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Case Report: Clinical metastasis 
characteristics of lung 
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Adenosquamous carcinoma (ASC) of the lung is a rare and aggressive subtype of 
non-small-cell lung cancer, with a poor prognosis. Previous studies have revealed 
the existence of numerous oncogenic mutations shared between the adeno and 
squamous components, thereby implying a potential link between these two 
pathologies. Nevertheless, the genetic origin and underlying mechanisms of such 
a connection remain subjects of controversy. Here, we present a remarkable case 
of ASC where the primary tumor and mediastinal lymph node (LN) metastasis 
were adenosquamous, while the hilar LN metastasis was pure squamous cell 
carcinoma. Remarkably, a ROS1 rearrangement was identified in all lesions, strongly 
suggesting a common origin for the adeno-squamous components. In other 
words, ASC represents an intermediate state during the potential transformation 
from AC to SCC. Through whole-exome sequencing and immunohistochemistry, 
we analyzed the tumor immune microenvironment and the expression of key 
lineage-defining transcription factors, including NKX2-1, FOXA2, and SOX2. Our 
findings suggest these factors contribute significantly to the adeno-to-squamous 
pathological transformation. This exceptional case offers valuable insights that 
could potentially aid in the future recognition and treatment of ASC.
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1 Introduction

Lung cancer holds the distinction of being the most prevalent cancer worldwide and the 
leading cause of cancer-related fatalities. Among the various subtypes of non-small cell lung 
cancer (NSCLC), lung adenosquamous carcinoma (ASC) represents a unique category, 
accounting for approximately 0.4–4% of cases, exhibiting high malignancy and remarkable 
plasticity (1–3). The World Health Organization defines ASC as a carcinoma with both 
squamous cell carcinoma components (SCCC) and adenocarcinoma components (ACC), with 
each component comprising at least 10% of the tumor under microscopic examination (4). In 
contrast to lung adenocarcinoma (AC) or squamous cell carcinoma (SCC), ASC, with its 
mixed adenomatous and squamous pathologies, exhibits elevated recurrence rates and a 
higher incidence of metastasis. However, the precise underlying mechanism remains elusive, 
largely due to the complex molecular behavior and unclear origin of clones.

Two major hypotheses have been proposed to explain the histogenesis of ASC: the 
“collision theory,” which posits those two independent tumors (AC and SCC) merge (5), and 
the “lineage transition theory,” suggesting transdifferentiation from a single progenitor cell. 
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The advent of next-generation sequencing (NGS) has significantly 
advanced our understanding of tumor biology. Recent experimental 
evidence tends to support the notion of pathological transformation 
occurring within single tumors, based on the observation of identical 
genetic alterations shared between ACC and SCCC (6–9). 
Nevertheless, further investigations are warranted to fully comprehend 
this unusual entity and explore the potential genetic origin and 
developmental mechanisms underlying this disease.

In this study, we present a unique case of ASC where an identical 
ROS1 rearrangement was found in both ACC and SCCC components 
across primary and metastatic sites, aiming to delve deeper into its 
genetic origin and underlying mechanisms.

2 Case presentation

On November 30, 2021, a 50-year-old male with no history of 
smoking presented at the First Hospital of Jilin University with a 
persistent cough lasting two months. Chest computed tomography 
(CT) revealed a 4.8 cm × 3.0 cm mass in the right upper lobe of the 
lung, along with mediastinal and right hilar lymph node (LN) 
metastases (Figure  1A). Subsequently, the patient underwent a 
lobectomy of the right upper lobe on December 3rd, 2021. Post-
operative pathological examination confirmed the primary tumor as 

ASC, measuring 4.5 cm × 3.5 cm × 2.5 cm. Additionally, cancer 
infiltration was observed in both the 4th group of mediastinal LN and 
the 10th group of hilar LN. Notably, the proportion of pathological 
components differed significantly among the three lesions. In the 
primary lesion, SCCC accounted for 80% and ACC for 20%. In the 4th 
group of LN, ACC accounted for 80%, and SCCC for 20%. Meanwhile, 
the 10th group of LN exhibited pure SCCC, with no presence of 
ACC (Figure  1B). The postoperative pathological stage was 
pT2bN2M0, IIIA.

