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Antibodies (Abs) and their fragments can be  labeled with PET radioisotope 
(immunoPET) for in  vivo diagnostic imaging. Compared to the conventional 
FDG-PET, immunoPET can be designed to target in vivo cancer-specific antigen 
expression levels for various tumors and metastasis, which makes immunoPET 
(iPET) a powerful technique for molecular imaging and therapy monitoring. 
However, achieving the optimal dose to minimize radioisotope toxicity without 
compromising the visualization of the smallest tumor is challenging. To find an 
ultra-minimal tracer dose, we have developed a novel iPET with an intact rituximab 
Ab labeled with 64Cu to image human CD20 (hCD20) in a transgenic mouse model 
for non-Hodgkin’s lymphoma (NHL) imaging. Using phantom and in vivo mouse 
models, we optimized the minimal dose that can be administered in a mouse 
using a high-specific iPET tracer prepared from 64Cu-rituximab. A phantom study 
was used to characterize the scanner capability and limit for imaging using low 
doses. An ultra-minimal dose administered in a mouse model showed good 
image quality with high signal-to-noise ratio without compromising quantitative 
accuracy. The phantom study with below 50 μCi dose level indicated a slight 
increase in variability due to reduced dose specifically for target regions with 
lower uptakes (<3:1 ratio) relative to the background. In vivo study performed with 
four groups of mice (n = 3), each group injected with ~90, ~50, ~25, and ~10 μCi 
showed a linear increase of tracer uptake measured as percentage injected dose 
per gram (%ID/g). This tracer has shown high specific uptake in the spleen, where 
most B-cells are engineered to express hCD20. The study demonstrated that the 
lowest dose threshold limit for 64Cu-antibody-based iPET was about 25 μCi while 
achieving a high-quality image and quantitative accuracy.
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1 Introduction

Immuno-positron emission tomography (immunoPET) a.k.a. antibody-based PET 
molecular imaging strategy is performed taking advantage of the high specificity of monoclonal 
antibody (mAb) and the inherent high sensitivity of PET (1–10). Several radionuclides and 
mAbs have been exploited to develop immunoPET (iPET) probes, some of which have already 
been successfully translated for clinical use (4, 7, 8, 11–13). iPET is becoming the method of 
choice for imaging specific tumor markers, immune cells, immune checkpoints, inflammatory 
processes, and guide mAb-based therapy (12, 14–18). Superior to conventional FDG-PET, 
immunoPET can characterize and quantify antigen expression specific to a tumor type, 
making iPET a powerful molecular strategy for tracking, visualizing, and measuring the tumor 
gene expression (18–24). FDG-PET, taken up into the body through glucose transporters, has 
very poor specificity and can be seen in areas with high levels of metabolism and glycolysis, 
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such as sites with inflammation or tissue repair (23–28). iPET has the 
potential to image specific diseases and quantify them for clinical 
diagnostic applications. Several iPETs are already in clinical 
investigations for cancer staging and therapy monitoring using 
FDA-approved mAbs (4, 29). We have recently developed a novel 
iPET tracer using mAb (rituximab) labeled with 64Cu and 89Zr to 
image human CD20 as a marker for NHL. Evaluation of these new 
tracers in a transgenic mouse model and humans showed specific 
imaging of hCD20-expressing B-cells (30–33). Such new iPET tracers 
in development have immense potential in the clinical setting as the 
antibody can bring radiation directly to the lymphoma cells (34–38).

When compared to FDG-PET, the iPET is linked with long-half-
life radioisotopes to match the slow uptake and clearance of antibodies 
selected for iPET imaging. As a result, the radiation burden on the 
patient when using antibody-based tracers is relatively high compared 
to conventional rapidly clearing PET tracers such as [18F]FDG (35, 
36). This limitation could hinder the development and practical 
application of antibody-based tracers, and therefore, it is paramount 
to reduce the radiation exposure whenever feasible. Advances in iPET 
imaging uses modified antibody fragments with small size and shorter 
elimination half-life allowing the use of short half-life radioligands to 
perform iPET imaging on the same day while reducing radiation 
exposure (38–43).

