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Objective: This study aims to mine the TCGA database for differentially

expressed genes in recurrent lung cancer tissues, determine the relationship

between these recurrent genes and lung cancer at the single-cell level, and

identify potential targets for lung cancer treatment.

Methods: Data for lung adenocarcinoma (LUAD) and lung squamous cell

carcinoma (LUSC) were obtained from the TCGA database and grouped based

on clinical recurrence information. Single-cell data from GSE131907 were

downloaded from the GEO database. R was utilized to screen for differentially

expressed genes (DEGs), followed by weighted gene co-expression network

analysis (WGCNA) of these DEGs. Additionally, the GSEA database was employed

to visualize differential pathways and identify key genes. The relationship

between the expression of these key genes and lung cancer recurrence was

validated using the GSE131907 single-cell dataset.

Results: A total of 2,239 differentially expressed genes were identified in the

LUAD dataset, while 3,404 differentially expressed genes were found in the LUSC

dataset. WGCNA revealed that the lapis lazuli module gene set was associated

with recurrence. Validation at the single-cell level indicated that the FOXI1,

FOXB1, and KCNA7 genes were linked to lung cancer progression.

Conclusion: The differentially expressed genes primarily influence NSCLC

recurrence through involvement in biological processes related to metabolism

and hormone secretion pathways. Notably, the KCNA7 and FOX gene families

were identified as critical for NSCLC recurrence. This study highlights specific

genes within proliferation and cell cycle pathways as key therapeutic targets for

managing NSCLC recurrence.
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1 Introduction

Lung cancer is the leading cause of cancer-related mortality
worldwide (1). It is a malignant tumor that originates from
alveolar and bronchial epithelial cells and is histologically
classified into two primary subtypes: small cell lung cancer
(SCLC) and non-small cell lung cancer (NSCLC). Among these,
NSCLC constitutes approximately 85% of lung cancer cases,
predominantly manifesting as lung adenocarcinoma (LUAD) and
lung squamous cell carcinoma (LUSC). NSCLC cells possess
self-renewal capabilities, enabling continuous proliferation and
destruction of surrounding tissues, as well as the release of
tumor-associated factors, which contribute to high rates of
recurrence and metastasis. This significantly impacts patients’
quality of life and survival (2). The progression of lung
cancer lesions involves complex interactions among various
genetic factors that may exhibit aberrant expression within a
regulatory network (3, 4). With advancements in high-throughput
technologies, genome-wide gene expression microarrays have
become instrumental in identifying novel biomarkers for cancer
research (5). RNA sequencing (RNA-seq) is an efficient high-
throughput technique that quantifies transcripts, identifies new
transcription units, and detects differentially expressed genes
(DEGs) across samples. When combined with bioinformatics
approaches, RNA-seq facilitates the characterization of lung
cancer prognosis, enhances understanding of molecular biology,
identifies prognostic markers, and contributes to therapeutic drug
design (6, 7). The Cancer Genome Atlas (TCGA) serves as the
largest repository of sequencing data, providing comprehensive
information on tumor stage, metastasis, survival outcomes,
patient demographics, and corresponding clinical diagnostic and
follow-up details (5). The Gene Expression Omnibus (GEO)
database, curated by the International Centre for Biotechnology
Information (NCBI), is one of the most extensive gene expression
repositories globally (8). Utilizing bioinformatics methods, we
aimed to download prognostic information and sequencing data
for various lung cancer subtypes from GEO and TCGA databases,
subsequently identifying abnormally expressed genes associated
with NSCLC prognosis.

Weighted gene co-expression network analysis (WGCNA)
effectively utilizes gene expression data to categorize genes into
distinct modules with similar expression profiles, transcending
traditional analyses focused solely on individual highly or poorly
expressed genes. This modular approach, grounded in biological
networks, aids in identifying crucial gene modules linked to
specific sample traits (9, 10). WGCNA was employed to analyze
data and explore gene modules closely associated with NSCLC,
partially addressing limitations inherent in differential gene
expression analyses and narrowing the scope for candidate cancer
marker identification.

