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Cancer is a major global health concern and one of the leading causes

of death worldwide. According to the World Health Organization (WHO),

there is an urgent need for novel therapeutic agents to treat this disease.

Some antimicrobial peptides (AMPs) have demonstrated activity against both

microbial pathogens and cancer cells. Among these, cationic AMPs (CAMPs)

have garnered significant attention because of their ability to selectively interact

with the negatively charged surfaces of cancer cell membranes. CAMPs

present several advantages such as high specificity for targeting cancer cells,

minimal toxicity to normal cells, reduced probability of inducing resistance,

stability under physiological conditions, ease of chemical modification, and low

production costs. This review focuses on CAMPs with anticancer properties

such as KLA, bovine lactoferricin derivatives, and LTX-315, and briefly explores

common bioinformatics tools for Anticancer Peptides (ACPs) selection pipeline

from AMPs.
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1 Introduction

Cancer is one of the leading causes of mortality worldwide, according to the World
Health Organization (WHO). In 2022, global statistics reported nearly 20 million new
cancer cases and 9.7 million cancer-related deaths. Over the past 40 years, the number of
deaths due to cancer has doubled in women and tripled in men (1, 2). This public health
problem is closely related to the increase and aging of the global population (3).

Cancer treatment approaches that attempt to kill cancer cells directly, such as surgery,
radiotherapy, chemotherapy, or combinations thereof, are frequently used (4). Surgery
is only effective for localized tumors; however, incomplete removal of cancerous tissues
increases the risk of recurrence (5). Radiotherapy specifically targets tumors, but has
adverse effects on the surrounding healthy tissues, and its efficacy varies with the type and
location of the tumor (6). Chemotherapy is one of the most widely used mode of treatment,
but it is toxic to both cancer and healthy cells, and cancer cells may become resistant over
time, making the treatment progressively less effective (7). In recent years, immunotherapy
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approaches that try to help the immune system fight cancer have
been developed. However, tumor complexity, high resistance to
solid tumors, and the ability of certain cancer cells to evade
anticancer drugs result in a low percentage of treatment-surviving
patients (8). These challenges highlight the urgent need for novel
therapeutic agents (9–11).

Anticancer peptides (ACPs) are currently being explored
as new alternatives to conventional cancer therapies, with the
potential to selectively kill cancer cells. ACPs do not depend
on unique receptors or a specific signal transduction pathway
for their action, making it more difficult for tumors to develop
resistance (12).

Many ACPs are derived from antimicrobial peptides (AMPs),
particularly cationic AMPs (CAMPs), which bind selectively to
the negative charged membrane of cancer cells. The membrane
integrity and the mitochondrial function are compromised by
CAMPs resulting in apoptosis or necrosis, thus CAMPs are
promising candidates for anticancer therapy (13–17).

This review explores the potential applications of CAMPs
derived from natural or artificial sources and examines how their
unique characteristics can serve as inspiration for the development
of novel anticancer agents. Notable examples of the use of CAMPs
as templates for producing anticancer agents include derivatives
that have improved the design of KLA, bovine lactoferricins, and
LTX-315 peptides. Additionally, it briefly presents computational
tools employed in the pipeline for selecting ACPs from AMP.

2 AMPs classified by charge

Antimicrobial peptides can be classified into two main
groups based on their charge, cationic and non-cationic peptides
(Figure 1). Each group can include peptides from diverse sources
with varying activities, structures, and amino acid compositions
(18–20).

CAMPs constitute nearly 90% of all AMPs and carry a positive
net charge, enabling an initial interaction with the negatively
charged microbial cell membrane (21). Notably, some CAMPs also
exhibit anticancer activity, selectively targeting tumor cells while
sparing normal cells. Similar to their electrostatic interaction with
microbial cell membranes, CAMPs engage with tumor cells owing
to their more negative charge compared to normal cells (22, 23).
Due to this fact, CAMPs are considered as potential tool for cancer
therapy and have been used in pharmaceutical sciences, drug design
and discovery (24, 25), and cancer clinical trials (26–28).

3 Mode of action of CAMPs with
anticancer activity

The membrane composition of tumor cells is considerably
different and more anionic than the membrane of normal cells,
which enables CAMPs to interact with the tumor membrane,
similar to the microbial membrane (21). Two mechanisms of action
have been identified for CAMPs against cancer cells: membrane-
and non-membrane-targeting mechanisms (29).

The first mechanism involves positively charged amphipathic
CAMPs that interact with negatively charged cell membranes.

Then, they are adsorbed into the membrane, which results in
a conformational change and membrane disruption according
to different models, including carpet detergent-like, barrel-
stave (formation of transmembrane pores), and toroidal (lipid
rearrangement for pore formation) (Figure 2) (30, 31).

The second mechanism involves CAMPs that penetrate the
cells directly or by endocytosis. Inside the cytoplasm, they target
important cellular structures and processes by inhibiting protein
biosynthesis, nucleic acid biosynthesis, protease activity, and cell
division (15).

These interactions, which are described by the two mechanisms
of action, ultimately leading to membrane lysis or pore formation,
which triggers apoptosis or necrosis in tumor cells with minimal
impact on normal cells (25).

4 Physicochemical factors
influencing the anticancer activity of
CAMPs

4.1 Attributes of CAMPs

Several physicochemical factors, such as amino acid
composition, net charge, hydrophobicity, amphipathicity,
structural folding, peptide concentration, oligomerization, and
membrane composition, affect the anticancer activity of CAMPs
(32, 33). Understanding the relationship between the peptide
sequence and function is crucial for the rational design of novel
CAMP-based therapeutics with improved anticancer efficacy.