Microdissection was performed in regions where ACCs and 
SCCCs were distinctly separated. Using the amplification refractory 
mutation system (ARMS) with the AmoyDx Mutations Detection Kit, 
common driver genes, including EGFR, ALK, ROS1, KRAS, BRAF, 
RET, MET, HER2, NRAS, and PI3KCA, were examined for each lesion. 
Interestingly, the different lesions shared gene similarities. The 
primary tumor’s ACC and SCCC, along with the 4th group of 
mediastinal LN and the 10th group of hilar LN, all exhibited the 
presence of the ROS1 rearrangement, while the results of other genetic 
testing were negative. To validate the presence of the ROS1 fusion 
gene, fluorescence in situ hybridization (FISH) was performed on 
sections from ASC samples obtained from the primary tumor and the 
4th group of mediastinal LN (Figure 1B). The results also confirmed 
the presence of the ROS1 fusion gene, with mutation abundances of 
63 and 45%, respectively (see Table 1).

FIGURE 1

(A) Chest CT images showing the primary tumor, the 4th groups of mediastinal LN, and the 10th groups of hilar LN. (B) Representative microdissected 
H&E images from the primary tumor, the 4th groups of mediastinal LN, and the 10th groups of hilar LN, along with confirmation of ROS1 fusion gene 
by FISH. (C) Representative images displaying immunohistochemical staining for CD4, CD8, CD20, CD56, and FOXP3 in the primary tumor, the 4th 
groups of mediastinal LN, and the 10th groups of hilar LN were not tested due to insufficient samples. (D) GEP analysis of the tumor immune 
microenvironment in each lesion. For each of the three lesions shown, two results are presented. (Top) A circular diagram visualizing the enrichment 
scores of various immune-related gene sets, which determine the overall GEP score and immune subtype classification. (Bottom) A heatmap 
visualizing the expression profile of T-cell-inflamed signature genes. In this heatmap, the columns represent the feature genes of the signature. The 
rows represent different samples; specifically, the row highlighted by the red box indicates the patient’s test sample, which is compared against a 
reference cohort (other rows) to determine its immune classification. Red indicates higher relative gene expression, while blue indicates lower 
expression. CT, computed tomography; LN, lymph node; FISH, fluorescence in situ hybridization. GEP, gene-expression profiling.
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To investigate the impact of the tumor immune microenvironment 
(TIME) on adeno-to-squamous transdifferentiation (AST), the 
samples were subjected to immunohistochemical analysis. Tissue 
sections were stained for CD4, CD8, CD20, CD56, and FOXP3, as 
depicted in Figure 1C. Upon comparing the changes in the immune 
microenvironment between the primary focus and metastatic LNs, it 
was observed that CD4+, CD8+, CD56+, and CD20+ were lower in the 
primary foci, while FOXP3 was higher. To further elucidate the 
mechanism underlying the AST, whole-exome sequencing (WES) 
was conducted on each lesion. The analysis revealed the presence of 
the EZR: exon10-ROS1: exon34 fusion in all lesions, with no 
additional mutations detected. Further analysis of the WES data 
provided deeper insights into the tumor’s biological characteristics. 
Notably, the expression levels of four key lineage-defining 
transcription factors, NKX2-1, FOXA2, SOX2, and TP63, showed 
significant differential expression across the three lesions, as 
summarized in Table 2. Using gene-expression profiling (GEP) to 
assess the T-cell inflamed signature, the analysis suggested that the 
primary focus was an “immune desert” type (score: 0.7), while the 
LNs were an “immune-enriched, fibrotic” type (scores: 7.5–7.6), 
potentially indicating higher immunoreactivity within the lymphoid 
tissue (Figure  1D). Gene set enrichment analysis (GSEA) was 
employed for Hallmark pathway analysis (Supplementary Figure 1). 
Compared to primary lesion, the expression of genes in the “KRAS_
SIGNALING_DN” pathway was significantly downregulated in 
metastatic lesions.