A review of literature concerning NSCLC prognostic models
reveals a predominance of models emphasizing immunological,
metabolic, and other factors (11). However, current studies often
neglect the integration of single-cell RNA sequencing (scRNA-
seq) data, overlooking the implications of cellular heterogeneity.
Furthermore, many prognostic models rely heavily on predicting
genes while disregarding other significant predictive variables,
such as clinical characteristics including age, gender, and tumor

stage. This oversight can lead to inefficiencies in prognostic model
development. Recent advancements in sequencing technology
have seen scRNA-seq widely adopted as an innovative method
for investigating the transcriptomes of diverse cell types (12).
Additionally, scRNA-seq elucidates heterogeneity and distinct
subpopulations within tumors, quantitatively assessing immune
cell infiltration in both normal and tumor tissues—a critical factor
influencing treatment response and prognosis in NSCLC (13–16).

In this study, we aim to integrate and analyze publicly
available RNA-seq data related to NSCLC. Through WGCNA, we
will identify gene modules that are closely related to NSCLC,
followed by Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses of these genes,
thereby enhancing our understanding of the underlying molecular
mechanisms of NSCLC. By combining WGCNA with differential
gene expression analysis, we will isolate DEGs from these modules
that are likely critical to NSCLC development, using the expression
data of these key genes to construct prognostic models.

2 Materials and methods

2.1 Data extraction and variance analysis

To comprehensively investigate differential gene expression
between recurrent and non-recurrent lung cancer cases, clinical
and transcriptomic data for lung adenocarcinoma (LUAD) and
lung squamous cell carcinoma (LUSC) were retrieved from The
Cancer Genome Atlas (TCGA), with tumor samples stratified
by recurrence status based on clinical follow-up records. Raw
RNA-seq counts were preprocessed by log2 transformation and
normalized for library size and compositional bias using the
edgeR package (v4.0.2), followed by filtering to exclude genes with
zero expression across all samples. Differentially expressed genes
(DEGs) were identified through a generalized linear model (GLM)
approach in edgeR, applying stringent thresholds of |log2 fold
change (FC)| > 0.5 (indicating a ≥ 1.4-fold change) and an FDR-
adjusted p < 0.05 (Benjamini-Hochberg method) to ensure robust
results. To visualize the findings, hierarchically clustered heatmaps
were generated using the pheatmap package, displaying Z-score-
normalized expression of top DEGs alongside clinical annotations,
while volcano plots (ggplot2) highlighted the statistical significance
and magnitude of expression changes, with key DEGs labeled for
further investigation. All analyses were conducted in R (v4.2.1),
with scripts archived for reproducibility.

2.2 Enrichment analysis

Gene function enrichment is crucial for translating high-
throughput molecular results into biological significance (17). To
elucidate the biological relevance of the identified differentially
expressed genes (DEGs), comprehensive functional enrichment
analyses were performed in R software. Gene annotation was
first conducted using org.Hs.eg.db (v 3.18.0) to map Ensembl
IDs to standardized gene symbols. Subsequently, Gene Ontology
(GO) enrichment analysis (covering biological processes, molecular
functions, and cellular components) and Kyoto Encyclopedia of
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Genes and Genomes (KEGG) pathway analysis were carried out via
the clusterProfiler package (v 4.10.0), with significance thresholds
set at an adjusted p < 0.05 (FDR correction) and an enrichment
score cutoff of q < 0.2. For a systems-level perspective, Gene Set
Enrichment Analysis (GSEA) was analyzed and visualization using
the GseaVis package.

