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Recognizing epilepsy through neurophysiological signals, such as the

electroencephalogram (EEG), could provide a reliable method for epilepsy

detection. Existing methods primarily extract e�ective features by capturing

the time-frequency relationships of EEG signals but overlook the correlations

between EEG signals. Intuitively, certain channel signals exhibit weaker

correlations with other channels compared to the normal state. Based on

this insight, we propose an EEG-based epilepsy detection method with

graph correlation analysis (EEG-GCA), by detecting abnormal channels and

segments based on the analysis of inter-channel correlations. Specifically, we

employ a graph neural network (GNN) with weight sharing to capture target

channel information and aggregate information from neighboring channels.

Subsequently, Kullback-Leibler (KL) divergence regularization is used to align the

distributions of target channel information and neighbor channel information.

Finally, in the testing phase, anomalies in channels and segments are detected

by measuring the correlation between the two views. The proposed method

is the only one in the field that does not require access to seizure data during

the training phase. It introduces a new state-of-the-art method in the field and

outperforms all relevant supervised methods. Experimental results have shown

that EEG-GCA can indeed accurately estimate epilepsy detection.

KEYWORDS

electroencephalogram, graph neural networks, correlation analysis, anomaly detection,

abnormal EEG channels detection

1 Introduction

The field of affective computing has witnessed significant development, drawing

attention to emotion detection, especially in medical research related to epilepsy (1).

While epilepsy, as a neurological disorder, manifests symptoms that encompass seizures,

it often intertwines with fluctuations in emotional states. These emotional variations, a

common symptom in epilepsy patients, are crucial for accurate disease monitoring and

treatment (2).

Scalp electroencephalogram (EEG) stands as the primary tool for detecting seizures,

capturing voltage changes between electrodes and providing spatial-temporal insights into

brain activity (3–5). However, the current approach to seizure detection in EEGs relies on

manual examination by experienced EEG readers, demanding substantial time and effort.

Furthermore, discrepancies in diagnostic results may emerge due to varying opinions

among experts (6).
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To address these challenges, there is a pressing need for the

development of automated and objective methods for epileptic

seizure detection. While many studies have proposed deep learning

(DL)-based models for automated seizure detection, several

challenges persist (7–9). These models often train in a supervised

approach, necessitating labeled seizure data that is both scarce and

labor-intensive to obtain in real-world applications. Additionally,

existing models frequently apply deep convolutional neural

networks (CNNs) directly to time-series signals or spectrograms,

overlooking crucial information related to physical distance-

based and functional-based connectivity between different brain

regions (10).

Recent studies have introduced graph learning techniques to

capture relationships between EEG electrodes (i.e., EEG nodes)

(6, 11, 12). However, these approaches fall short in considering

local patterns, such as local sub-graphs and sub-structures, when

learning EEG graphs. The inclusion of such local information

could prove effective in detecting anomalies in EEG graphs, as

demonstrated in other network analysis applications. In real-

world applications, an imbalance in data availability between

seizure and normal classes is common. Graph-based methods

addressing this issue often employ graph augmentation, but not

every augmentation technique is effective in EEG graphs (10),

as some may compromise underlying brain region connectivities.

Therefore, identifying appropriate augmentation strategies in EEG

graphs that preserve semantic information is crucial for accurate

seizure detection and localization (13).

This study delves into detecting the anomaly channels of

EEG signal in patients with epilepsy (14). We propose an

innovative method for epilepsy detection that distinctively focuses

on exploring the inter-channel relationships within EEG signals,

deemed essential for understanding the patient signal variations.

We introduce an anomaly detection approach for EEG channels

and segments based on inter-channel correlation analysis. This

method utilizes Graph Neural Networks (GNNs) (15, 16) to

capture the correlation between different channels, providing a

more accurate reflection of anomaly changes. To achieve precise

detection of anomaly channels in an EEG signal, we propose

an EEG-based epilepsy detection method with graph correlation

analysis (EEG-GCA), employing a weight-sharing GNN and

aligning different channel information distributions with Kullback-

Leibler (KL) (17) divergence regularization. During the testing

phase, we detect anomalous channels and segments by measuring

the correlation between two views, thereby achieving sensitive

identification of abnormalities in epilepsy. Notably, our proposed

method not only performs well in experiments but is also the only

training approach that does not require access to seizure data. This

research holds practical significance in improving the effectiveness

of epilepsy patient treatment.

