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The pharmacokinetics of meropenem are significantly altered in patients

with augmented renal clearance (ARC), resulting in suboptimal plasma

concentrations. The objective of this study is to investigate the efficacy

of different meropenem regimens in critically ill patients with ARC. To this

end, Monte Carlo simulations were conducted. The probability of target

attainment (PTA) and the cumulative fraction of response (CFR) were evaluated

with consideration of the minimal inhibitory concentration (MIC) breakpoint

according to the Clinical and Laboratory Standards Institute (CLSI). The findings

of this study demonstrate that meropenem administered at a dosage of 2 g

every 8 h (q8 h) 2/3 h to critically ill patients with ARC [creatinine clearance

(CrCL) of 140–200 mL/min] results in ≥ 90% PTA (100% fT > MIC) for lower

MICs (≤ 2 mg/L). However, for higher MICs (4–8 mg/L), the administration of

intensified regimens (2 g q8 h 4/6 h or continuous infusion) was necessary.

The CFR analysis confirmed ≥ 90% target attainment for Klebsiella pneumoniae

with regimens meropenem 2 g q8 h 2–6 h or continuous infusion, but

not for Acinetobacter baumannii or Pseudomonas aeruginosa, regardless of

regimen. For resistant Klebsiella pneumoniae (4 < MIC ≤ 8), prolonged (4–

6 h) or continuous infusions are recommended. For Acinetobacter baumannii

and Pseudomonas aeruginosa, alternative or combination therapies are advised

due to insufficient PK/PD target attainment with meropenem monotherapy.

The findings emphasize the importance of individualized dosing strategies in

ARC patients, considering meropenem’s distinctive PK/PD characteristics, the

pathogen’s MIC, and renal function, in order to effectively manage resistant

Gram-negative infections while optimizing clinical outcomes.
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Introduction

Severe infection stands as a leading cause of intensive
care unit (ICU) admission (1), the mortality of patients with
such infection remains substantial (2). According to WHO
data, infectious disease represents one of the top 10 causes of
death worldwide (3). In American, more than 350,000 patients
die from serious infections in a year (4). The significance of
promptly initiating tailored treatments in critically ill patients
with severe infections, particularly sepsis, is a matter of great
concern (5). However, the pharmacokinetics (PK) of drugs can
be altered by supportive technology and pathological processes in
critically ill patients (6, 7). The routine dosage of anti-infective
regimens may be insufficient to attain target plasma concentrations
(8). Consequently, antimicrobial drug monitoring and dosage
optimization are essential to achieve aggressive pharmacodynamics
(PD) targets (9).

Gram-negative bacteria (GNB) are the primary pathogens
identified in severe infections (10). Meropenem, a broad-spectrum
carbapenem antibiotic that prevents the synthesis of essential
components of the bacterial cell wall, resulting in the death of
the microorganism, is an important treatment for severe GNB
infections (11). For meropenem, a β-lactam antibiotic, the duration
of time (T) that the unbounded drug concentration above the
minimal inhibitory concentration (MIC) is the most important
indicator, which is defined as fT > MIC (12). In the context of
critically ill patients, the PK/PD target for β-lactam antibiotics
is delineated as 100% fT > MIC (or more ambitiously, 100%
fT > 4 × MIC), with the objective of enhancing survival rates
and mitigating resistance (13, 14). Patients with 100% fT > MIC
exhibited significantly higher rates of clinical cure (82%) and
bacteriological eradication (97%) in comparison to patients with
% fT > MIC less than 100% (15). Consequently, in the present
study, 100% fT > MIC were utilized as PK/PD targets for Monte
Carlo simulation.

Augmented renal clearance (ARC) is a pathophysiological
phenomenon that often occurs in critically ill patients, resulting in
enhanced renal function defined as a urinary creatinine clearance
of at least 130 mL/min/1.73 m2 (16). The incidence of ARC in
critically ill patients ranges from 30% to 65%, and can be as
high as 50%–85% in those with sepsis, trauma, and other factors
(17, 18). The mechanism of ARC is that the hyperdynamic and
hypermetabolic state of critically ill patients increases cardiac
output and renal blood flow, leading to increased drug clearance
through the kidney (19). It has been reported that patients
with ARC are less likely to achieve % fT > MIC with beta-
lactam antibiotics (20). Udy et al. (21) also reported that only
one third of critically ill patients with sepsis achieved 100%
fT > MIC when using piperacillin-tazobactam, owing to elevated
drug clearance. These results suggest that ARC promotes drug
excretion and leads to inadequate drug exposure, which may
compromise clinical efficacy.