2.3 WGCNA analysis

Weighted Gene Co-expression Network Analysis (WGCNA)
was performed to identify modules of highly correlated genes,
summarize interconnections between modules, and assess
associations with external sample traits, thereby identifying
candidate biomarkers or therapeutic targets (18). To systematically
identify co-expressed gene networks associated with lung cancer
recurrence, WGCNA was implemented using the WGCNA
package (v1.72.1) in R. The analysis began with rigorous data
preprocessing, including normalization of expression matrices
and removal of outlier samples based on hierarchical clustering
and sample network connectivity (Z-score cutoffs). A weighted
correlation matrix was constructed across all genes, and an optimal
soft-thresholding power (β) was selected (via scale-free topology
fit index > 0.85) to transform the matrix into a signed adjacency
matrix, balancing network connectivity and biological relevance.
This adjacency matrix was further converted into a Topological
Overlap Matrix (TOM) to quantify gene-gene interaction
strengths, mitigating spurious correlations. Using average linkage
hierarchical clustering and a dynamic tree-cutting algorithm
(minimum module size set at 30 genes), genes with similar
expression patterns were partitioned into co-expression modules,
labeled by color. Modules were correlated with clinical traits
such as recurrence status and metastasis, and the most significant
module (highest absolute Pearson correlation, p < 0.05) was
identified as the key recurrence-associated module. Overlapping
genes between this module and the previously identified DEGs
were classified as differential recurrent metastatic genes (DRMGs),
representing robust candidates for further validation as biomarkers
or therapeutic targets.

2.4 Single-cell analysis

To explore the distribution of hub genes across cell populations,
we employed single-cell techniques for analysis and visualization
(19). To elucidate the cellular distribution and clinical relevance
of recurrence-associated hub genes, we performed scRNA-seq
analysis using data from the GSE131907 dataset (22 lung cancer
samples). Quality control was rigorously applied via the Seurat
package (v4.3.0) in R, retaining cells expressing > 300 genes
(nFeature_RNA) and excluding those with > 10% mitochondrial
gene content (percent.mt) to minimize low-quality or apoptotic
cells. The filtered dataset was normalized using SCTransform to
correct for technical variance, followed by principal component
analysis (PCA) and uniform manifold approximation and
projection (UMAP) for dimensionality reduction. Cell clusters
were annotated based on canonical markers (e.g., EPCAM for
epithelial cells, PTPRC for immune cells). Hub genes identified

from WGCNA and DEG analyses were mapped onto these
clusters to assess their cell-type-specific expression patterns, with
a focus on tumor and microenvironment subsets implicated
in recurrence (e.g., malignant epithelial cells, cancer-associated
fibroblasts). Differential expression testing (Wilcoxon rank-sum
test) was applied within Seurat to validate hub gene enrichment
in recurrence-related cell populations (p < 0.05). Results were
visualized via dot plots, feature plots, and violin plots using Seurat
to highlight gene-cell associations, providing spatial context to
molecular drivers of recurrence.

2.5 Identification and prognostic
validation of protein-protein interaction
networks and hub genes

To systematically investigate the functional interactions
and clinical implications of key recurrence-associated genes,
we employed an integrative bioinformatics approach. Protein-
protein interaction (PPI) networks were constructed using
String database, incorporating physical interactions, co-expression,
genetic interactions, and pathway co-membership data to identify
functionally related gene clusters and potential novel interactors.
For clinical correlation analysis, we leveraged GEPIA21 and
UALCAN2 databases to comprehensively evaluate the prognostic
significance of core genes, analyzing their expression patterns
across multiple clinical parameters: (1) survival outcomes (overall
and disease-free survival, log-rank test p < 0.05), (2) tumor stage
progression, (3) smoking status, (4) lymph node metastasis status,
and (5) TP53 mutation subgroups. Furthermore, we investigated
DNA methylation profiles of core genes using UALCAN’s TCGA
methylation data, examining the association between promoter
methylation levels and both gene expression patterns and clinical
outcomes. This multi-dimensional analysis enabled us to identify
clinically relevant molecular signatures with potential prognostic
utility in lung cancer recurrence.

2.6 Immunohistochemistry

Tissue samples were fixed in 10% formalin and embedded
in paraffin wax. Sections of 4 µm thickness were mounted on
glass slides. Prior to staining, slides were deparaffinized in xylene
and rehydrated through a series of graded alcohols. Antigen
retrieval was performed by heating the sections in citrate buffer
(pH 6.0) in a microwave for 15 min. Endogenous peroxidase
activity was blocked with 3% hydrogen peroxide for 10 min.
Non-specific binding was minimized by incubating the sections
with 5% bovine serum albumin for 30 min at room temperature.
Primary antibodies against KCNA7 (Cat: PA5-145126, Invitrogen)
and FOXB1 (Cat: PA5-18170, Invitrogen) were diluted to 1:500
in antibody diluent and applied to the sections overnight at
4◦C. After washing with phosphate-buffered saline (PBS), sections
were incubated with horseradish peroxidase-conjugated secondary

1 http://gepia2.cancer-pku.cn/

2 https://ualcan.path.uab.edu/
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antibodies for 1 hour at room temperature. Immunoreactivity was
visualized using a diaminobenzidine (DAB) substrate solution, and
sections were counterstained with hematoxylin. Stained sections
were examined under a light microscope, and images were captured
for further analysis.