4.1.1 Amino acid composition
A systematic analysis of amino acid-rich AMPs from the

Antimicrobial Peptide Database (APD) as well as their distribution
across different life kingdoms and animal classes, reveals a low
abundance of Asp, Glu and Met; a moderate abundance of Phe, Ser,
Thr, Trp and Tyr; and a high abundance of Ala, Cys, Gly, His, Ile,
Lys, Leu, Pro, Arg and Val (32, 33).

In general, AMPs are characterized by a high prevalence of
amino acid residues classified as hydrophobic, cationic (basic), and
aromatic (32–38). ACPs derived from AMPs were expected to show
a similar trend in amino acid abundance (Figure 3). In silico models
and exploratory data analysis confirmed a preference for certain
amino acids (Ala, Cys, Gly, Lys, and Leu) in both AMPs and ACPs
global datasets (39, 40). Additionally, Arg and Trp amino acids were
also found in many AMPs (20, 41–43) and ACPs (44, 45).

4.1.2 Net positive charge
AMPs are generally cationics (CAMPs), with their charge

varying from +2 to +11, owing to the overrepresentation of Arg
and/or Lys residues. It is widely accepted that cationicity conferred
by Arg and/or Lys is primarily responsible for the initial interaction
of CAMPs with the negatively charged membrane surface of cancer
cells. Studies have demonstrated a direct correlation between the
peptide charge and cytotoxicity against tumor cells (46–48).

In addition, these basic amino acids (charged Arg or Lys)
can deform the lipid bilayer by pulling water molecules and lipid
head groups into the hydrocarbon core of the lipid membrane,
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FIGURE 1

Common methods for classifying antimicrobial peptides.

FIGURE 2

Simple scheme of the main mechanism of action of CAMPs on tumor cell membranes. (A) CAMPs first bind to the tumor cell membrane through
electrostatic interactions and become adsorbed onto its surface, inducing conformational changes in their structure. Once a threshold
concentration is reached, membrane disruption occurs through different mechanisms: (B) carpet detergent-like model, (C) barrel-stave model, or
(D) toroidal pore model. These disruptions ultimately lead to tumor cell death by apoptosis or necrosis, depending on the mechanism involved.
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FIGURE 3

Grouping of 20 common amino acids. Based on their chemical characteristics and hydropathy, they are derived from the physicochemical
properties of the amino acid side chains. Additionally, the circle dashed line corresponds to amino acids with high preference for both AMPs and
ACPs.

as demonstrated by atomistic molecular dynamics. However, Arg
causes greater membrane perturbations by attracting more lipid
phosphate groups because Arg forms more hydrogen bonds with
lipid phosphates than Lys (49).

In general, peptides enriched in Lys within their hydrophilic
regions exhibits more selective anticancer activity, whereas those
containing Arg tend to display higher toxicity in normal cells
(50), as observed with AMP/ACP tritrpticin (RRFPWWWPFLRR)
when arginine was substituted with lysine, which improved the
selectivity of peptides toward Jurkat cancer cells compared with
normal peripheral blood mononuclear cells (PBMCs) (51).

4.1.3 Amphipathicity
Amphipathicity refers to the spatial distribution of hydrophilic

and hydrophobic peptide residues, which allows AMPs to align
themselves at the membrane interface, with hydrophobic residues

facing the lipid core and hydrophilic residues interacting with the
aqueous environment (52, 53).

The initial interaction between CAMPs and microbial or tumor
membranes is driven by electrostatic forces through the interaction
of the positively charged hydrophilic region of CAMP and
negatively charged components of these membranes; subsequently,
the hydrophobic region of CAMPs becomes embedded in the
membrane through van der Waals interactions. This leads to
compromised membrane functionality and increased permeability
(54–57).

4.1.4 Hydrophobicity
Hydrophobicity, an important physicochemical characteristic

of AMPs, is the percentage of hydrophobic amino acids in the
peptide. Typically, AMPs have hydrophobicity values close to 50%,
and are expected to contain both hydrophilic and hydrophobic
amino acid residues (58). AMPs can interact with membranes,
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and certain ratios of hydrophilic charged residues affect peptide-
membrane interactions (59) as they control the partitioning of the
peptide into the membrane hydrophobic core (60).

Peptides can adopt different structures based on
hydrophobicity and environmental factors, such as folding into
an α-helical conformation in the presence of certain micelles (61).
Manipulation of peptide hydrophobicity can enhance anticancer
activity by altering their amphipathicity and secondary structure
conformation. Studies indicate that increasing the hydrophobicity
of peptides may increase their self-association and cytotoxicity
against cancer cells (62), but sometimes also increase hemolytic
activity (61, 63).

For example, the N-terminus of AMP CM4
(RWKIFKKIEKVGQNIRDGIVKAGPAVAVVGQAATI) was
modified by conjugating fatty acids of varying lengths (4–
16 carbons) to enhance hydrophobicity, helical content, and
anticancer activity. The best anticancer effects were observed
in breast cancer cells when AMPs were conjugated with fatty
acids of 12–16 carbons (64). Hence, hydrophobicity is a critical
parameter that must be optimized for the development of
CAMP/ACP-based drugs.