• We proposed a method named EEG-GCA for inter-channel

correlation analysis simulating the correlation between

channels in EEG, revealing subtle differences in patient

anomaly changes. This algorithm provides a new approach to

EEG signal processing.

• We redefined the anomaly channel detection of EEG as the

correlation between channel feature distribution and their

neighbors’ distribution, and we designed an Unsupervised

model to verify the effectiveness.

• The performance evaluation of the proposed abnormal EEG

node and region detection is conducted on the extensive

and comprehensive EEG seizure dataset TUSZ. The results

demonstrate that EEG-GCA sets a new benchmark, achieving

state-of-the-art performance on this dataset.

2 Related works

2.1 EEG analysis

Electroencephalogram analysis has become one of the

prominent directions (18, 19). The following is a review of relevant

work in this field, focusing on the application of different methods

and technologies.

(a) Early approaches to epilepsy recognition primarily relied on

traditional feature extraction techniques combined with machine

learning algorithms (20, 21). Researchers extracted features from

different domains, including time-domain, frequency-domain, and

time-frequency-domain features, such as power spectral density

and energy, to capture epilepsy-related patterns from EEG signals

(22). Common machine learning models used in these early

approaches included support vector machines (SVM) and decision

trees (23, 24). While these methods achieved some success, their

performance was often limited by the challenges of manually

extracting relevant features and their inability to fully capture the

complex dynamics of EEG signals.

(b) In recent years, deep learning methods have gained

significant attention for their ability to enhance EEG-based

epilepsy recognition (25). Architectures such as convolutional

neural networks (CNNs) (26, 27) and recurrent neural networks

(RNNs) (28) have been successfully applied, allowing models to

learn feature representations in an end-to-end fashion. These

deep learning techniques excel at capturing abstract and complex

features from the raw EEG signals, significantly improving the

accuracy of epilepsy recognition (24, 29). Furthermore, techniques

such as transfer learning and multimodal fusion have been

extensively explored to improve the generalization capabilities of

these models, enabling better performance on unseen data.

(c) Beyond EEG signals, there has been growing interest in

integrating data from multiple modalities for epilepsy recognition

tasks, including physiological signals, speech, and images (30).

Cross-modal research aims to combine information from diverse

sources, thereby enhancing the robustness and comprehensiveness

of epilepsy detection systems (31, 32). This approach leverages

complementary data to improve model performance, offering a

more holistic view of the patient’s condition and enhancing the

reliability of diagnosis (33).

2.2 Canonical correlation analysis

Canonical correlation analysis (CCA) (34, 35) is a method

that aims to find the linear transformation for measuring the

relationship between two vectors. Give two vectors X1 and X2, the
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correlation ρ = aT6X1X2b√
aT6X1X1 a

√

bT6X2X2b
is maximized by optimizing

the objective :

max
a,b

aT6X1X2b, s.t.a
T6X1X1a = bT6X2X2b = I (1)

Soft-CCA (36) considers the decorrelation constraint as a term

of loss and optimizes it jointly with other terms, and the objective

of Soft CCA is:

max
θ1,θ2

Tr(PTθ1 (X1)Pθ2 (X2))

s.t.PTθ1 (X1)Pθ1 (X1) = PTθ2 (X2)Pθ2 (X2) = I

(2)

where I is the identity matrix, and Equation 2 can be rewritten as:

min
θ1,θ2

||Pθ1 (X1)− Pθ2 (X2)||2F+

λ(LSDL(Pθ1 (X1))+ LSDL(Pθ2 (X2)))
(3)

where Pθ1 and Pθ2 are the neural networks used to learn the

representations of the two views. ||Pθ1 (X1) − Pθ2 (X2)||2F is used to

maximize the correlation between the two views, and LSDL is used

to minimize the distance between Pθi (Xi) and the identity matrix.