3 Results

3.1 Differential genes in the lung cancer
recurrence dataset

The TCGA lung cancer dataset was analyzed based on
recurrence status in lung adenocarcinoma (LUAD) and lung
squamous cell carcinoma (LUSC). Differentially expressed genes
(DEGs) were identified with thresholds of P < 0.05 and
|Log2FC| > 0.5. From the LUAD dataset, we identified 2,239
DEGs, comprising 1,151 up-regulated and 1,088 down-regulated
genes. In the LUSC dataset, we found 3,404 DEGs, including
735 up-regulated and 2,669 down-regulated genes (Figures 1A,B).
Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analyses were conducted
to predict the potential functions of these DEGs in both LUSC
and LUAD. Additionally, Gene Set Enrichment Analysis (GSEA)
was performed on differential genes from the two datasets to
select hallmark gene sets as references. The up-regulated pathways
primarily related to cancer cell proliferation included the E2F,
MYC, and G2M signaling pathways. Meanwhile, down-regulated
pathways were associated with immune response, apoptosis, and
necrosis, such as the IL6, TGF-β, TNF, and TP53 signaling pathways
(Figures 1C,D). Thus, we conclude that in recurrent non-small
cell lung cancer (NSCLC), tumor proliferation is enhanced while
immune evasion occurs, with pathways associated with apoptosis
and necrosis being down-regulated. This indicates an increase in
tumor cell proliferation and metastasis during cancer recurrence,
which is also linked to the immune microenvironment.

3.2 Weighted co-expression network and
key modules

To further explore co-expression patterns among the DEGs
in lung adenocarcinoma, we performed Weighted Gene Co-
expression Network Analysis (WGCNA). We assessed the
relationship between DEGs and lung cancer recurrence traits
through modular analysis of the two DEG sets from the TCGA
NSCLC dataset. To ensure a scale-free network, a minimum
soft-threshold power (β-value) of 2 was chosen for both the LUAD
and LUSC groups (Figures 2A,B). Two co-expression modules
were identified using cluster dendrograms, revealing a strong
correlation between the lapis lazuli module and the recurrence trait
(Figures 2C,D). Correlation analysis of NSCLC recurrence traits
with genes in each module indicated that the lapis lazuli module
exhibited the highest correlation coefficient with lung cancer
recurrence (correlation coefficient of 0.97, P < 0.05) (Figures 2E,F).
These results suggest a positive correlation between the lapis lazuli
module and the degree of tumor recurrence. Finally, we screened
differential genes against module genes, and the intersection of

DEGs with the lapis lazuli module is depicted in a Venn diagram
(Figures 2G,H).

3.3 Single-cell analysis

To validate the expression levels of the DEGs, we applied
the Seurat package to the lung cancer GSE131907 dataset.
Quality control was performed based on nFeature_RNA > 300,
min.cells = 3, and percent.mt < 10%. Subsequently, dimensionality
reduction and clustering were conducted using HARMONY with
a resolution of 0.05 (Figures 3A,B). This analysis identified 26
distinct subpopulations (Figure 3C). Automated annotation via
SingleR revealed 22 cell subpopulations, including T cells (CD4
Memory T, CD8 T, CD4 + Treg), myeloid cells (Neutrophils,
Alveolar M, cDC2/moDCs, Lipid-associated M, pDCs), B cells
(B cell, Plasma, B activated), malignant epithelial cells (SOX2
Cancer, CXCL1 Cancer, CDKN2A Cancer, Proliferating Cancer),
normal epithelial cells (Alveolar, Ciliated), fibroblasts (SMC, CAF),
other immune cell types (NK, Mast), and stressed/unknown cells
(Figures 3D,E). We examined the proportional distribution of cell
subpopulations and found a decrease in the proportion of CD8 T
cells, alveolar macrophages (Alveolar M), and natural killer (NK)
cells in lung cancer patients. Conversely, there was an enrichment
of T and B lymphocytes, suggesting activation of the adaptive
immune response, alongside a decrease in NK and myeloid cells
compared to normal lung tissue (Figure 3F). These findings indicate
that the relationship between lung cancer and cytotoxic immune
cell types can be elucidated at the single-cell level.