4.1.5 Structural folding
The conformation of a peptide structure can be affected by the

environment in which it is immersed. In aqueous solutions, linear
AMPs are mostly unstructured; however, upon interaction with
the hydrophobic environment of the lipid bilayers, they undergo
significant conformational changes. By adopting specific secondary
structures, such as α-helices, β-sheets, or extended polyproline-
like helices, which increase amphipathicity, this structural flexibility
allows AMPs to adapt to various targets (53).

ACPs may adopt α-helical, β-sheet, or linear conformations,
with α-helical ACPs representing one of the largest groups
recognized (65, 66). α-helical AMP/ACP showed higher activity
than linear peptides, which has been attributed to the fact that the
α-helical conformation can project a clear hydrophobic surface and
another hydrophilic surface that allows effective interaction with
microbial and tumor membranes.

4.1.6 Peptide concentration
Antimicrobial peptides with anticancer activity display

concentration-dependent cytotoxicity toward cancer cells and
solid tumors in various studies conducted (57). Another important
feature is the behavior of AMP monomers in solution and
their proximity to the cancer cell membrane, which facilitates
membrane aggregation and subsequent pore formation, leading
to cell death (65). For example, to induce lytic activity, the cancer
cell membrane needs to be exposed to a minimum threshold
concentration of monomers, termed the critical concentration, and
this concentration-dependent process is critical for the therapeutic
efficacy of AMPs (23).

4.1.7 Oligomerization
The capacity for peptide self-association, also known as

oligomerization, is an important characteristic of AMPs.
This oligomerization process is dependent on the amino acid
composition, conformation, and ability of the peptide to align
hydrophobic and hydrophilic regions toward adjacent peptides
and the membrane (67).

4.2 Membrane composition of cancer
cells

Cancer cells differ from normal cells, which is important
for understanding the anticancer activity of CAMPs and
their interaction with tumor cells. The initial recognition
between CAMPs and cancer cells is mainly due to
electrostatic interactions. Cancer cells are more negatively
charged than normal cells due to increased expression of
anionic molecules. In addition, cancer cells have different
cholesterol content, microvilli structure, and extracellular
pH, which also affect CAMP interactions and selectivity
(25, 68).

4.2.1 Negative charge
Cancer cell surfaces are more negatively charged due

to the increased expression of anionic molecules such as
phosphatidylserine (PS), O-glycosylated mucins, and heparan
sulfates (HS), and their exposure to cancer cells, which improves
their interaction with CAMPs (68).

In normal cells, PS is found on the surface of the interior
membranes, whereas in cancer cells, it is externalized, producing
an immune suppressor environment that can promote tumor
growth (69–71), the externalization of PS is a universal feature
of cancer cells, as observed in tumor endothelial cells (ECs) (72).
In addition, PS overexpression has been observed in some cancer
cells, including glioblastoma (Gli), astrocytoma (U373), and breast
cancer (MDA-MB-231-D3H2LN) (70).

In cancer cells, anionic molecules derived from O-glycosylated
mucins are primarily obtained by sialylation and sulfation,
which involve the addition of sialic acid and/or sulfate groups,
respectively. O-glycosylated mucins are crucial for cancer
progression, metastasis, and immune evasion (73).

HS is a type of glycosaminoglycan; it is an unbranched chain
of disaccharide repeats that is heavily sulfated at various positions
on their sugar residues. HS can modulate the effects of various
growth factors and is involved in angiogenesis and metastasis of
cancer cells, and its overexpression has been reported in several
tumors (74–76). HS serves as an initial anchor for cell-penetrating
peptides (CPPs) via electrostatic interactions between the sulfates
or carboxylic groups of HS and the basic amino acids (Arg and/or
Lys) of CPPs (77).

4.2.2 Cholesterol content
Cholesterol is a key part in the formation of cell membranes and

relevant component in maintaining the integrity and organization
of the of phospholipid bilayers (78). Cholesterol content affects the
regulation of membrane fluidity and modulates the chemotherapy
resistance and metastatic properties of cancer cells. When cancer
cells prepare for metastasis, they tend to decrease their membrane
cholesterol levels to maximize membrane fluidity and plasticity,
allowing neoplastic cells to modulate their shape easily (79).

Notably, leukemia and lung cancer cells are more fluid than
healthy cells, owing to their lower cholesterol levels. In contrast,
the opposite trend was observed in breast and prostate cancer cells
(65). Malignant cells with reduced cholesterol content are more
susceptible to lysis, which can facilitate AMP-induced apoptosis
(80, 81).

Frontiers in Medicine 05 frontiersin.org

https://doi.org/10.3389/fmed.2025.1548603
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1548603 April 23, 2025 Time: 18:25 # 6

Varela-Quitián et al. 10.3389/fmed.2025.1548603

4.2.3 Microvilli
A notable difference between cancer and normal cells is the

significantly higher number of microvilli in cancer cell membranes,
which increases their surface area (68). This structural change is
believed to affect the action of AMPs, as cancer cells increase their
membrane fluidity and microvilli density. The increased number of
microvilli augments surface contact and peptide attraction, making
cancer cells more sensitive to AMP interactions. Consequently, this
positive feedback mechanism enhances the efficacy of AMPs against
cancer cells while reducing the risk of resistance development
compared with traditional chemotherapy approaches (65, 80).