Engineered smaller size affibody proteins and antibody fragments 
retaining the essential specificities and affinities of a full antibodies, 
have become desirable pharmacokinetics for PET imaging using 
various options of PET isotopes (3, 38, 40). While these new iPET 
imaging strategies will play a big role in reducing radiation exposure, 
we also believe that administration of an optimized minimum dose 
could also substantially decrease the overall radiation burden on the 
patient (43–45). However, since PET inherently produces noisy 
images, it is challenging to optimize the minimum dose (46–49). 
Reducing the injected dose amount may further compromise the 
image quality (44, 45). Since PET measures the biodistribution of a 
particular tracer administrated to the body, the number of detected 
tracers counts on a selected region of interest defines the image quality 
and quantitative accuracy. Hence, dose administration could 
be specific to each tracer behavior or condition of the study. This 
means, there is a limit and variation to the minimum dose required 
that provides adequate counts for obtaining a non-biased signal-to-
noise ratio and quantitative diagnostic value specific to each study 
(45). To evaluate this more quantitatively, in this study we evaluated 
the ultra-low injected dosage capability of iPET using phantom and 
live animal models. The combined effect of the high sensitivity of PET/
CT and the high specificity of iPET tracers (32, 43) may allow the 
administration of ultra-low doses without compromising the image 
quality and quantitative accuracy.

2 Materials and methods

2.1 iPET tracer and animal model

GMP grade 64Cu labeled iPET tracer preparation was already 
reported (33, 50). To test the tracer capability for low-dose diagnostic 
imaging, we  have used a transgenic mouse model that expresses 
hCD20. In this mouse model, hCD20 is expressed in B cells homing 
in the spleen, providing the highest tracer uptake. For this tracer 

development, the anti-hCD20 antibody (IgG; rituximab) was 
conjugated to DOTA for radiolabeling of 64Cu. In another study, 
we have reported the evaluation of the dosimetry of 64Cu-mAb tracer 
in the hNSG mouse model using the standard average injected dose 
of 100 μCi (32).

2.2 Phantom study

To evaluate the ultra-low dose counting accuracy of the scanner, 
we used a cylindrical phantom (Data Spectrum Corp) with a 40 mm 
inner diameter, 82 mm height, and four micro-hollow fillable spheres 
(Figure 1). The cylindrical phantom was filled with water and ~95 μCi 
of 64Cu to provide ~1 μCi/cc radiotracer concentration as a 
background signal for the phantom study. To represent the foreground 
signal and emulate high tracer uptake in an animal model, we prepared 
a 20 ml methanol and ~150 μCi of 64Cu solution. Due to its lower 
density relative to water, methanol was used as a contrast agent to 
provide slight CT image contrast in the PET/CT imaging. The mix 
provided ~7.5 μCi/cc 64Cu tracer concentration to fill each hollow four 
spheres (~1, 0.5, 0.25, and 0.031 ml). For the first scan, the total initial 
activity of the background and foreground was ~92 μCi. The Phantom 
was scanned using Inveon MicroPET/CT (Preclinical Solutions; 
Siemens Healthcare Molecular Imaging, Knoxville, TN) for 30 min at 
different time points while decaying over 48 h. Three image frames of 
5, 10, and 20 min from the acquired images were reconstructed using 
the Ordered-subset expectation maximization (OSEM 2D) algorithm 
(51). Inveon Research Workspace (IRW) analysis software (Siemens 
Healthcare) was used for analysis and quantitation. Regions of Interest 
(ROI) were drawn over the four spheres and the background to obtain 

FIGURE 1

Left, Cylindrical tube with four insertable fillable hollow spheres of 
different sizes (~1, 0.5, 0.25, and 0.031 ml) used as a phantom. Right, 
PET/CT image of phantom after filling the cylinder tube with low 
radiotracer concentration (~1 μCi/cc) as background and hollow 
spheres with ~7.5 μCi/cc as foreground uptake.
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the mean radiotracer distribution (μCi/cc). Doses at each scan time 
were calculated from the decayed 64Cu tracer.

2.3 Animal study

Animal studies were performed in compliance with approval from 
the Administrative Panel on Laboratory Animal Care (APLAC) at 
Stanford University. The hCD20 transgenic mice models (Genentech, 
South San Francisco, CA) were used for the experiment. Prior to the 
animal study, transgenic mice were screened by RT-PCR to confirm 
the expression of hCD20 positivity. We injected 8–10, 20–25, 45–55, 
and 75–80 μCi via the tail vein in a group of four mice for each dose. 
After radiotracer administration, the animals were imaged at ~1–5, 
15, and 24 h using Inveon MicroPET/CT within 20–30 min intervals.