2.3 Graph learning methods

Graph data, being non-Euclidean, poses a challenge for

traditional convolution methods. The effective learning of

information from graph data is an actively researched problem

(37). In the context of graph data, the learned representation of

nodes should encapsulate both the structural information of the

graph and the attributes associated with each node. Existing graph

learning methods can be broadly categorized as follows:

Truncated Random Walk-Based Methods: These methods

operate on the assumption that nodes with similar network

structures should have similar vector representations. A notable

approach in this category is DeepWalk (38), which employs

random walks to generate training data and leverages Word2vec

(39) to learn node representations. Node2vec (40) captures

homogeneity and structural equivalence through weighted random

walks.

Methods Based on k-Order Distance Between Nodes in the

Graph: These approaches, exemplified by methods like LINE (41)

and GraRep (42), learn node representations by capturing k-order

relational structure information, aiming to achieve high-quality

node embeddings.

Deep Learning-Based Methods: Distinguished by their use of

deep learning, these methods (43, 44) leverage the advantages of

deep neural networks to extract high-order nonlinear relationships

from graph data.

Graph neural networks (GNNs) (45) represent a significant

advancement as they directly operate on graph data, aggregating

each node’s features with those of its neighbors. Building on

GNNs, certain methods (46, 47) utilize GNNs to learn node

representations. They employ adversarial learning to regularize

these representations and predict the likelihood of an edge existing

between a pair of nodes. However, these approaches predominantly

rely on graph structure information.

Moreover, methods based on dual-autoencoders, such

as AnomalyDAE (45) and Dual-SVDAE (48), use Graph

Convolutional Networks to capture graph structure information.

They combine this with multi-layer perceptrons (MLPs) to capture

node attribute information, thereby making full use of attribute

network information.

3 Method

In this section, we detail the EEG-GCA in Figure 1. It consists

of a graph construct module, the information mining model, and a

correlation analysis module. At first, we construct the EEG graph

as input for our model. Then, we introduce an identity graph that

represents the identity matrix, signifying no relationships between

the channels. This graph aims to capture the features of each

channel in the EEG data. Then, we input the EEG graph and

identity graph into a weight-sharing GCN to learn the distribution

of structural information and distribution of semantic information

and pull the distributions to the same prior distribution through the

Kullback-Leibler (KL) divergence. Finally, we sample the network

structure embedding and node embedding from the learned

distribution and maximize the correlation of normal nodes on the

network structure distribution and node attribute distribution by

using the CCA-based objective. The correlation score is used to

detect the anomaly channels.

3.1 EEG graph construction

In this paper, we first construct the EEG graph as input. The

EEG graph can be defined as an attributed network G = {A,X}.
Where A ∈ R

N×N is the adjacency matrix that denotes the

connection between each electrode. X ∈ R
N×D denotes the feature

matrix. Xi is feature of the i-th channel. Similar to the study, given

an EEG clip, we construct five types of EEG graphs (12).

• Dist−EEG−Graph strives to embed the structure of electrode

locations in the graph’s adjacency matrix by leveraging the

Euclidean distance between electrodes. Given that electrode

locations remain fixed within an EEG recording cap, the same

adjacency matrix is applied to all EEG clips. More precisely,

the elements aij of the Dist-EEG-Graph are computed as

follows:

aij =
{

exp(− ||vi−vj||
τ 2

), if ||vi − vj||2 ≤ k,

0, if O.W.
(4)

Here, || • ||represents the l2-norm, and τ is a scaling

constant. The proximity between two electrodes, vi and vj,

is reflected by the proximity of aij to 1. In this paper, k is

uniformly set to 0.9 across all EEG clips. Assigning a value of

0 to aij for distant electrodes introduces sparsity to the graph.