4.2.4 Extracellular pH acidification
Cancer tissues have a hypoxic environment caused by limited

blood supply; under these conditions, cancer cells elevate their
production of carbonic anhydrase IX, an enzyme that catalyzes
the reversible conversion of carbon dioxide to bicarbonate and a
proton, referring to its contribution to an acidic microenvironment,
so the extracellular pH (pHe) of cancer cells is lower (pH 6.2–6.9)
than that of normal cells (pH 7.3–7.4) (68).

This phenomenon has been well documented, as shown by
the Guanyu Hao group, who used data collected from several
different sources to compare the average extracellular pHe values of
different normal tissues with those of cancerous tissues (malignant
melanoma, vulvar tumor, urine tumor, lung tumor, breast tumor,
glioblastoma, astrocytoma, and sarcomas). Their findings make
evident the tendency of the higher acidity of the extracellular tumor
environment over normal cells, showing 0.3–0.7 pH units lower of
pHe of cancer cells than normal cells (82). This lower extracellular
pHe has been exploited to induce selective toxicity in cancer cells
using peptide conjugates (83–85).

5 Cationic antimicrobial peptides
with antitumor properties

Chemotherapy remains the predominant treatment for
controlling tumor cells, many anticancer drugs lack specificity
and affect cancer and normal cells, causing toxic side effects.
Furthermore, tumor cells are prone to developing resistance, which
further diminishes the effectiveness of treatment (86).

Given these challenges, the development of new therapeutic
approaches which specifically attack cancer cells without damaging
normal tissues represents an essential requirement (24). In this
context, the exploration of novel CAMPs as prospective anticancer
agents has emerged as a significant field.

5.1 KLA

KLA peptide (KLAKLAK)2 is a de novo-designed CAMP
developed by Javadpour et al. in 1996, and it was designed to adopt
an amphipathic helical conformation. Initially, its antibacterial
activity was evaluated against Gram-negative Bacteria Escherichia
coli and Pseudomonas aeruginosa, and Gram-positive bacteria
Staphylococcus aureus, with minimal inhibitory concentrations
(MICs) of 6, 3, and 6 µM, respectively. In contrast, KLA exhibited
low cytotoxicity against 3T3 mouse fibroblasts (>517 µM)

and human erythrocytes, suggesting a favorable safety profile
(>750 µM) (87).

Subsequently, KLA was evaluated in vitro against various
human cancer cell lines (breast, prostate, and bladder cancer cells)
and in vivo in a breast cancer xenograft model in mice. The results
demonstrated its potent anticancer effects, including of cell death
in most of the cancer cell lines tested. Among them, breast cancer
cell line MCF-7 exhibited the highest sensitivity to KLA (Table 1),
while the peptide had minimal effects on healthy control cells
(peripheral blood lymphocytes and embryonic kidney epithelial
cells). Furthermore, KLA significantly inhibited tumor growth and
prolonged the overall survival of tumor-bearing mice compared
with that of the control group (88).

Jeffrey et al. designed DP1
(RRQRRTSKLMKRGGKLAKLAKKLAKLAK), a conjugated
tumor targeting peptide. DP1 consists of an N-terminal fragment
derived from Protein Transduction Domain-5 (PTD-5), which
facilitates the delivering protein complexes into solid tumors, and
C-terminal KLA sequence. When DP1 was directly added at low
concentrations to the culture medium of the mouse fibrosarcoma
cell line MCA205, *the results showed a significant reduction of
cell viability (LC50 < 50 µM) and triggered significant apoptosis
(programmed cell death) in vivo; in contrast, no significantly effect
of KLA or PTD-5 alone were observed on MCA205 viability (89).

Similarly, a targeted cancer-killing peptide named TP-tox
(LTVSPWYGGKLAKLAKKLAKLAK) was developed to mimic
antibody-drug conjugates (ADCs) without the size restrictions of
conventional ADCs. TP-Tox exhibited selective toxicity in breast,
prostate, and neuroblastoma cancer cell lines. It was more effective
at killing cancer cells than the individual targeting or killing
peptides components. Additionally, weekly injections of TP-ox
significantly slowed tumor growth and improved survival in mice
with breast cancer tumors (MDA-MB-435S) (90).

A set of pH-dependent targeting KLA-conjugated peptides
was developed to prevent off-target effects. It was conducted
using a pH-low insertion peptide (pHLIP) and three KLA analogs.
pHLIP peptides undergo conformational changes in acidic
microenvironments and promote peptide translocation across
the cytoplasmic membrane, such as in tumor microenvironments
(29). Therefore, these conjugated peptides can translocate
KLA to the cytoplasm of breast cancer cells. Each KLA
was synthesized individually with a cysteine residue at the
N-terminus, while pHLIP, containing a cysteine at the C-terminus
(GGEQNPIYWARYADWLFTTPLLLLDLALLVDADEGTCG),
was conjugated to each KLA analog by disulfide bonds and purified.
The resulting chimeric peptides [pHLIP-(KLAKLAK)2, pHLIP-
KLAKLAK, or pHLIP-KLAK] were evaluated in MDA-MB-231
cancer cells and showed concentration- and pH-dependent
cell growth inhibition, with little or no significant decrease in
cell viability at pH 7.4, and 90% inhibition at pH 5.0. pHLIP-
KLAKLAK was identified as a lead conjugate with a IC50 of
0.5 µM to MDA-MB-231 cancer cells (84).

Several other conjugated peptides incorporating the KLA
fragment have been tested as potential cancer therapeutics, showing
promising results (11, 91–93). Additionally, KLA-conjugated
peptides with replacement of all L-to D-amino acids in the
KLA fragment (D-KLA) were evaluated. These D-KLA peptides
retain membrane-disrupting properties similar to those of their
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TABLE 1 Cytotoxic effects of some representative CAMPs with anticancer activity evaluated in vitro in different cancer cell lines.