2.4 PET imaging and analysis

PET imaging was performed on the Inveon MicroPET/CT system 
following standard routine acquisition protocol in our facility. The CT 
scan was acquired using an 80 kVp and 500 μA, two-bed position, half 
scan 220° of rotation, and 120 projections per bed position for both 
anatomic reference and PET attenuation correction. PET scans were 
performed using the default settings of a coincidence timing window 
of 3.4 ns and an energy window of 350 to 650 keV. Static 5 min was used 
to acquire first-time point acquisitions (1–5 h post-injection), followed 
by static 10 min acquisition for later time points (15 and 24 h). The 
images were reconstructed using the OSEM 2D algorithm. Using IRW, 
manual three-dimensional regions of interest (ROIs) were drawn over 
the heart, liver, and leg muscles. A semi-automatic ROI histogram-
based segmentation technique was used to segment the spleen to reduce 
reader variability. The average radioactivity concentration in the ROI 
was obtained from the mean pixel values within the ROI volume, which 
is converted to a percentage injected dose per gram of tissue (%ID/g).

2.5 Statistical analysis

The quantitative data were expressed as mean ± SD. Means were 
compared using the student t test. A 95% confidence level was chosen 

to determine the significance between groups, with p values of less 
than 0.05 indicating significant differences.

3 Results

3.1 Phantom study

Figure  2 shows a qualitative comparison of phantom images 
between conventional and ultra-low doses at scan time. After a 
suitable image intensity adjustment, the effect of low ultra-low dose 
<10 μCi shows nonhomogeneous uptake in all spheres. However, all 
hollow spheres, including the smallest (0.031 ml, S4), which shows the 
lowest uptake due to the partial volume effect, showed higher uptake 
than the background. Figure 3 quantitatively assesses the mean values 
extracted from ROIs drawn over each hollow sphere based on the CT 
images. The computed mean ROI vs. dose at scan time showed 
comparable linearity with the expected partial volume effect 
(Figure 3A). For comparison, we also computed the coefficient of 
variance of images reconstructed at different times of acquisition (5, 
10, and 20 min) for each dose (Figure 3B, showing only the S2 (second 
largest) and S4 (smallest) sphere sizes). The result indicates that the 
computed variability increases slightly for doses less than 40 μCi for 
larger spheres independent of scan duration with expected 
improvement for images acquired with longer acquisition time (10 
and 20 min).

3.2 Animal study

In vivo, animal imaging using the target-specific 64Cu iPET 
radiotracer, as expected, showed high uptake in the spleen for all dose 
amounts (Figure 4A). Relatively low uptake was also seen in the heart 
and liver. The spleen consistently showed increased uptake in %ID/g 
of 3 to 10 folds relative to the liver with a decreased injected dose 
(Figure 4D), showing improved tracer specificity and image contrast. 
In contrast, the spleen-to-liver uptake ratio steadily increased (3–5 
folds) with a decrease of dose up to 20 μCi. The spleen-to-liver uptake 
increased non-linearly over nine-fold for ultra-low injected dose 
<10 μCi (p < 0.03). At 15 h post-injection (p.i.), high tracer uptake in 
the spleen was obtained (Figure 4D).

FIGURE 2

Left, CT images showing the hollow fillable spheres of the phantom. Right, Qualitative comparison of PET/CT images of the phantom for selected 
three low doses.
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Figure  5 shows a quantitative assessment of inter-subject 
variability. For the spleen, we observed similar inter-subject variability 
with slight variation between doses (Figure 5A) and slightly higher 
variability (CV = ~30%) at the early time points (1 to 5 h). At the later 
time point (24 h.), the variability drops on average to one-third 
(CV = ~10%) due to tracer clearance (Figure 5B).

4 Discussion

As the most popular molecular imaging tool, PET/CT imaging 
has always been attractive for both preclinical and clinical applications 

due to its superior sensitivity. However, the inability to accurately 
determine the optimum dose that may be administrated to the subject 
may make to operate non optimally especially regarding minimization 
of radiation exposure to the subject and associated cost of the target 
tracer (43, 45). Specifically, the challenge is to find a standard 
minimum dosage (SMD) that is sufficient to acquire clinically relevant 
diagnostic information, which inherently involves multiple factors. 
Assuming a fixed scanner sensitivity limited by its specific geometric 
configuration and detector characteristics, the optimum minimum 
dosage may vary on several image acquisition parameters such as 
reconstruction type, subject size and positioning, and scanner 
acquisition protocols (43). Within the selected optimum acquisition 

FIGURE 3

Phantom images quantitative assessments: (A) extracted mean ROI value vs. administered dose showing an expected linear increase with lower slop 
for smaller size spheres due to partial volume effect and (B) Computed percentage coefficient of variation showing only for S2 (second to largest) and 
S4 (smallest) sphere sizes for 5, 10, 20 min acquisition time as function of administrated dose.

