980 (0.969, 0.992) 0.989 (0.977, 1.00) 0.991 (0.971, 1.01) 0.992 (0.982, 1.003)

21 0.956 (0.929, 0.983) 0.959 (0.947, 0.971) 0.979 (0.961, 0.996) 0.972 (0.963, 0.98)

28 0.990 (0.969, 1.01) 0.991 (0.978, 1.00) 0.990 (0.971, 1.01) 0.993 (0.984, 1.00)

35 0.870 (0.858, 0.881) 0.870 (0.859, 0.880) 0.891 (0.88, 0.901) 0.890 (0.881, 0.898)

Bold indicates the best. Ninety five percentage confidence interval is reported.

model on day 14 post-fracture achieved the highest evaluation

metrics, with AUC, Accuracy, Precision, and F1 Score reaching

0.995, 0.996, 0.994, and 0.997, respectively. In summary, the MLP

model is capable of early diagnosis of fracture non-union on day 14

post-fracture in rats, which is the soft-callus formation phase and

equivalent to a month post-fracture in humans.

These analyses indicate that our early diagnosis model has the

potential to achieve the diagnosis during the soft-callus formation

phase of fracture healing. Relative to the current diagnosis of non-

union after 9 months post-fracture, the diagnosis was advanced

by 8 months, thereby providing a golden time window for early

intervention and treatment.

4 Discussion

In this study, we established a high-resolution fracture CT

image dataset, proposed the VM-TE-UNet for fracture areas

segmentation, extracted micro-CT indices, and established an early

diagnostic model for fracture non-union, achieving the diagnosis of

fracture non-union during soft-callus formation phase.

In this study, experiments were conducted based on our animal

model (21), and a total of 12 rats’ micro-CT imaging data at various

stages of healing (on days 1, 7, 14, 21, 28, and 35 post-fracture) were

collected, ultimately accumulating 2,448 high-resolution images of

the rat ankle healing area. Subsequently, after preprocessing and

annotation of the images, a micro-CT dataset was formed.

VM-TE-UNet, an advanced algorithm for segmenting rat ankle

fracture areas, has been successfully developed. It builds on the

VM-UNet, incorporating the Triple Attention mechanism into

the VSS-TA block to boost feature capture. The VM-TA-UNet

with this module achieved a DSC of 0.798, an improvement over

the baseline’s 0.765. To enhance performance, the EFDM was

integrated into the final VM-TE-UNet model, which effectively

separates boundary, noise, and texture from feature maps. Ablation

studies showed that VM-TE-UNet with EFDM achieved a higher

DSC of 0.809 and lowered the HD95 to 13.1, outperforming the

model without EFDM and confirming EFDM’s role in improving

segmentation precision and minimizing false positives.

Currently, the clinical diagnosis of fracture non-union

primarily relies on physical examination and radiographic

evaluation. The physical examination includes assessing the

presence or not of pain and restricted movement in the affected

limb and its adjacent joints, which is aimed at confirming the blood

supply to the distal part of the affected limb and determining the

presence of pseudoarthrosis (49, 50). Localized soft tissue swelling

that compresses blood vessels and fractures that damage blood

vessels can both lead to poor blood supply. The poor blood may

impair callus formation, therefore delay fracture healing.

Among imaging methods, X-ray is the basic method for

diagnosing non-union. The scoring systems such as the

Radiographic Union Score for Tibial Fractures (RUST) (14)

and the Radiographic Union Score for Hip (RUSH) (51) can

greatly improve the accuracy of non-union diagnosis. In the RUST
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system, the focus is on the presence of callus, fracture line, and

bridging callus; whereas the RUSH system further scores cortical

bridging, cortical disappearance, trabecular consolidation, and

trabecular disappearance. The advantages of radiographic union

scores are low cost, rapid, ease of implementation, suitability for

use across multiple anatomic sites, and high diagnostic accuracy.