In the present study, we aim to explore the alternative
dosage regimens of meropenem in critically ill patients with ARC
using Monte Carlo simulations. This will provide a potential
recommendation for the development of antimicrobial outcomes
for such patients.

Materials and methods

Monte Carlo simulations

Monte Carlo simulation was performed using Oracle Crystal
Ball 11.1.2.4.850 software embedded in Office Excel 2019.
Pharmacokinetic parameters including renal clearance (CL) and
volume of distribution (Vd) were assumed to follow a normal
distribution, while MIC followed a discrete uniform distribution
and free drug fraction (f ) followed a uniform distribution. The MIC
value was set to a range of 0.125–8 µg/mL. A target value of 100%
fT > MIC was set and different creatinine clearance (CrCL) values
(140, 160, 180, and 200 mL/min) were tested. The probability of
target attainment (PTA) value was then calculated using Monte
Carlo simulations run for 10,000 cases for different meropenem
dosing regimens as follows:

a: 1 g infused over 0.5 h every 8 h, 1 g q8 h 0.5 h;
b: 2 g infused over 2 h every 8 h, 2 g q8 h 2 h;
c: 2 g over 3 h every 8 h, 2 g q8 h 3 h;
d: 2 g over 4 h every 8 h, 2 g q8 h 4 h;
e: 2 g over 6 h every 8 h, 2 g q8 h 6 h;
f: 2 g over 8 h every 8 h, continuous infusion.

The results were plotted as PTA-MIC curves.
Equation 1 (22) was used to calculate the values of % fT > MIC

for various dosing regimens.
Equation 1

% f T > MIC =
[

T − Ln
R0/CL

R0/CL−MIC
× Vd/CL

+ Ln
R0/CL− R0/CL× e(−CL/Vd× T)

MIC
× Vd/CL

]
×

100
DI

(1)

The given equation includes several parameters as follows: The
free drug fraction (f ), natural logarithm (Ln), infusion rate
(R0 = f × dose / T), renal clearance (CL, L/h), volume
of distribution (Vd), minimum inhibitory concentration (MIC,
µg/mL), intravenous infusion time (T, h), and dosing interval (DI,
h). Clinical breakpoints for pathogen susceptibility are defined by
the Clinical and Laboratory Standards Institute (CLSI) standards
for meropenem (23). For Enterobacterales, MIC ≤ 1 µg/mL is
considered susceptible, MIC = 2 µg/mL is considered intermediate,
and MIC ≥ 4 µg/mL is considered resistant. For Pseudomonas
aeruginosa and Acinetobacter spp., MIC ≤ 2 µg/mL is considered
susceptible, MIC = 4 µg/mL is considered intermediate, and
MIC ≥ 8 µg/mL is considered resistant (23).

Population pharmacokinetic model and
MIC distribution in critically ill patients

Monte Carlo simulations were performed using a population
pharmacokinetic (PPK) model published by Gijsen et al. (24).
Antimicrobial susceptibility testing of Gram-negative bacteria was
derived from a total of 6,520 pathogens detected in critically ill
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TABLE 1 Pathogen-specific MIC distributions in critically ill patients (25).

≤ 0.125 0.25 0.5 1 2 4 8 > 8

Overall (%) 82.7 4.7 3.5 2.1 1.3 1.3 1.0 3.3

Acinetobacter baumannii 8.4 33.7 21.7 7.2 3.6 1.2 0 24.1

Pseudomonas aeruginosa 12.8 20.6 20.5 13.2 6.2 7.5 5.9 13.3

Klebsiella pneumoniae 93.2 0.9 0.3 0.6 1.3 0.8 0.4 2.6

Antimicrob Agents Chemother, 2022. 66(2):e0183121. doi: 10.1128/AAC.01831-21. Originally published by and used with permission from American Association for Microbiolog.

patients in a tertiary care hospital (25). The pathogen-specific MIC
distributions, which were used to calculate the cumulative fraction
of response (CFR), are shown in Table 1.