The identification of a shared, rare ROS1 fusion gene across both 
the adenocarcinoma and squamous cell components offers a valuable 
opportunity to investigate the monoclonal origin of ASC and explore 
the potential mechanisms underlying its development and intra-
tumoral heterogeneity.

3 Discussion

In our manuscript, we presented a rare case of ASC where the 
primary focus and mediastinal LN metastases exhibited 
adenosquamous components, while the hilar LN metastases were 
pure squamous. Remarkably, both the ACC and SCCC components 
in different foci harbored the ROS1 fusion gene. The role of the 
characteristic ROS1 fusion gene as a marker in the development 
and progression of ASC, as well as the reasons for the change in the 
ACC to SCCC ratio during metastasis, warrant further 
in-depth discussion.

3.1 The origins and development of ASC

The origin of ASC, presenting mixed glandular and squamous 
phenotypes, however, is still enigmatic. Two principal theories have 
been proposed: the “collision theory,” which posits that ASC results 
from the merging of two separate, independently arising tumors (an AC 
and an SCC) (10), and the “monoclonal origin theory,” which suggests 
that both components arise from a single progenitor cell via lineage 
transition or divergent differentiation (11). Figure 2A briefly depicts the 
two hypotheses for the origin of ASC. Our case provides a unique 
opportunity for an explicit comparative analysis of these two hypotheses.

The identification of shared driver mutations is crucial for 
determining tumor clonality. While previous studies have 
demonstrated the presence of the identical oncogenic drivers, such as 
EGFR and KRAS, in both components of ASC the interpretation can 
be  ambiguous. Because these mutations are relatively frequent in 
NSCLC, their shared presence could plausibly result from 
coincidence—two independent tumors arising with the same common 
mutation—thereby not definitively excluding the collision theory.

The evidentiary weight shifts substantially in favor of the 
monoclonal theory when identical rare and highly specific genetic 
alterations are identified in both the AC and SCC components of an 
ASC. Our study detected the identical ROS1 fusion gene in both 
components of the tumors. The ROS1 fusion gene is a rare genomic 
alteration detected in only 1–2% of lung adenocarcinomas and 
extremely rare in squamous cell histology (12–15). The statistical 
unlikelihood of two separate progenitor cells independently 
developing the exact same rare ROS1 fusion and then colliding 
spatially makes the monoclonal hypothesis, where a single ROS1-
rearranged progenitor cell undergoes divergent differentiation or 
transdifferentiation, a far more parsimonious explanation. This type 
of finding, leveraging a rare mutational event as a clonal marker, offers 
a more definitive basis for inferring a common cellular origin.

3.2 Changes in the proportion of ACC and 
SCCC

In this case, the proportion of ACC and SCCC components varied 
among the different lesions. Indeed, metaplastic changes and 
phenotypic interconversion are commonly observed among various 
subtypes of lung cancer. It is worth mentioning that most of such 
transformation were induced by drug treatment resulting in acquired 
resistance. Interestingly, our patients showed this transformation 

TABLE 1  Gene mutation detection results of the primary tumor, the 4th 
groups of mediastinal LN and the 10th groups of hilar LN by PCR, FISH 
and WES.

Lesion ROS1 by 
PCR

ROS1 by 
FISH

ROS1 by WES

Primary tumor
SCCC: (+)

ACC: (+)

(+)

Abundance: 63%

(+)

Abundance: 64.17%

The 4th group of 

LN

SCCC: (+)

ACC: (+)

(+)

Abundance: 45%

(+)

Abundance: 22.20%

The 10th group of 

LN
SCCC: (+) (+) (+)

LN, lymph node; PCR, polymerase chain reaction; FISH, fluorescence in situ hybridization; 
WES, whole-exome sequencing.

TABLE 2  Summary of whole-exome sequencing results and TPM levels of 
four crucial transcription factors involved in pathological transformation.

Lesion Primary 
tumor

The 4th 
group of 

LN

The 10th 
group of 

LN

TMB
0.72 Muts/Mb, 

TMB-L

0.0 Muts/Mb, 

TMB-L

0.0 Muts/Mb, 

TMB-L

NKX2-1 1273.78 155.23 106.58

FOXA2 125.39 31.73 54.94

SOX2 65.76 230.29 945.52

TP63 260.68 80.45 26.92

TPM, transcripts per million.
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before receiving any anti-neoplastic treatment, leading to a better 
understanding of primary AST mechanism.