Name Sequence Source Charge Cell lines-type IC50 (µM) References

KLA
(KLAKLAK)2

KLAKLAKKLAKLAK De novo +6 Breast cancer (88)

MCF-7 88.1

MDA-MB435S 140.0

MDA-MB435 191.0

SKBR3 >320

T47D 247.0

Prostate

DU145 183.3

Urinary bladder
carcinoma

T24 161.6

Neuroblastoma*

Tet21N 167.1

Wac2 181.3

PBL* >320

293* >320

Lactoferricin
(LfcinB)

FKCRRWQWRMKK
LGAPSITCVRRAF

Milk +8 Gastric cancer (101)

AGS 64

LfcinB11 RRWQWRMKKLG Milk +5 Gastric cancer

AGS >500 (101)

LfcinB6 RRWQWR-OH Milk +3 Gastric cancer

AGS >500 (101)

LTX-315
(Oncopore)

KKWWKKW-Dip-K De novo +6 Lung (122)

A549 2.8

Calu-6 2.1

MRC-5* 9.2

NCI-H460 3.4

Colon

COLON 205 2.6

HCT-116 3.4

HCT-15 3.8

HT-29 3.3

Liver

Hep G2 6.7

SK-HEP-1 5.1

Breast cancer

MCF-7 2.2

MCF-7/mdr 2.5

MDA-MB4231 3.6

MDA-MB435S 3.1

T47D 1.2

(Continued)
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TABLE 1 (continued)

Name Sequence Source Charge Cell lines-type IC50 (µM) References

Prostate

DU 145 3.9

PC-3 4.4

Skin

A-431 3.2

Malme-3M 3.3

SK-MEL-2 5.2

*PBL, 293, and MRC-5 are not cancer cell lines and were used as non-cancer controls.

L-counterparts but exhibit enhanced stability in biological systems
(94–96).

5.2 Bovine lactoferricin

Bovine lactoferricin (LfcinB) is 25-amino acids peptide
(17FKCRRWQWRMKKLGAPSITCVRRAF41) generated from
enzymatic digestion of the N-terminal region of bovine lactoferrin.
Its sequence contains eight hydrophilic residues (five arginine
and three lysine), conferring a net charge of +8, along with four
aromatic and hydrophobic residues (two phenylalanine and two
tryptophan), and two cysteines forming disulfide bond. In aqueous
solution, LfcinB adopts a β-sheet secondary structure, where
hydrophobic residues are positioned on one side and hydrophilic
residues on the opposite side (97).

Due to its cationic and amphipathic nature, LfcinB interacts
with negatively charged molecules on cell surfaces and exhibits
broad-spectrum antimicrobial activity against Gram-positive
and Gram-negative bacteria, fungi, and viruses, primarily by
interrupting the microbial cell membranes. LfcinB also exhibits
anticancer properties by selectively targeting negatively charged
cancer cell surfaces, leading to apoptosis or necrosis (57, 98).

LfcinB has demonstrated cytotoxic activity in vitro in various
human and murine cancer cell lines, including colon carcinoma,
lung cancer, liver cancer, melanoma, fibrosarcoma, leukemia, and
breast cancer. Notably, LfcinB treatment does not significantly
affect the viability of normal human lymphocytes, erythrocytes,
endothelial cells, or fibroblasts (99). Additionally, many synthetic
peptides derived from LfcinB exhibit anticancer properties,
highlighting their potential as novel therapeutic agents for cancer
treatment (100).

A study by Pan et al. evaluated bovine lactoferricin peptide
fragments (Table 1) in AGS gastric cancer cells. The assays
revealed that full-length LfcinB peptide selectively inhibited AGS
cell proliferation in a dose-dependent manner, with a half-maximal
inhibitory concentration (IC50) of 64 µM. Furthermore, treatment
with LfcinB results in an increased sub-G1 population within the
cell cycle, indicating the induction of apoptosis (101).

5.2.1 Synthetic derivates inspired by LfcinB
The hexapeptide LfcinB6 (RRWQWR-NH2), which contains

a C-terminal carboxamide functional group, retains the
antimicrobial activity of LfcinB (102–105). However, unlike
native LfcinB, LfcinB6 lacks inherent cytotoxic activity against

T-leukemia or breast cancer cells. This difference is attributed
to weak binding to isolated mitochondria, which prevents
membrane permeabilization or causes cytochrome C release.
Interestingly, when LfcinB6 was delivered using fusogenic
liposome formulations, it was efficiently transported into the
cytosol of cancer cells, where it exhibited strong cytotoxic activity.
The mechanism of cytotoxicity was found to be caspase-and
cathepsin B-dependent but not reliant on reactive oxygen species
(ROS), suggesting a mode of action distinct from that of native
LfcinB (106).

To further enhance the anticancer activity of LfcinB6, it was
conjugated to CPP peptide containing seven arginine residues,
resulting in MPLfcinB6 (RRRRRRRGGRRWQWR). This modified
peptide demonstrated selective cytotoxicity against T-leukemia
and B-lymphoma cells, while sparing normal T cells. MPLfcinB6
rapidly induced extensive cancer cell membranes damage, triggered
ROS production, and disrupted mitochondrial integrity. Its high
selectivity was attributed to strong electrostatic interaction between
its highly cationic seven-arginine motif and the negatively charged
membranes of cancer cells (107).