Optimized dosing regimens for critically
ill patients with ARC treated with
meropenem

Dosage regimens for meropenem were simulated in critically
ill patients with CrCL of 140, 160, 180 and 200 mL/min.
Suggested regimens included standard therapy, prolonged and
continuous infusion. The CFR values were calculated as the
weighted summation of the PTA values of each MIC category for a
specific dosing regimen and renal clearance. Treatments with a CFR
greater than 90% were considered as potential recommendations.

Statistical analysis

Continuous variables are presented as mean (standard
deviation) or median (quartiles), while categorical variables are
presented as absolute numbers or relative frequencies. Statistical
analyses were conducted using SPSS 22.0 software. A p-value of less
than 0.05 was considered statistically significant.

Results

PTA of meropenem in critically ill
patients with ARC

Based on the present Monte Carlo simulations, for patients with
a CrCL of 140 mL/min, the PTA-MIC curves of the meropenem
regimens are shown in Figure 1A. For a target of 100% fT > MIC,
for pathogens with MIC≤ 2 mg/L, a PTA of 90% could be achieved
with regimen b–f; for pathogens with 2 < MIC ≤ 4 mg/L, a PTA of
at least 90% could be achieved with regimen c–f; for pathogens with
4 < MIC ≤ 8 mg/L, a PTA of at least 90% could be achieved with
regimen d–f.

Likewise, for patients with a CrCL of 160 mL/min, the PTA-
MIC curves of the meropenem regimens are shown in Figure 1B.
For a target of 100% fT > MIC, for pathogens with MIC≤ 1 mg/L,
a PTA of 90% could be achieved with regimen b–f; for pathogens
with 1 < MIC ≤ 4 mg/L, a PTA of at least 90% could be achieved
with regimen c–f; for pathogens with 4 < MIC ≤ 8 mg/L, a PTA of
at least 90% could be achieved with regimen d–f.

Furthermore, for patients with a CrCL of 180 mL/min, the PTA-
MIC curves of the meropenem regimens are shown in Figure 1C.
For a target of 100% fT > MIC, for pathogens with MIC≤ 1 mg/L,
a PTA of at least 90% could be achieved with regimen b–f; for
pathogens with 1 < MIC ≤ 4 mg/L, a PTA of at least 90% could be
achieved with regimen c–f; for pathogens with 4 < MIC ≤ 8 mg/L,
a PTA of at least 90% could be achieved with regimen d–f.

Additionally, for patients with a CrCL of 200 mL/min, the PTA-
MIC curves of the meropenem regimens are shown in Figure 1D.
For a target of 100% fT > MIC, for pathogens with MIC≤ 2 mg/L, a
PTA of 90% could be achieved with regimen c–f; for pathogens with
2 < MIC ≤ 8 mg/L, a PTA of 90% could be achieved with regimen
d–f.

CFR of meropenem in critically ill
patients with ARC

It is evident that, in order to achieve a target of 100%
fT > MIC, a CFR of at least 90% can be attained in critically
ill patients with ARC (140 ≤ CrCL ≤ 200 mL/min) when
treated with regimens b, c, d, e, f. However, it is unfortunate
that all CFR values in cases treated with meropenem 1 g
q8 h 0.5 h are less than 90%, as illustrated in Table 2.
Furthermore, for infections caused by Acinetobacter baumannii
and Pseudomonas aeruginosa, the CFR target could not be
achieved in patients with ARC. Furthermore, for infections
caused by Klebsiella pneumoniae, the CFR target could be
achieved in critically ill patients with ARC with regimens
b, c, d, e, f.

Dosing regimens and recommendation
to real-world settings

The Monte Carlo simulation results indicate that meropenem
alone is inadequate for achieving PK/PD targets in patients
with ARC (140 ≤ CrCL ≤ 200 mL/min) for infections caused
by Acinetobacter baumannii and Pseudomonas aeruginosa. It is
recommended that treatment be switched to other susceptible
drugs or combination therapy.

For infections caused by Klebsiella pneumoniae, the
recommendations were delineated according to the MIC category
in accordance with real-world settings (see Table 3). For resistant
Klebsiella pneumoniae with an elevated MIC (4 < MIC ≤ 8), the
administration of a prolonged infusion (i.e., 4 h, 6 h) or continuous
infusion may be advantageous for patients with ARC.
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FIGURE 1

The PTA-MIC curves for patients with ARC under different meropenem dosing regimens. (A) For patients with a CrCL of 140 mL/min. (B) For patients
with a CrCL of 160 mL/min. (C) For patients with a CrCL of 180 mL/min. (D) For patients with a CrCL of 200 mL/min. PTA, probability of target
attainment; MIC, minimal inhibitory concentration; ARC, augmented renal clearance; CrCL, creatinine clearance.
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TABLE 2 The CFR values for different renal functions and dosing
regimens achieving a target of 100% fT > MIC.