The varying pathological compositions between the primary 
tumor and its metastases raise the question of whether the 
metastatic process itself influences this transformation. LN 
metastasis in NSCLC typically follows a pathway from local LN in 
the lung to hilar LN and then to mediastinal LN. Different 
squamous cell proportions lead us to think transfer pathway in this 
case is distinct from conventional metastasis. Previous studies have 
reported approximately 17.2 to 42.7% of N2-NSCLC patients 
undergoing surgical resection develop skip N2 metastasis, showing 
mediastinal LN metastases without corresponding peribronchial 
or ipsilateral hilar LN involvement (16, 17). Additionally, AC 
appears to be more prone to mediastinal LN skip metastasis than 

SCC, particularly acinar predominant AC in the right upper lung, 
which aligns with our current case.

Adeno-to-squamous transdifferentiation can be  affected by 
transcription factor. Previous studies have demonstrated that four 
lineage-defining TFs, namely NKX2-1, FOXA2, SOX2, and TP63, form 
a counteracting regulatory network controlling the development of ASC 
(11). Specifically, NKX2-1 and FOXA2 primarily promote the 
maintenance of the adenocarcinoma lineage, while SOX2 and TP63 
strongly drive squamous lineage differentiation. The dynamic balance 
of this regulatory network is figuratively described as a “seesaw”; its 
imbalance leads the cell lineage to tilt to one side. Within this core 
regulatory network, complex interactions exist among TFs. For example, 
SOX2 can inhibit NKX2-1 activity, and the loss or downregulation of 
NKX2-1 (common in SOX2-driven squamous differentiation) further 

FIGURE 2

(A) Schematic representation of the main theories hypothesizing the origin of ASC. (a) The theory of “collision” ASC metastasis and transdifferentiation 
between AC and SCC. (b) The theory of transition between AC and SCC. (B) Example phylogenetic trees depicting ASC metastasis and 
transdifferentiation. ASC, adenosquamous carcinoma; AC, adenocarcinoma; SCC, squamous cell carcinoma; RUL, right upper lobe; SCCC, squamous 
cell carcinoma components; ACC, adenocarcinoma components; LN, lymph node.
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accelerates SOX2-driven SCC development, indicating that NKX2-1 
normally has an inhibitory effect on SOX2-mediated AST (18).

The TF expression profile observed in this case study also reflects 
this complexity: in the hilar lymph node group 10, which presented as 
pure squamous carcinoma, the transcriptional activity of adeno-
lineage TFs FOXA2 and NKX2-1 was significantly weakened, while 
the squamous-lineage TF SOX2 showed high expression. This is 
highly consistent with the “seesaw” theory and the antagonistic 
regulatory network model. The high transcriptional activity of 
NKX2-1 in the primary lesion, while its expression is low in the pure 
squamous hilar lymph node, appears contradictory. However, NKX2-1 
may play a complex, even paradoxical, role in lung cancer. Some 
studies indicate that NKX2-1 has tumor-suppressive functions in 
certain contexts; its loss is associated with metastatic progression in 
some models, and it can inhibit SOX2-driven squamous carcinogenesis 
and the AST process (19). Therefore, the relatively high NKX2-1 level 
in the primary lesion might reflect an ongoing but incomplete 
transdifferentiation process. Concurrently, the “immune desert” 
phenotype of the primary lesion (GEP score 0.7) might also 
be  associated with high NKX2-1 expression, as NKX2-1 
downregulation is linked to increased neutrophil infiltration (20).

Beyond transcription factors, the tumor immune microenvironment 
(TIME) is another critical factor influencing AST. The presence of 
heterogeneity in tumor pathology is a prominent characteristic of 
tumors, existing between patients, within tumors, and among different 
tumors (21). A recent study involving 30 ASC patients revealed the 
existence of TIME heterogeneity between ACCs and SCCCs, which 
could be  linked to branch evolution and selection. Based on these 
findings, the researchers hypothesized that in SCCCs, high expression 
of programmed cell death-ligand 1 (PD-L1) can induce immune escape 
by reduced inflammatory infiltration into tumor cells in this component.