• Corr−EEG−GraphThe purpose of this graph is to capture the

functional connectivity between electrodes, which is encoded
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FIGURE 1

The framework of the proposed EGG-GCA.

in the elements of the adjacency matrix defined as follows:

aij =







corr(Xi ,Xj)

||Xi||||Xj|| , if vj ∈ N (vi),

0, if O.W.
(5)

where corr(•) denotes the cross-correlation function, and vi
represents the top-3 neighborhood nodes of vi with the highest

normalized correlation.N (vi) is set to the top-3 neighborhood

nodes to avoid overly connected graphs. Additionally, we only

keep the top three edges for each node to prevent excessively

connected graphs.

• Rand − EEG − Graph The construction of this graph

is grounded on the assumption that all electrodes are

interconnected and equally contribute to brain activities. The

realization of this graph involves the formation of an adjacency

matrix according to the following procedure:

aij =
{

0.5, if i 6= j,

1, if O.W.
(6)

• Full − EEG − Graph Similar to the Rand − EEG − Graph,

The construction of this graph is grounded on the assumption

that all electrodes are interconnected and equally contribute to

brain activities. But the aij is set as 1 for each connection.

• DTF − EEG − Graph The Directed Transfer Function Graph

aims to represent the mutual influence between EEG channels,

therebymodeling the functional connectivity of different brain

regions. The adjacency matrix for this graph is defined as

follows:

aij =







corr(Xi ,Xj)
√

∑n
m=1,m6=i,j||corr(Xi ,Xm))||2

, if vj ∈ N (vi),

0, if O.W.

(7)

3.2 Weight-sharing GCN

To learn the correlation within the weight-sharing Graph

Convolutional Network (GCN) for capturing the semantic and

structural information of each node, we introduced an identity

graph denoted as G
′ = {I,X}, where I represents the identity matrix

signifying no relationships between the channels. This approach

enhances the similarity between the semantic information and

the graph structure information of each node by transferring the

learned semantic information to all node features. Consequently,

each channel feature can be obtained by inputting the identity

graph into the Weight-Sharing GCN.

The construct EEG-graphG explicitly expresses the correlations

between the channels in the EEG data, therefore, to capture the

relationship information (structural information) between different

channels, we input the EEG graph G = {A,X} to the weight-

sharing GCN.

GCN(X,A|W) = ϕ((D)−
1
2A(D)−

1
2XW) (8)
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where W is the learnable sharing weight, ϕ is activation function,

and D is the diagonal degree matrix of the constructed EEG

graph G.

To extract each channel information (node semantic

information), the identity aggregation is designed which inputs the

identity graph G
′ = {I,X} to the weight-sharing GCN:

GCN(X, I|W) = ϕ(IXW) (9)

3.3 Distribution alignment

After obtain the node structural information embedding Zst

and the node semantic information embedding Zse, we capture

the structural distribution q(Zst|X,A) and semantic distribution

q(Zse|X, I) for each node by Equation 10, respectively.

q(Z|X,A) =
N

∏

i=0

q(zi|X,A) (10)

q(zi|X,A) = N (zi|µi, diag(σ
2)) (11)

where Z is the embedding sampled from the distribution. µ is the

mean vector and σ is the variance vector, which is learned by two

different GCN layers.

µ = GCNµ(H,A|W) (12)

σ = GCNσ (H,A|W) (13)

where µh and σ h denote the mean and variance vectors of the

structural distribution learned by Equations 12, 13. Similarly, µf

and σ f are the mean and variance vectors of semantic distribution

learned by Equations 12, 13.

To capture the correlation between the two distributions, we

should align the structural distribution and semantic distribution.

Due to it being harder to directly align two distributions, we use

a Gaussian distribution as prior distribution p and use Kullback-

Leibler (KL) divergence to align the two distributions wanting this

prior distribution to achieve the desired effect.

Lkl = −KL[q(Zst|X,A)||p(Zst)]− KL[q(Zse|X, I)||p(Zse)] (14)

3.4 Decoder

The reconstruction of graph data is divided into twomain parts,

the reconstruction of the network structure and the reconstruction

of the node attributes. Since nodes in graph data often have complex

interactions with each other, it is necessary to fuse the features of

each node with those of their neighbors.