CrCL (mL/min) 140 160 180 200

Overall

1 g q8 h 0.5 h 83.91 71.71 52.60 32.25

2 g q8 h 2 h 94.53 93.95 93.35 92.56

2 g q8 h 3 h 96.06 95.74 95.51 95.25

2 g q8 h 4 h 96.60

2 g q8 h 6 h 96.60

Continuous infusion 96.60

Acinetobacter baumannii

1 g q8 h 0.5 h 41.47 26.19 13.92 6.69

2 g q8 h 2 h 74.56 73.38 71.71 69.09

2 g q8 h 3 h 75.80 75.78 75.68 75.46

2 g q8 h 4 h 75.80

2 g q8 h 6 h 75.80

Continuous infusion 75.80

Pseudomonas aeruginosa

1 g q8 h 0.5 h 35.41 23.33 13.47 7.10

2 g q8 h 2 h 74.74 71.66 68.45 64.22

2 g q8 h 3 h 83.50 81.64 80.28 78.79

2 g q8 h 4 h 86.70

2 g q8 h 6 h 86.70

Continuous infusion 86.70

Klebsiella pneumoniae

1 g q8 h 0.5 h 89.90 78.21 58.12 35.89

2 g q8 h 2 h 96.40 95.95 95.50 95.06

2 g q8 h 3 h 97.28 97.15 97.04 96.88

2 g q8 h 4 h 97.50

2 g q8 h 6 h 97.50

Continuous infusion 97.50

Discussion

In the present study, Monte Carlo simulations demonstrated
that meropenem 2 g q8 h 2/3 h, administered to critically ill
patients with ARC (CrCL 140–200 mL/min), achieved ≥ 90% PTA
(100% fT > MIC) for lower MICs (≤ 2 mg/L). However, for
higher MICs (4–8 mg/L), intensified regimens (2 g q8 h 4/6 h or
continuous infusion) were required. The CFR analysis confirmed
≥ 90% target attainment for Klebsiella pneumoniae with regimens
meropenem 2 g q8 h 2–6 h or continuous infusion, but not for
Acinetobacter baumannii or Pseudomonas aeruginosa, regardless
of regimen. For resistant Klebsiella pneumoniae (4 < MIC ≤ 8),
prolonged (4–6 h) or continuous infusions are recommended. For
Acinetobacter baumannii and Pseudomonas aeruginosa, alternative
or combination therapies are advised due to insufficient PK/PD
target attainment with meropenem monotherapy. These findings
underscore the necessity for tailored dosing strategies in ARC
patients, contingent on the pathogen’s MIC and renal function.

Sepsis has been defined as an acute, life-threatening condition
caused by a dysregulated immune system response to infection
(26), affecting millions of individuals annually and resulting in
1/6 ∼1/3 of those afflicted dying as a direct consequence (27).
For adults exhibiting signs of septic shock, it is recommended
that antimicrobials be administered promptly, ideally within
one hour of recognition (28, 29). GNB represent the primary
pathogens, accounting for at least 40% of pathogens associated with
bloodstream infections (30). Given the alarming global spread of
antimicrobial resistance represents a significant threat (5), the lack
of appropriate antibiotics for severe infections becomes a crucial
issue (31).

Meropenem, a carbapenem antibiotic, has a broad spectrum of
antibacterial activity and is widely used in antimicrobial therapy
for a variety of bacterial infections, particularly those caused by
GNB (32). Meropenem exhibits a time-dependent bactericidal
effect, whereby the efficacy of this antimicrobial against pathogens
is determined by measuring the percentage of time that the
unbounded drug concentration exceeds the MIC between doses.
This indicator is also known as % fT > MIC (33). For critically
ill patients, it has been established that the PK/PD targets for
meropenem should be increased to 100% fT > MIC in order
to achieve a higher survival rate and to minimize resistance
development (14, 34). Therefore, in the present study, 100%
fT > MIC were chosen as PK/PD targets for PTA assessment
during Monte Carlo simulation. Nevertheless, Meropenem is a
hydrophilic compound that is primarily excreted by the kidneys,
which are highly susceptible to alterations in renal function (19).
Likewise, a number of pathophysiological alterations can influence
the pharmacokinetics of meropenem in critically ill patients,
potentially increasing the probability of subtherapeutic levels and
affecting the efficacy of therapeutic interventions (34).