In our case, the TIME of the primary lesion was classified as an 
immune-depleted (“cold”) subtype, whereas the metastatic LNs were 
categorized as immune-enriched/fibrotic (“hot”) subtypes. This was 
further substantiated by immunohistochemical analysis, which 
showed lower infiltration of CD4+, CD8+, CD56+, and CD20+ cells and 
higher levels of FOXP3+ cells in the primary tumor compared to the 
metastatic LNs. While these IHC findings are illustrative, 
we acknowledge the inherent challenge in interpreting immune cell 
staining within the context of a lymph node, where differentiating 
tumor-infiltrating lymphocytes from the resident lymphoid tissue is 
difficult. Additionally, GSEA analyses revealed that KRAS signaling 
was downregulated in the metastatic LNs, implying higher KRAS 
activity in the primary tumor. This is significant, as KRAS mutations 
can foster an immunosuppressive TIME by upregulating PD-L1 level 
and downregulating infiltration of CD8+ TILs (22), providing further 
evidence for the suppressed immune status of the primary lesion.

These findings strongly suggest that the TIME plays a pivotal role 
in the AST process. However, we must acknowledge that lymph nodes 
are inherently immune-rich tissues. Therefore, the observed ‘immune-
enriched’ phenotype in the metastatic lymph nodes could be partly 
influenced by the baseline lymphoid stroma, which introduces a 
potential bias to this interpretation and warrants caution. 
We  hypothesize that the transdifferentiation from AC to SCC is 
favored in an immunosuppressive microenvironment. In such a “cold” 
environment, squamous cells may possess a survival advantage over 
adenocarcinoma cells, ultimately out-competing them and completing 
the phenotypic switch.

Consequently, we infer that the ASC represents an intermediate 
state during potential transformation from AC to SCC. The varying 
SCC proportion of ASC reflects the degree of squamous cell transition. 
Throughout the tumor growth and development, both AC or SCC cells 
have the capacity to disseminate and give rise to metastases of either 
phenotype. During the early stages of our case, the primary lesion was 
mainly composed of ACC while the ROS1 fusion gene occurred as a 
trunk mutation, likely underwent skip metastasis to the mediastinal 
LNs. As the tumor progressed, intratumoral lineage transition 
occurred simultaneously, resulting in an increase in the SCC 
components, with certain characteristics of SCC becoming evident. 
Metastases of SCC phenotype occurring at advanced stages. Both the 
primary and metastatic foci underwent AST, whereas the surrounding 
TIME and other factors contribute to the extent of squamous cell 
transition, manifested by different SCC proportions. The metastasis 
and transdifferentiation process is depicted in Figure 2B.

Nevertheless, our study has certain limitations. Firstly, we only 
had one case, and individual variability may exist. Secondly, compared 
to the broad sequencing approaches of whole-genome sequencing, 
we performed WES on the patient, covering less of the genome, which 
may limit mutational signature analysis on this data. Additionally, the 
lack of paraneoplastic tissue control in this case may have limitations 
in the analysis of the microenvironment. Thirdly, the absence of extra-
nodal metastases for comparison is a notable limitation of our current 
study, and future research is needed to validate our hypothesis in 
non-lymphoid metastatic sites.

4 Conclusion

This rare case of ASC with the ROS1 fusion gene sheds light on 
the genetic homogeneity of ACC and SCCC, despite the spatial and 
temporal separation of the primary and metastatic foci. These 
findings strongly suggest that ASC represents an intermediate state 
during the potential transformation from AC to SCC, and AC or 
SCC cells have the capacity to disseminate and give rise to metastases 
of either phenotype. The TIME is considered to play a prominent 
role in the AST process. The insights gained from this case may 
prove valuable in further understanding the genomic origin and 
unique biological behavior, including the mechanism of 
transdifferentiation, in ASC. Moreover, this case may have 
implications for enhancing clinical diagnosis and treatment 
strategies for ASC in the future.
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