Zf = Zst + Zse (15)

Then we use an L-layers Multi-Layer Perceptron (MLP) to

reconstruct the node attributes.

Z
(l)
f

= σ (Z
(l−1)
f

W(l−1) + b(l−1)) (16)

where Z
(l−1)
f

, Z(l), W(l−1) and b(l−1) are the input, output, the

trainable weight and bias matrix of (l − 1)-th layer respectively,

l ∈ {1, 2, ..., L}. σ (•) is the activation function. Finally, the

reconstruction of node attributes X̂ = Z
(L)
f

is obtained from the

output of the last layer in MLP.

For the reconstruction of the network structure, we use an inner

production of fusion embedding Zf to reconstruct the network

structure.

Â = ZfZ
T
f (17)

The reconstruction loss is defined as:

Ldec = ||X− X̂|| + ||A− Â|| (18)

3.5 Correlation analysis objective

The objective of correlation analysis is to discern the

relationship between structural distribution and semantic

distribution. Initially, we sample the embeddings of structural

information, denoted as Zst, and semantic information, denoted

as Zse, from the distributions of structural features q(Zst|X,A)
and semantic features q(Zse|X, I). Subsequently, we normalize the

node embeddings for the two perspectives using the following

procedure.

Z
′
st =

Zst − µ(Zst)

σ (Zst) ∗ N
1
2

Z
′
se =

Zse − µ(Zse)

σ (Zse) ∗ N
1
2

(19)

Subsequently, as per the formulation in Equation 3, EEG-GCA

enhances the correlation between the distributions of the two

views by minimizing the invariance between the network structure

embedding Zst and the node attribute embedding Zf . The

invariance loss, denoted as Linv, is defined as:

Linv = ||Z′
st − Z

′
se||2F (20)

To prevent collapsed solutions, we introduce the decorrelation

loss, denoted as Ldco, which aims to guarantee that the individual

dimensions of the features are uncorrelated.

Ldco = ||Z′T
st Z

′
st − I||2F + ||Z′T

se Z
′
se − I||2F (21)

The CCA-based objective is defined as follows:

LCCA = Linv + λ ∗ Ldco (22)

where λ is the trade-off between the two terms.

3.6 Loss function and anomaly score

The training objective of the proposed model

involves optimizing the CCA-based loss along with

minimizing the Kullback-Leibler (KL) divergence
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TABLE 1 Train and test sets of TUSZ used in the supervised method and

unsupervised method.

Data Patients
(% SZ)

EEG files
(% SZ)

EEG clips
(% SZ)

TrainSup 591 (34.0%) 4,599 (18.9%) 38,613 (9.3%)

Trainours 493 (0%) 4,028 (0%) 35,019 (0%)

Test 45 (77.8%) 900 (25.6%) 8,848 (14.7%)

The percentages of the seizure data (SZ) is indicated in parenthesis.

between the network structure distribution and the node

attribute distribution.

L = LCCA + LKL + Ldec (23)

The anomaly score is defined as the correlation between

channels with their structure information.

4 Performance evaluation

4.1 Dataset

In this study, we employed the Temple University Hospital

EEG Seizure Corpus (TUSZ) v1.5.2 (12) as the benchmark dataset.

This dataset stands out due to its extensive inclusion of seizure

categories and patient samples, making it the dataset with the

highest level of variability. Recorded over several years and by

different generations of equipment, the dataset covers subjects

of all ages, adding to its complexity and rendering it the most

challenging for seizure detection. The EEG signals in TUSZ are

captured using 19 channels based on the standard EEG 1,020

system. Table 1 provides an overview of the TUSZ dataset utilized in

our experiments.

During the training phase, we employed an equal number

of normal clips as other supervised methods, omitting any

seizure clips. In the testing phase, we utilized an equivalent

number of test clips, encompassing both seizure and normal

clips, for comparison against other supervised methods and

our proposed approach. To assess the model’s proficiency in

seizure localization, we leveraged available annotations that

specify focal and generalized seizure types from 23 distinct

patients. It’s noteworthy that, in epilepsy patients, focal and

generalized seizure types are more prevalent compared to

other seizure types, making them particularly relevant for

our evaluation.