Inspired by the core sequence of LfcinB6, which contains
cationic terminal residues, a lipophilic central core, and a well-
defined amphipathic structure upon interaction with negatively
charged micelles, Torfoss et al. synthesized eight heptapeptides
(H-KKWβ 2,2WKK-NH2), each with different central lipophilic
β2,2-amino acid building blocks. Among these, one peptide
demonstrated notable anticancer activity, with IC50 values 23 µM
against Ramos cancer cells and 22 µM against A20 carcer
cells. Additionally, this peptide exhibited a high selectivity index,
low toxicity, and improved protein stability (108). Notably,
the promising peptide contains two p-trifluoromethyl benzylic
substituents within its β2,2 amino acid side chain. These
modifications are known to enhance pharmacokinetic properties,
alter the electronic distribution of aromatic side chains, and
increase lipophilicity, thereby optimizing peptide interactions with
the cell membrane components (109–111).

5.3 LTX-315

Rekdal et al. designed, synthesized, and screened a series
of peptide inspired by LfcinB derivatives, which demonstrated
preferential cytotoxicity against cancer cells over normal cells (112–
115). The culmination of their efforts led to the development of a
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novel and optimized CAMP/ACP named LTX-315 (KKWWKKW-
Dip-K) (116).

LTX-315 was obtained by screening a set of lytic nonapeptides
using the sequence template KKWWKKWWK, in which
tryptophan (Trp) residues were systematically substituted
with non-coding amino acids: Ath: 9-anthracenylalanine,
Bip: Biphenylalanine, Dip: 3,3-diphenylalanine, 1-Nal:
1-naphthylalanine, and 2-Nal: 2-naphthylalanine. The
KKWWKKWWK peptide has a net charge of +6 at physiological
pH and is modeled as an α-helical amphipathic structure, with
aromatic residues on one side of the helix and cationic residues on
the other. Notably, the incorporation of non-coding amino acids
has allowed the production of CAMPs (117) and CAPs, enhancing
their structural diversity and functional properties (118–121).

Initially, 18 peptides, template peptide and 17 modified
peptides, were tested against human A20 lymphoma and murine
AT84 squamous cell carcinoma cell lines. A lead series of
five peptides, including LTX-315, were identified. These lead
candidates were subsequently evaluated against a broad range
of cancer cell lines, including drug-resistant strains, were LTX-
315 emerged as a highly effective candidate with low activity
toward healthy cells (Table 1). Consequently, LTX-315 peptide was
selected as the lead candidate for preclinical and clinical studies
(122).

LTX-315 is not harmful to human red blood cells (hRBCs),
with EC50 > 695 µM. In contrast, it has been observed to rapidly
induce cancer cell death in vitro, triggering the release of several
danger signals patterns (DAMPs) associated with immunogenic cell
death (ICD) and enhanced adaptive immunity. Additionally, LTX-
315 induces inflammation and activation of immune cells, such as
cytotoxic CD8+ T cells, resulting in tumor shrinkage and systemic
immune reactions, as shown in preclinical studies (119, 122, 123).

Two notables preclinical studies explored the combination
of LTX-315 with doxorubicin or anti-CTLA-4 antibody. First,
administration of LTX-315 with CAELYX R© (bran name of the
chemotherapy drug doxorubicin) in a murine model triple-negative
breast cancer (TNBC) yielded promising results. 4T1 breast cancer
cells were implanted, which subsequently mice received LTX-315,
CAELYX, or a combination of both. The combination therapy
significantly reduced the tumor size, leading to complete regression
in 50% of the cases. It also causes extensive tumor necrosis and
increases the infiltration of CD8+ T cells into tumors (124). The
second study involved the combination of LTX-315 and anti-
CTLA-4 antibody, which block the interaction of CTLA-4 with its
ligands B7.1 and B7.2 to enhance immune responses, including
antitumor immunity. In murine models of sarcoma and melanoma,
LTX-315 and anti-CTLA-4 were injected directly into tumors and
responses in both treated and untreated tumors, as well as changes
in immune cells, were monitored. The combination therapy
proved more effective in reducing and eliminating tumors than
individual treatments; where LTX-315 decreases the population
of suppressor cells and increases active cancer-fighting cells,
altering the tumor environment, whereas anti-CTLA-4 enhances
the immune response (125). These two promising preclinical
studies were conducted in animal models, and further research is
required to evaluate the safety and efficacy of these combination
therapies in clinical trials.

In a phase I clinical trial (NTCNCT01986426), LTX-315
was evaluated in a dose-escalation study involving intratumoral

administration, to assess its safety, tolerability, and efficacy. A total
of 39 patients with various advanced solid tumors, including
melanoma, breast, head and neck, sarcoma, gastrointestinal,
desmoid, pancreas, primary vaginal cancer, and carcinoma of
unknown primary, were enrolled. These results indicate that
LTX-315 has an acceptable safety profile, is clinically active,
induces alterations in the tumor microenvironment, and promotes
immune-mediated anticancer activity (126).