3.4 Gene expression and interactions at
the single-cell level

In our single-cell analysis, we confirmed that the previously
identified up-regulation of gene expression associated with
metastatic recurrence comprised 40 up-regulated genes versus 509
down-regulated gene expression profiles. Notably, we identified
13 positively associated genes relevant to cancer, including DKK4,
SLC8A2, MAEL, FOXI1, FBLL1, KCNA7, MESP2, STMN2, REG4,
and FOXB1 (Figures 4A,B). To elucidate the functional roles of
these core genes in protein interactions, we constructed a protein-
protein interaction (PPI) network using the GeneMANIA database
(Figure 4C). The results demonstrated significant co-expression
relationships, indicating that these genes may play critical roles in
pathways associated with cell proliferation and differentiation, such
as DNA-binding transcription factor activity, RNA polymerase II
specificity, sequence-specific DNA binding, myofilament assembly,
and double-stranded DNA binding in the context of lung cancer
recurrence.

3.5 Key gene validation

To evaluate the potential of pivotal genes in predicting survival
outcomes for lung cancer patients, we analyzed survival curves
based on TCGA data. Among the 13 predicted hub genes,
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FIGURE 1

Differences in gene expression profiles between primary and relapsed non-small cell lung cancer. (A,B) Volcano plots illustrate the differential gene
expression between two patient groups: lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). Red and blue points represent
differentially expressed genes, while green points denote marker genes within this set. (C,D) Gene set enrichment analysis (GSEA) of the
comprehensive expression profiles of differentially expressed genes reveals two distinct patterns: upregulated activation and downregulated
resistance.

we observed statistically significant differences in progression-
free survival (PFS) and overall survival (OS) for KCNA7 and
FOXB1 in NSCLC patients compared to normal lung tissue
(P < 0.05) (Figures 5A,B). Further analysis using the GEPIA2
database confirmed that the expression of KCNA7 and FOXB1 was
significantly correlated with clinical survival in LUAD and LUSC
patients compared to normal tissues (Figures 5A,B). Consequently,
we propose that KCNA7 and FOXB1 function as core genes
regulating lung cancer recurrence and are associated with poor
survival outcomes in NSCLC patients (Figures 5C,D). We further
explored the effects of KCNA7 and FOXB1 on clinical traits in
lung cancer patients (Figures 5E,F). Our findings indicate that
the expression levels of FOXB1 and KCNA7 increase with the
progression of tumor cells, with the highest expression observed in
patients who smoked and those with TP53 mutations (Figures 5G–
J). To validate this hypothesis, we conducted immunohistochemical
analysis on lung cancer patients with and without recurrence. The

results revealed that the expression levels of KCNA7 and FOXB1
were significantly higher in patients with recurrence lung cancer
compared to those in the non-recurrence group (Figure 6A,B).
Collectively, these results suggest that FOXB1 and KCNA7 may
serve as biomarkers for prognostic evaluation in lung cancer
and provide a novel theoretical foundation for clinical treatment
strategies.

4 Discussion

This study investigates gene expression differences and key
pathways that influence primary and recurrent lung cancer states.
In lung adenocarcinoma (LUAD), we identified 1,151 genes
with upregulated expression and 1,088 genes with downregulated
expression; in lung squamous cell carcinoma (LUSC), 735
upregulated and 2,669 downregulated genes were identified.
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FIGURE 2

Identification of modules and genes linked to clinical status of lung adenocarcinoma using weighted gene co-expression network analysis
(WGCNA). (A,B) Scale-free fitting index and average connectivity analysis: this analysis was performed across various soft threshold powers for both
LUSC and LUAD. (C,D) Heat map of correlation between module characteristic genes and recurrence traits: a heat map visualizes the correlation
between module characteristic genes and recurrence traits in both cancers. (E,F) Scatter plot of correlation between module characteristic genes
and recurrence traits: scatter plots further illustrate the correlation between module characteristic genes and recurrence traits in LUSC and LUAD.
(G,H) Venn diagram for intersection genes: Venn diagrams identify overlapping genes between differential genes and lapis lazuli modules in LUSC
and LUAD, respectively.
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FIGURE 3