4.2 Baselines

We conducted a comprehensive evaluation of our proposed

EEG-GCA method by comparing it with two distinct streams of

deep learning-based approaches (12). The first stream involves

well-established DL models operating in the EEG time-series

and spectrograms domain, including EEGNet, EEG-TL, Dense-

CNN, LSTM, and CNN-LSTM. The second stream focuses

on DL models specifically designed for processing EEG graph

data. Notably, our method differs from the others as it is

deliberately trained without utilizing any seizure data in the

training phase, ensuring a fair comparison. In addition, we

compared another method, EEG-CGS (12), a graph-based method,

which utilizes the constructed EEG graph and self-supervised

learning to capture local structural and contextual information

embedded in EEG graphs and detects the anomaly by designed

anomaly scores.

In this paper, we explore six variations of EEG-GCA based on

different input graph types: EEGd-GCA, EEGr-GCA, EEGc-GCA,

EEGf -GCA, EEGt-GCA, and EEGl-GCA. These variations utilize

Dist-EEG-Graph, Rand-EEG-Graph, Corr-EEG-Graph, Full-

EEG-Graph, DTF-EEG-Graph, and Identity-EEG-Graph as their

respective inputs. All methods were evaluated on the same dataset,

with the comparative analysis focusing on assessing the robustness

and generalization capabilities of EEG-GCA, particularly in

scenarios where seizure data is limited or unavailable. To evaluate

the performance of the models, we used three metrics: Area

Under the Curve (AUC), Average Precision (AP), and Specificity

(SPC). These metrics provide insights into the models’ ability to

distinguish between different classes, their precision in detecting

positive samples, and their ability to correctly identify negative

samples, respectively.

4.3 Detection of seizure clips and channels

The performance of the seizure clip detection experiment

across various comparisonmethods is shown in Table 2. Among the

supervised methods, Corr-DCRNN exhibits the highest accuracy of

0.4482, suggesting that it effectively utilizes correlation information

between different EEG channels. This is a crucial feature for seizure

detection, as it allows the model to capture temporal dependencies

and spatial relationships within the EEG signal. However, despite

its relatively high accuracy, the model still struggles with achieving

high specificity, which is essential for minimizing false positives in

seizure detection.

In the unsupervised methods, EEGr-CGS, based on random

graphs, performs the best with an accuracy of 0.4285. This

result indicates that even without the use of labeled data,

the model is still able to leverage the underlying structure

in the EEG data to some extent. However, the performance

gap between EEGr-CGS and supervised methods suggests

that unsupervised learning still faces challenges in achieving

comparable detection accuracy, particularly when it comes

to fine-tuning the decision boundaries between seizure and

non-seizure clips.

When comparing our proposed methods–EEGd-GCA,

EEGr-GCA, EEGc-GCA, EEGf -GCA, EEGt-GCA, and

EEGl-GCA–it is evident that the introduction of the Graph

Correlation Attention (GCA) mechanism leads to significant

improvements in both accuracy and specificity. The accuracy

of our methods consistently outperforms both the supervised

and unsupervised methods, with EEGd-GCA achieving

the highest accuracy at 0.6812. This result is particularly

noteworthy considering that EEGd-GCA utilizes the Dist-EEG-

Graph as input, which focuses on capturing the structural

relationships between different EEG channels. The combination
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TABLE 2 Seizure clips detection result.