FIGURE 4

(A) Representative iPET/CT images showing tracer uptake 24 hr post injection in the spleen of the humanized transgenic mice. Each mice group 
received doses (ranging from 8 to 80 μCi). (B–D) Depicted the iPET signal corresponding to the tracer uptake from the heart, liver, and spleen of the 
mouse at different time points.
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and reconstruction parameters, dosage may also vary with the specific 
choice of radiopharmaceutical and its associated factors, including the 
tracer uptake specificity, clearance pattern, molecular size of the tracer, 
tracer half-life, and others.

Imaging of iPET using mAb labeled with Cu-64 or Zr-89 isotope 
provides relatively high specificity compared to the non-specific tracer 
such as FDG. This is because mAbs are specifically designed to bind 
to targeted organs or tumors selectively. Hence, a small tracer dose 
(26, 32) could specifically bind to the intended in vivo target organ or 
receptors. Using phantom and animal studies, our results indicated 
that as low as 20 μCi of tracer dose can be sufficient to image using the 
most commonly available MicroPET/CT scanners without 
significantly affecting or compromising image quality and quantitative 
value. Furthermore, iPET animal imaging has shown better image 
contrast with reduced background noise at lower doses compared to 
conventionally administered doses (~100 μCi per mouse). The overall 
results (Figure 4) indicate that an optimal suitable lower dose may 
improve image quality and quantitative accuracy while reducing 
radiation exposure. It is also expected to improve the image quality at 
lower doses by extending the scanning time (Figure 3B).

In the animal study, the spleen express hCD20 marker for NHL, 
showing the highest uptake of iPET tracer which is consistent as 
reported elsewhere (33, 50). This gives a promising application for 
tracing and tracking the metabolic activity in tumors expressing 
antigen CD20. This tracer has been specifically developed to target 
B-lymphocytes expressing hCD20 seen in the spleen with increased 
numbers in non-Hodgkin’s Lymphoma (32). It was anticipated to 
accumulate in the spleen with some lower uptakes in the heart and 
liver due to their roles in removing toxins from the body. If the tracer 
uptake in the spleen saturates, the extra tracer clears through the liver. 
Hence, the increased amount of tracer doses tends to bind on other 
organs non-specifically, such as the uptake seen in the liver 
(Figure 4C). On the other hand, lower administrated doses show to 
decrease non-specific organs uptake while increasing target-
specificity. Spleen-to-liver ratios demonstrated distinctively that even 
at the lowest doses (<8 μCi) and after 24 h of decay, the spleen shows 
strong uptake with relatively good image quality. An estimated dose 
of 20 to 25 μCi, as reported in this study, could be assumed as the 
lower dose limit that may provide comparable image quality and 
accuracy relative to the commonly used higher doses for in  vivo 
mouse iPET imaging. This study provides initial validation for the 
important and challenging tradeoffs in PET imaging between image 

quality and radiation exposure. The study demonstrates that with 
increased specificity of specific tracer a significantly lower dose up to 
one fourth as estimated in Figure 4 relative to conventional dose 
(~100 μCi) may be used without changes of the imaging protocols 
and compromising the image quality. Minimizing radiation exposure 
reduces the risks associated with ionizing radiation and the overall 
imaging costs, but it is also very important to have good image quality 
practically for all clinical and research applications (47, 48). We also 
expect this study to provide a bases for further validation of the 
optimum minimum dose for clinical practice, which is relatively 
more important due to the ever-increasing concerns related to 
radiation exposure in patients requiring multiple examinations or 
those at a higher lifetime risk for developing cancer (e.g., pediatric 
patients) (49).

5 Conclusion

Our study provides the basis for the initial validation of the 
potential usage of ultra-low-dose clinical practices using target-
specific iPET imaging studies without impacting the overall image 
quality and quantitative accuracy. Low doses may also improve 
specificity and reduce radiation in non-targeted areas and non-specific 
uptake by other clearing organs such as the liver and kidney. With the 
evolving research on early cancer detection and immunotherapies, 
imaging with more targeted tracers will help reduce misdiagnoses and 
unnecessary radiation exposure. This study reveals that optimal 
low-dose estimation is vital to all diagnostic imaging tracers prior to 
clinical translation studies, saving tracer costs and reducing systemic 
radiation exposure.
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