Single-cell analysis of paracancerous and lung cancer tissues. (A) QC Violin: illustrates quality control metrics for single-cell sequencing data.
(B) Bifurcation tree: provides a hierarchical view of cell populations at single-cell resolution. (C) UMAP clustering: displays dimensionality reduction
clustering for normal and cancer tissues. (D) UMAP 26 clusters: shows 26 distinct cell clusters. (E) Annotated UMAP: provides labeled clusters for cell
type identification. (F) Cell subset distribution: depicts the proportional distribution of cell subsets.

Using Gene Set Variation Analysis (GSVA) pathway enrichment
analysis, we confirmed a strong connection between LUAD and
LUSC recurrence, particularly concerning core biological pathways

such as the cell cycle, including the E2F and G2M signaling
pathways. The E2F family of genes, especially E2F1 and E2F2,
exhibits elevated expression levels significantly associated with poor
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FIGURE 4

Validation of differentially upregulated gene expression at the single-cell level. (A,B) Thermogram: shows the expression of 40 differentially regulated
genes in adjacent and cancer cell types. (C) Gene interaction network: displays a network of differentially regulated genes generated by Genemania.

prognosis in patients with non-small cell lung cancer (NSCLC)
(20). Notably, E2F1 is closely related to the well-known tumor
suppressor gene RB1 (21). Under normal conditions, RB1 inhibits
cell cycle progression, preventing cells from prematurely entering

the S phase (DNA synthesis) and subsequent phases (22). However,
RB1 inactivation lifts this inhibitory effect, allowing downstream
genes critical for S phase entry and progression to be expressed
(23).
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FIGURE 5

Prognostic significance of KCNA7 and FOXB1 in NSCLC. (A) KCNA7/FOXB1 and FPS: correlation with FPS in NSCLC. (B) KCNA7/FOXB1 and OS:
correlation with overall survival (OS) in NSCLC. (C,D) KCNA7 mRNA and stage: relationship with cancer staging in NSCLC. (E,F) KCNA7 mRNA and LN
metastasis: association with lymph node metastasis in NSCLC. (G,H) KCNA7 mRNA and smoking: correlation with smoking status in NSCLC. (I,J)
KCNA7 mRNA and TP53 mut: relationship with TP53 mutation status in NSCLC. *Indicates a statistically significant difference at p < 0.05. **Indicates
a highly significant difference at p < 0.01. ***Indicates an extremely significant difference at p < 0.001.

Notably, several recognized oncogenes play a crucial role
in RB1 inactivation mechanisms. For instance, cyclin-dependent
kinase 4 (CDK4) and cyclin D1 can bind to and phosphorylate
RB1, thereby neutralizing its cell cycle inhibitory effect (24,
25). This mechanism of RB1 inactivation has been observed

across various cancers and is considered a key driver of
cancer progression (26). Consequently, the high expression of
E2F1 and E2F2, alongside RB1 inactivation and activation of
downstream oncogenes, constitutes a complex regulatory network
that significantly influences the onset, progression, and prognosis
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FIGURE 6

Immunohistochemical staining of lung cancer tissues. Representative images of lung cancer tissue samples showing the expression levels of key
proteins. The upper layer non-recurrence tissues, while the lower layer shows recurrence tissues. Staining was performed using antibodies against
(A) KCNA7 and (B) FOXB1.

of lung cancer, particularly NSCLC. Targeted therapeutic strategies
aimed at these critical nodes, such as inhibiting CDK4 or cyclin
D1 activity or restoring RB1 function, are expected to offer new
therapeutic avenues for lung cancer patients (27, 28).