Currently, ARC is defined as a urinary creatinine clearance
of at least 130 mL/min/1.73 m2. The mechanism of ARC may
be attributable to altered physiological processes in critically ill
patients, leading to hyperdynamic and hypermetabolic states that
increase cardiac output and renal blood flow. This, in turn,
results in enhanced drug clearance through the kidneys (19).
Furthermore, there is evidence that ARC development is associated
with inflammatory stress response, fluid resuscitation, and the
use of vasoactive drugs in critically ill patients (35). It has been
demonstrated by research that neutropenia accompanied by fever
is also a contributing factor to ARC (19). It has been observed that
subtherapeutic levels of renally cleared drugs are present in patients
who are undergoing ARC, for instance, the β-lactam antibiotics,
aminoglycoside and vancomycin (35, 36). In such instances, a lack
of sufficient therapeutic antibiotic concentration for patients with
ARC has been linked to an increased incidence of treatment failure
and the selection of more resistant pathogens (16, 37). Carlier et al.
reported that the average % fT > MIC for piperacillin/tazobactam
or meropenem was 61% for patients with ARC and 94% for non-
ARC patients (20). Liebchen et al. reported that the patient with
ARC exhibited inadequate serum trough levels despite meropenem
infusion at the maximum approved dose (2 g every 8 h) (38).
Therefore, therapeutic drug monitoring (TDM)-guided antibiotic
dosing will hopefully maximize antibiotic exposure and reduce
bacterial resistance (39), improving clinical outcomes of patients
with ARC (38, 40, 41).
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TABLE 3 The recommended dosing regimens for meropenem in critically ill patients with ARC.

CrCL (mL/min) 140 160 180 200

Acinetobacter baumannii The meropenem alone is insufficient to achieve PK/PD target. It is recommended to switch to other susceptible drug or combination
therapy.

Pseudomonas aeruginosa The meropenem alone is insufficient to achieve PK/PD target. It is recommended to switch to other susceptible drug or combination
therapy.

Klebsiella pneumoniae MIC ≤ 1 2 g q8 h 2 h 2 g q8 h 2 h 2 g q8 h 2 h 2 g q8 h 3 h

1 < MIC ≤ 2 2 g q8 h 2 h 2 g q8 h 3 h 2 g q8 h 3 h 2 g q8 h 3 h

2 < MIC ≤ 4 2 g q8 h 3 h 2 g q8 h 3 h 2 g q8 h 3 h 2 g q8 h 4 h

4 < MIC ≤ 8 2 g q8 h 4 h / 6 h, continuous infusion

Standard dosing of antibiotics in intensive-care-unit (ICU)
patients runs the risk of low serum concentrations due to
altered physiological conditions such as ARC and increased
volume of distribution (3). Low serum-concentrations in
combination with multiresistant bacteria at a higher MIC
lead to subtherapeutic antibiotic exposure, with the consequence
of treatment failure and the selection of more resistant pathogens.
As such, standard dosing would be an inadequate strategy in
this setting (4). There are limited treatment options for MDR
A. baumannii infections and inappropriate initial therapy is
associated with increased mortality. Novel antibiotics and
combination therapy of existing drugs are deemed necessary in this
context (5).

Furthermore, for adults with severe infections, optimizing
dosing strategies should be conducted in accordance with PK/PD
principles and the specific pharmacological properties of the drug
in question (29). A number of studies have been conducted to
investigate the PPK of meropenem in critically ill patients (24, 42,
43). In the present study, we employed the PPK model proposed by
Gijsen et al. and conducted Monte Carlo simulations to determine
the optimal dosage of meropenem in critically ill patients with
ARC (24). The PTA and CFR calculations have established the
regimen recommendation.