Currently, a phase II clinical trial (NCT04796194) is being
conducted to investigate the use of LTX-315 in combination with
pembrolizumab, focusing on patients with advanced melanoma
who have access to percutaneous injections (127). Pembrolizumab
is a human antibody approved by the FDA for use in cancer
immunotherapy to bind to and block the PD-1 receptor on
lymphocytes. It is an immune checkpoint inhibitor (ICI) that
avoids the mechanisms used by many cancer cells expressing PD-
L1 on their surfaces that could interact with PD-1 in T cells and
send a signal to deactivate T cells, effectively preventing them
from attacking the tumor (128). To date, LTX-315 has undergone
six clinical trials (NCT01986426, NCT01223209, NCT03725605,
NCT05188729, NCT01058616, NCT04796194), demonstrating
its great potential and versatility as a short cationic peptide
with ACP properties.

5.3.1 NTP-217: a synthetic derivate inspired by
LTX-315

A derivative of LTX-315 conjugated to rhodamine B (NTP-217)
exhibited remarkable enhancement in anticancer activity, achieving
a 2.4 to 37.5-fold increase in potency across a diverse panel of
adherent cancer cell lines (129). Notably, the efficacy of the hybrid
peptide NTP-217 (H-rhodamine B-GABA-KKWWKKWDipK-
NH2, where GABA refers to gamma-aminobutyric acid) was
rigorously evaluated against liver cancer cells in both in vitro and
in vivo models.

Comprehensive assessments, including cell proliferation, cell
migration assays, as well as in vivo tumor growth experiments,
confirmed NTP-217’s potent anticancer effects. The study
concluded that NTP-217 significantly outperformed the parent
peptide LTX-315, which proved to be more potent in inhibiting
proliferation and migration of liver cancer cells (130).

6 Chemical modifications to
enhance peptide resistance to
proteolytic degradation

Peptides, particularly AMPs, offer remarkable versatility in
cancer treatment and possess substantial potential for overcoming
the shortcomings of alternative therapeutic methods (11, 131).
However, a key challenge in developing peptide-based medications
is that AMPs, which are sometimes effective in vitro, often lose their
activity in vivo because of proteolytic degradation in serum (132).

To prevent or mitigate proteolytic degradation, several
chemical modification strategies have been employed in the
development of synthetic antimicrobial peptides, such as terminal
protection, backbone modification, glycosylation, PEGylation, and
cyclization (17, 63, 133, 134).
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6.1 Terminal protection

Terminal protection strategies help to protect peptides against
proteolytic degradation by peptidases, which can cleave both the
N-terminal and C-terminal regions of the peptide. This chemical
modification can also enhance the half-life and therapeutic efficacy.
N-terminal acetylation or C-terminal amidation can fulfill this
purpose (135) and similar objectives can be achieved by modifying
the termini with unnatural amino acid analogs (136).

6.2 Backbone modification

Backbone modifications include substitution reactions, such
as replacing the carbonyl oxygen with sulfur or substitution
hydrogen atoms in nitrogen or α-carbon. D-amino acids can
be considered a form of backbone modification, and their
incorporation into the peptide backbone can increase the resistance
to proteolytic degradation. These modifications can also produce
profound changes in molecular chirality and conformation, thereby
improving peptides stability and bioavailability (17, 137, 138).

6.3 Glycosylation

Glycosylation is the peptide-carbohydrate bond formation
which is utilized to improve the cancer treatment outcomes.
It improves the tissue targeting, enhances the delivery to the
tumor and extends the serum half-life through the inhibition of
enzyme degradation. Glycosylated peptides generally show greater
permeability across the membrane, which leads to increased cellular
uptake and reduced off-target toxicity. Furthermore, glycosylation
can affect the immunogenicity of the peptide, which enhances the
biocompatibility and the in vivo circulation time. The performance
of glycosylated peptide conjugates is a function of the arrangement,
type, and number of sugar units which affect the stability, cellular
interaction, and therapeutic potential of these compounds (134).

6.4 PEGylation

PEGylation is the attachment of one or more chains of
polyethylene glycol (PEG) to a peptide. The application of this
modification leads to an increase in peptide solubility and an
inhibition of renal clearance together with protection against
enzymatic degradation (139), resulting in an extension of the half-
life and increased systemic circulation (140). The use of PEGylated
peptides has been shown to produce decreased immunogenicity
along with enhanced tumor penetration properties, resulting in
sustained drug release and improved bioavailability (141).

6.5 Cyclization

Cyclization enhances peptide stability and bioactivity by
reducing conformational flexibility and providing better protection
against degradation. The formation of a covalent bond, either
at the termini or side chains, increases structural rigidity that

results in a longer half-life. The anticancer potency of AMPs
has been improved through several cyclization methods including
head-to-tail cyclization, side-chain cyclization, and peptide stapling
(142, 143).

7 Computational pipeline for the
selection, optimization, and
translation of anticancer peptides
from antimicrobial peptides

Early exploration experiments require enormous budgets
because the identification and improvement of novel ACPs are
labor-intensive, expensive, and time-consuming. In this context,
bioinformatics tools present compelling methodologies for ACP
discovery (144), that could be applied to enhance CAMPs, which
are naturally anticancer, by making them more specific and potent
with less toxicity to normal cells (145).

The selection pipeline for ACPs from AMPs is organized
systematically, encompassing phases of candidate selection,
computational optimization, experimental validation, and clinical
translation (Figure 4).

7.1 Selection of candidate peptides

The candidate selection process requires the evaluation
of AMPs with anticancer activity retrieved from specialized
databases such as APD3, CAMP, CAMPR4, DRAMP, DBAASP,
and others. The evaluation includes assessment of key
physicochemical properties including charge, hydrophilicity,
hydrophobicity, amphipathicity, isoelectric point (pI) and
propensity to in vitro aggregate (146–149). While removing
toxic or hemolytic peptides using bioinformatic tools such
as ToxinPred (150) and HemoPI (Table 2) (151–153),
respectively.