The aim of this study was to identify genes associated with
NSCLC recurrence. Using weighted gene co-expression network
analysis (WGCNA) and single-cell techniques, we identified 40
candidate genes. Single-cell mapping revealed complex interactions
between cancer subpopulations and specific genes, showing
significant alterations in the proportions of CXCL1 and SOX2
cancer subpopulations. This suggests their direct involvement
in lung cancer development and progression. Furthermore, nine
key differential genes (SLC18A3, MLIP, OVOS2, DKK4, SLC8A2,
MAEL, FOXI1, FBLL1, KCNA7) were identified in the two
subpopulations. Survival analysis indicated that high expression
levels of KCNA7 and FOXB1 correlate with poor prognosis in
NSCLC patients. Thus, KCNA7 and FOXB1 emerge as critical genes
for NSCLC prognosis and potential therapeutic targets.

As a member of the FOXO family of transcription factors,
FOXB1 plays a pivotal role in tumorigenesis and is involved in
various cellular physiological processes, including apoptosis, cell
cycle control, glucose metabolism, and oxidative stress resistance
through gene expression regulation (29, 30). Additionally, we
discovered that FOXB1 co-regulates cystic fibrosis transmembrane
conductance regulator (CFTR) expression with its family
member FOXI1 (31). In lung cancer, only the clustered cell-
like subpopulation significantly expresses FOXI1, which serves
as a major regulator of ionocytes and a primary source of CFTR
activity (32, 33). Based on these findings, we hypothesize that

FOXI1 and CFTR are not only major regulators of lung ionocytes
but also closely associate with CXCL1 cancer subpopulations.
This relationship may elucidate a specific role for CXCL1 in lung
carcinogenesis and progression, alongside the potential regulatory
mechanisms of FOXB1 and FOXI1.

Potassium voltage-gated channel subfamily A member 7
(KCNA7), belonging to a group of potassium channel-associated
genes, has garnered increasing attention in cancer research.
Ion channels, particularly potassium channels, are extensively
studied in cancer contexts due to evidence suggesting they
may serve as effective targets for tumor therapy. Compared to
normal cells, potassium channels are typically overexpressed in
cancer cells, primarily due to their ability to enhance cancer
cell proliferation by regulating cell membrane potential, calcium
homeostasis, and multiple signaling pathways (34, 35). While
other potassium voltage-gated genes such as KCNA2, KCNA3, and
KCNA5 have been investigated across various cancers—including
skin melanoma, uterine corpus endometrial carcinoma, gastric
adenocarcinoma, LUAD, and LUSC in-depth studies of KCNA7’s
expression in cancer remain lacking (34). It has been shown
that the distribution of a single nucleotide polymorphism (cSNP)
locus (e.g., T418M) of KCNA7 in the normal population adheres
to Hardy-Weinberg equilibrium, with no significant difference
between the gene frequency and genotype frequency of the locus
in patients with non-insulin-dependent diabetes mellitus and
healthy controls (36). However, this does not imply that KCNA7
is unrelated to cancer; rather, more specific investigations are
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needed to explore its expression and role in cancer. Notably,
we identified for the first time an association between KCNA7
and the occurrence and progression of lung cancer. This finding
highlights KCNA7’s potential role in lung cancer and provides new
perspectives and targets for future treatments. Through further
investigation into KCNA7’s functions and regulatory mechanisms,
we aim to establish more precise and effective treatment strategies
for lung cancer patients.

In summary, we propose a relationship between lung cancer
recurrence and specific genes by integrating data from The Cancer
Genome Atlas (TCGA) for squamous lung cancer and lung
adenocarcinoma. Validation with single-cell data revealed distinct
biological roles among different cancer subpopulations based on
known cellular distributions. Our findings identify an important
link to lung cancer development and highlight KCNA7, FOXI1, and
FOXB1 as marker genes for CXCL1 cancer subgroups relevant to
clinical prognosis.

5 Conclusion

This study utilized bioinformatics analyses to screen
differentially expressed genes associated with recurrence,
subsequently identifying key genes linked to proliferation via
enrichment analysis. Following transcriptomic and single-cell
histological analyses, we established that the highly expressed
transcription factors FOXI1, FOXB1, and KCNA7 promote
lung cancer development and are primarily involved in cellular
processes including proliferation, migration, and invasion. These
findings provide new molecular targets for addressing lung
cancer recurrence.
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