Method Acc Precision Spec Method Acc Precision Spec

Supervised Unsupervised

EEGNet 0.4742 0.298 0.9021 EEGd-CGS 0.3076 0.3076 0.9450

EEG-TL 0.4001 0.2675 NA EEGr-CGS 0.4285 0.3333 0.9291

Dense-CNN 0.4143 0.2746 0.8692 EEGc-CGS 0.2857 0.2857 0.9132

LSTM 0.3652 0.2635 0.8143 EEGf -CGS 0.2857 0.2857 0.9211

CNN-LSTM 0.3304 0.2572 0.8574 EEGt-CGS 0.3076 0.3076 0.9009

Dist-DCRNN 0.3414 0.2612 0.9321 – – – –

Corr-DCRNN 0.4482 0.2711 0.9003 – – – –

Ours

EEGd-GCA 0.6812 0.3469 0.9714 EEGr-GCA 0.6636 0.3438 0.9429

EEGc-GCA 0.6847 0.3469 0.9714 EEGf -GCA 0.6832 0.3469 0.9714

EEGt-GCA 0.6848 0.3469 0.9714 EEGl-GCA 0.6625 0.3438 0.9429

of attention mechanisms with graph-based representations

allows the model to selectively focus on the most informative

features, leading to a more robust and accurate detection of

seizure clips.

Interestingly, while EEGd-GCA achieves the highest accuracy,

the other GCA variations (EEGr-GCA, EEGc-GCA, EEGf -GCA,

EEGt-GCA, EEGl-GCA) also show consistently high performance

with accuracy values close to 0.6847. This suggests that the

robustness of the GCA mechanism is not highly sensitive to the

specific graph input type, which makes these methods versatile

across different graph representations of the EEG data. The

consistently high specificity of around 0.9714 across all EEG-GCA

methods indicates their effectiveness in minimizing false positives,

which is a critical factor in the practical application of seizure

detection systems.

4.4 Detection of synthetic anomalous
channels

In this section, we focus on evaluating the performance of

the proposed method EEG-GCA in reliably detecting anomalous

channels. To this end, we generate a synthetic test set using

normal clips from the training phase. Specifically, we average

every 35 normal clips without overlap and then introduce

anomalies into the averaged clips with a 3% probability. The

anomalies are injected with a 0.03% probability, and at most

one node is corrupted per averaged clip. The corruptions

are applied both structurally and contextually. The structural

corruption involves connecting the selected node to all other

nodes in the average clip, while the contextual corruption

alters the attribute vector of the node by replacing its feature

vector with that of the node in the clip that has the largest

Euclidean distance. After introducing these anomalies, we input

the averaged clips, some of which contain anomalies, into the

EEG-GCA networks that were trained on pure normal clips.

TABLE 3 Synthetic anomalous channels detection results.

Type Method AUC AP Spec

Supervised EEGNet 0.6182 0.298 0.902

EEG-TL 0.5913 0.2675 NA

Dense-CNN 0.5877 0.2746 0.869

LSTM 0.5198 0.2635 0.814

CNN-LSTM 0.5412 0.2572 0.857

Dist-DCRNN 05683 0.2612 0.932

Corr-DCRNN 0.6122 0.2711 0.900

Unsupervised EEGd-CGS 0.6182 0.0845 0.9455

EEGr-CGS 0.8173 0.2675 0.9555

EEGc-CGS 0.8241 0.2887 0.9555

EEGf -CGS 0.8143 0.2960 0.9555

EEGt-CGS 0.8241 0.2887 0.9555

Ours EEGd-GCA 0.8903 0.4193 0.9667

EEGr-GCA 0.9229 0.4618 0.9722

EEGc-GCA 0.916 0.402 0.97

EEGf -GCA 0.908 0.4325 0.9689

EEGt-GCA 0.9101 0.4172 0.9678

EEGl-GCA 0.9238 0.4792 0.9722

The trained system then computes the anomaly scores for

all channels.

The experimental results, as summarized in Table 3,

demonstrate the effectiveness of our approach in the domain

of anomaly detection. Our method outperforms both supervised

and other unsupervised learning techniques across key evaluation

metrics such as AUC, AP, and Specificity. Specifically, EEGNet,

a supervised learning method, achieves a moderate performance

with an AUC of 0.6182. However, it faces challenges when
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handling imbalanced datasets, which is a critical issue in

real-world anomaly detection tasks. In contrast, EEG-GCA

demonstrates remarkable improvements in AUC, with EEGr-

GCA and EEGl-GCA achieving 0.9229 and 0.9238, respectively,

highlighting the effectiveness of unsupervised learning techniques

in addressing imbalances in the dataset. For AP, EEG-GCA

surpasses the performance of the other methods. For instance,

EEGl-GCA reaches an AP of 0.4792, significantly outperforming

the supervised approaches. This indicates that our method

is highly capable of accurately identifying anomalous events,

which is crucial in real-world anomaly detection tasks such

as sentiment recognition. Notably, EEG-GCA also excels in

terms of Specificity, a metric that measures the ability to

correctly identify normal samples and minimize false positives.