In order to increase the percentage of fT > MIC, the
efficacy and safety of prolonged and continuous infusion
of meropenem and other β-lactams in critically ill patients,
regardless of ARC, have been assessed (44). In a study of
neutropenic children with ARC treated by meropenem or
piperacillin, continuous infusion was found to reduce the
inadequate antimicrobial exposure rate (8% vs. 85%) in
comparison with intermittent infusion (45). The BLING-III
randomized controlled trial demonstrated that the continuous
infusion of meropenem is clinically superior to intermittent
infusion in critically ill patients with sepsis (46). Abdul-Aziz
et al. (47) have reported that prolonged infusion of β-lactam
antibiotics yields reduced risks of 90-day and ICU mortality
with increased clinical cures compared to intermittent infusions
in patients with GNB infections. Dosing simulations suggest
that using continuous infusion regimens may enhance bacterial
killing (48). Furthermore, continuous infusion for critical
orthotopic liver transplant recipients has been shown to
minimize the risk of 30-day resistance (49). A comparative
analysis of adverse event incidences, including neurotoxicity,
cytopenias, and diarrhea, revealed no significant disparities
between prolonged and intermittent infusion regimens (50).

The total daily antibiotic dose for the continuous therapy was
equivalent to those recommended for intermittent therapy (51).
Conversely, a randomized clinical trial revealed that continuous
administration of meropenem did not significantly decrease
the all-cause mortality and emergence of pandrug-resistant or
extensively drug-resistant bacteria at day 28 (52). The findings
indicate a persistent uncertainty surrounding the efficacy of
prolonged infusions of β-lactam antibiotics in enhancing
clinical outcomes in critically ill adults with sepsis (53). The
need for further research in this area is underscored by the
necessity for large-scale prospective studies that can provide more
definitive answers.

Not only does ARC, but also hypoalbuminemia, have the
capacity to significantly alter the pharmacokinetics of antibiotics
in critically ill patients (54, 55). An increase in the free fraction
of drug resulting from hypoalbuminemia will lead to an increase
in the Vd and a consequent increase in the rate of renal
drug elimination (37). Hypoalbuminemia exerts a significant
influence on highly albumin-bound (>90%) and predominantly
renal eliminated antibiotics, such as ceftriaxone and ertapenem
(56). The lower unbound fraction of vancomycin, along with
lower binding antimicrobials, has been observed to be induced
by ARC and hypoalbuminemia (57, 58). Consequently, alterations
in septic shock, encompassing fluid overload, augmented cardiac
output, ARC, and hypoalbuminemia, may result in subtherapeutic
concentrations of antimicrobials, thereby influencing treatment
efficacy and patient outcomes (59).

In light of that the predominant manifestation of bacterial
infections occurs in extra-vascular tissues, the therapeutic effect
of antibiotic treatment is contingent on the concentration of free
antibiotic in target tissues (60, 61). For instance, respiratory tissue
penetration of meropenem was reported to be 40% in the lung
(62), and 37.5% of target site concentrations were below the
EUCAST clinical breakpoint (63). This relatively low concentration
in lung tissue may explain why achieving 50% fT > MIC does
not necessarily improve clinical outcomes (64). Conversely, the
plasma azithromycin concentrations were only approximately 10%
and 1% those of bronchial fluid and lung tissue, respectively (65).
Therefore, the free antibiotic concentrations in the tissues are
responsible for the antibacterial activity and are more suitable
for the determination of the clinical efficacy than the plasma
concentration (66).

However, it should be noted that this study is subject to
certain limitations. Firstly, the clinical trial is lacking, which
means that there is no evidence to assess the efficacy of the
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regimen’s recommendation. Secondly, only one PPK model has
been used in this study, which may not be the most appropriate
model for Monte Carlo stimulation in critically ill patients with
ARC. Therefore, further Monte Carlo stimulations and clinical
studies are warranted.

In conclusion, Monte Carlo simulation analysis revealed that
in critically ill patients with ARC (CrCL 140–200 mL/min),
meropenem 2 g q8 h (2–3 h infusion) achieved optimal PTA
for pathogens with MIC ≤ 2 mg/L. However, for more resistant
organisms (MIC 4–8 mg/L), extended infusions (4–6 h) or
continuous administration were necessary to maintain therapeutic
efficacy. While these extended regimens proved effective against
Klebsiella pneumoniae, they failed to achieve adequate coverage for
Acinetobacter baumannii or Pseudomonas aeruginosa infections,
highlighting the need for alternative antimicrobial agents or
combination therapy approaches in such cases. These findings
emphasize the importance of implementing individualized dosing
strategies in ARC patients, taking into account meropenem’s
unique PK/PD characteristics, including its time-dependent
bactericidal activity and predominant renal elimination, to
effectively manage resistant Gram-negative infections while
optimizing clinical outcomes.
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