7.2 Computational optimization

The candidate peptides receive refinement through
computational predictions and optimization which depends
on bioinformatics tools such as AntiCP, ACPred and
xDeep-AcPEP to evaluate anticancer activity (45, 154, 155).
The classification tools such as CancerGram and TriNet
server to distinguish antimicrobial from anticancer peptide
(156–158).

Molecular modeling techniques predict peptide structures
using tools such as PEP-FOLD3 and AlphaFold3 (159, 160),
peptide-membrane interaction simulations are conducted with
tools like GROMACS, AMBER, or CHARMM (161–163), and
binding affinity assessment through docking studies using tools like
AutoDock, HADDOCK or Rosetta (164–167).

Furthermore, Quantitative Structure–Activity Relationship
(QSAR) models and AI-driven tools optimize sequences based on
physicochemical correlations, machine learning algorithms (168),
and stability predictions (PROSPER or PeptideCutter) (169, 170).
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FIGURE 4

Anticancer peptides selection pipeline. The selection of ACPs from AMPs follows a structured method that begins with identifying potential
candidates, then moves on to computational refinement and experimental validation, before advancing to clinical use.

TABLE 2 Computational tools for predicting ACPs.

Tool Description References

ToxinPred Predicts peptide toxicity, including hemolytic potential, ensuring safety in peptide-based therapeutics. (150)

HemoPI Predicts the hemolytic potential of peptides, which is crucial for peptide-based therapeutic safety. (151)

HemoPred Web-based tool for assessing hemolytic properties of peptides to optimize safety in drug design. (152)

HAPPENN Predicts hemolytic activity of peptides using an ensemble neural network model. (153)

AntiCP Identifies ACPs based on amino acid composition and binary profile characteristics. (154)

AntiCP 2.0 Enhanced version of AntiCP with improved predictive accuracy. (154)

ACPred Web-based tool designed to predict and characterize ACP activity in peptides. (45)

xDeep-AcPEP Uses deep learning to predict ACP activity and identify key functional residues. (155)

CancerGram Differentiates ACPs from AMPs and non-ACP/AMP peptides using a three-class model. (156)

TriNet Classifies ACPs with high accuracy using a deep neural network approach. (157, 158)

PEP-FOLD3 Predicts 3D structures of peptides using a de novo approach based on fragment assembly simulations. (159)

AlphaFold 3 AI-powered tool for protein and peptide structure prediction, integrating advanced deep learning techniques to model
complex molecular interactions with high accuracy.

(160)

GROMACS Molecular dynamics simulation package used to study peptide conformations, interactions, and stability. (161)

AMBER Suite of molecular simulation programs for modeling biomolecules, including peptides and proteins. (162)

CHARMM Molecular docking tool used to predict the interaction of peptides with target molecules. (163)

AutoDock Molecular docking tool used to predict the interaction of peptides with target molecules. (164)

HADDOCK Information-driven docking software for predicting protein-peptide and protein-protein interactions. (165, 166)

Rosetta Computational modeling suite for protein structure prediction, docking, and design of peptide therapeutics. (167)

PROSPER In silico tool for predicting protease-specific cleavage sites in peptides and proteins. (169)

PeptideCutter Predicts potential cleavage sites in a given peptide sequence for various proteases. (170)

7.3 Experimental validation

Experimental validation involves conducting in vitro
cytotoxicity assays, such as MTT colorimetric assay, assessing
selectivity through hemolysis assays on erythrocytes, and
evaluating toxicity on normal cells (171, 172). Additionally,

membrane disruption assays, including flow cytometry, confocal
microscopy, or calcein leakage assays, are examined (173).

Subsequently, in vivo validation is performed using tumor
models, where applicable, encompassing efficacy evaluation
through xenograft mouse models and toxicity assessment via
hematological and histopathological analyses (174, 175).
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7.4 Lead optimization and clinical
translation

The phases of lead optimization and clinical translation
necessitate modifications to improve stability, while formulation
strategies are devised to ensure effective delivery. Preclinical
evaluations concentrate on pharmacokinetics, immunogenicity,
and scalability to facilitate the advancement of therapeutic
development (176, 177).

8 Conclusion

Cationic antimicrobial peptides (CAMPs) are considered
as potential anticancer agents because they can bind to the
negative charged membrane of tumor cells without affecting
normal cells. The anticancer activity of CAMPs is dependent
on several physicochemical characteristics such as amino acid
composition, net charge, hydrophobicity, amphipathicity and
secondary structure. Examples such as KLA, bovine lactoferricin
derivatives and LTX-315 have been shown to have potent
anticancer activity, thus highlighting the potential of CAMPs as
anticancer agents.

In order to improve the stability and bioavailability of
CAMPs, several chemical modifications like terminal protection,
backbone modification, glycosylation, PEGylation and cyclization
have been used to enhance the resistance to proteolytic degradation.
Moreover, to design next generation anticancer peptides, machine
learning driven computational tools have been developed to
improve the prediction. However, due to the existing problems
such as high production costs, short half-life and possible off-
target toxicity, CAMPs still stand as a valuable scaffold for the
development of peptide-based anticancer therapeutics. Further
structural optimization, chemical modifications and computational
advancements will be crucial to fully exploit the potential of CAMPs
for clinical uses.
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