Both EEGr-GCA and EEGl-GCA achieve Specificity values

of 0.9722, outperforming all supervised models. This is

particularly important as it demonstrates that our method

can maintain high sensitivity while effectively reducing false

positives, thereby improving the robustness and reliability of

anomaly detection.

TABLE 4 Ablation study on seizure clips detection results.

Method Without correlation Ours

AUC AP Spec AUC AP Spec

EEGd-GCA 0.7579 0.3378 0.9644 0.8903 0.4193 0.9667

EEGr-GCA 0.8377 0.3431 0.9622 0.9229 0.4618 0.9722

EEGc-GCA 0.8513 0.4227 0.9678 0.9160 0.4020 0.9700

EEGf -GCA 0.8628 0.4025 0.9612 0.9080 0.4325 0.9689

EEGt-GCA 0.8355 0.3489 0.9533 0.9101 0.4172 0.9678

EEGl-GCA 0.8331 0.3301 0.9622 0.9238 0.4792 0.9722

4.5 Ablation study

In the ablation study for seizure clip detection on synthetic

anomalous channels, we explored two distinct approaches:Without

Correlation and EEG-GCA. The results of this ablation analysis are

summarized in Table 4.

In the Correlation approach, several graph construction

methods were employed. Among these, EEGc-GCA emerged as

the top performer, achieving the highest AUC (0.8513) and AP

(0.4227), underscoring its effectiveness in seizure detection. This

result emphasizes the importance of incorporating correlation

in the graph construction process for improving detection

accuracy. Notably, EEGr-GCA and EEGt-GCA also displayed

competitive results, highlighting their resilience to the absence

of correlation while still maintaining reasonable performance.

These findings suggest that, even without explicit correlation, the

models are capable of leveraging other aspects of the data for

meaningful detection.

4.6 Visualization of EEG signal

To evaluate the abnormal channels in the

electroencephalogram (EEG) segments during epileptic seizures,

we visualize the seizure channel for generalized seizures.

In Figure 2, which represents a case of generalized seizures,

our method demonstrates a high level of accuracy in detecting

all abnormal channels. This robust performance aligns with

our expectations for identifying anomalies during generalized

seizure events, highlighting the reliability of our approach

in such scenarios. The elevated anomaly scores observed in

the seizure-affected channels provide strong evidence of the

discriminatory power of our model, successfully distinguishing

pathological EEG patterns from normal, baseline activity. This

FIGURE 2

The visualization of seizure channel detection for generalized seizures.
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underscores the potential of our approach for real-time, accurate

seizure detection.

5 Conclusion

In this paper, we introduce EEG-GCA, an unsupervised

graph-based model designed for EEG-based epilepsy detection.

The core of the methodology is centered around computing

the correlation between individual EEG channels and their

neighboring channels. The process begins with the construction

of a graph representation of the EEG data, which enables the

exploration of correlation patterns across the channels. A weight-

sharing Graph Convolutional Network is then employed to

effectively capture both the semantic and structural relationships

among the channels. By aligning these distributions with a prior

distribution, EEG-GCA learns the underlying correlations

within the EEG data. The final stage involves detecting

anomalous channels based on the correlation scores, with

weak correlation scores indicating potential anomalies that

may signify seizures. The experimental results demonstrate that

EEG-GCA outperforms existing methods, achieving superior

accuracy in detecting anomalous channels. This underscores the

effectiveness of leveraging graph-based correlation techniques

for the detection of epilepsy in EEG signals. In the future,

we exploration involves integrating multi-modal data, such as

incorporating additional physiological signals or patient-specific

features, to further enhance the robustness and adaptability

of models.
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