However, they are semi-quantitative and subjective, which may

lead to wide scoring discrepancies in the early diagnosis of

non-union. Additionally, a significant drawback of X-rays is the

inability to perform 3D imaging, with diagnostic accuracy being

greatly influenced by imaging angles. In cases where X-ray film

reveals no apparent non-union despite the presence of clinical

symptoms, CT is employed for further diagnosis.

Rats reach the soft-callus formation phase 2–3 weeks after

fracture, which is equivalent to 1month after a human fracture. The

average CT value can reflect the mineral density of various tissues.

On days 1, 7, 14, 21, and 28 post-fracture (the inflammatory

phase and repair phase) the average CT values of the inflammatory

hematoma and cartilage tissues in the F+S group are significantly

lower than those in the F group, indicating that callus formation

and mineralization are hindered in the F+S group. This is

consistent with the theory that the soft-callus formation phase is

prolonged andmineralization is affected under ischemic conditions

in rats. The changes in the BS/TS of the mineralized cartilage

tissue during the early hard-callus formation phase can reflect

the negative effects of ischemia on cartilage callus mineralization,

consistent with the theory. The BS/TV of osteogenic and

mineralized cartilage tissue during the repair phase indicates that

mineralization is hindered in the F+S group. The differences in

BV/TV between the two groups during the hard-callus formation

phase also support this conclusion. The differences in these indices

correspond to the clinical method of diagnose the fracture non-

union by assessing the presence of callus with X-rays.

The BS/TV of inflammatory hematoma and cartilage tissues

in the inflammatory phase reflects the high proportion of soft

tissue in the lesion area of the F+S group during this period.

In the inflammatory phase and repair phase, the BS/TS of the

inflammatory hematoma and cartilage tissues also indicates that

the proportion of soft tissue in the lesion area is high in the

non-union group of rats, corresponding to the clinical assessment

of local soft tissue swelling causing vascular compression to

diagnose non-union.

Based on the extracted micro-CT indices, a machine learning

model for the early diagnosis of fracture non-union was

constructed by comparing multiple models at multiple time points.

The study revealed that on the 14th day, the MLP achieved an AUC

of 0.995, an Accuracy of 0.996, and a Precision of 0.994, achieving

the diagnosis of fracture non-union during soft-callus formation

phase. The SVM, Decision Tree, and Random Forest models

all exhibited optimal performance on the 28th day, achieving

the diagnosis during hard-callus formation phase. The superior

performance of the MLP in the study may be attributed to the

dataset’s complex non-linear boundaries, which the MLP, with

its multi-layered structure and non-linear activations, can better

capture, thereby enhancing classification performance. In contrast,

SVM requires an appropriate kernel function to address non-linear

issues, and Decision Trees and Random Forests may necessitate

more sophisticated feature engineering to improve performance.

Furthermore, the dataset comprised 2,448 samples, which may be

a suitable quantity for the MLP. Meanwhile, SVM’s computational

complexity significantly increases with larger sample sizes. The

input parameters consisted of 10 features, a moderate feature set for

the MLP, which can effectively manage such a quantity. Decision

Trees and Random Forests, on the other hand, may require more

data to prevent overfitting.

It can be observed that early diagnostic models perform better

on day 14 or 28 than on day 35 post-fracture, which contradicts

common understanding. We speculate that there are two possible

reasons for this phenomenon: on one hand, the limited sample

size may lead to statistical errors, and on the other hand, there

might be a muscular compensation mechanism that obscures

the radiological features, thereby making the 14–28 days a more

favorable time for diagnosing non-union fractures.

5 Conclusion

We believe that our prediction model based on micro-CT bone

morphometric parameters can effectively screen out samples of

poor fracture rehabilitation caused by blood supply limitations

in rats 14 days after fracture, rather than the widely accepted

35 or 40 days. And we plan to further develop and validate

the model proposed in this paper in human trails for clinical

prediction for fracture non-union, providing a new approach for

early intervention and treatment.
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