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This study aimed to evaluate the feasibility of applying deep learning combined with 
a super-resolution scanner for the digital scanning and diagnosis of oral epithelial 
dysplasia (OED) slides. A model of a super-resolution digital slide scanning system 
based on deep learning was built and trained using 40 pathological slides of oral 
epithelial tissue. Two hundred slides with definite OED diagnoses were scanned 
into digital slides by the DS30R and Nikon scanners, and the scanner parameters 
were obtained for comparison. Considering that diagnosis under a microscope 
is the gold standard, the sensitivity and specificity of OED pathological feature 
recognition by the same pathologist when reading different scanner images were 
evaluated. Furthermore, the consistency of whole-slide diagnosis results obtained 
by pathologists using various digital scanning imaging systems was assessed. This 
was done to evaluate the feasibility of the super-resolution digital slide-scanning 
system, which is based on deep learning, for the pathological diagnosis of OED. The 
DS30R scanner processes an entire slide in a single layer within 0.25 min, occupying 
0.35GB of storage. In contrast, the Nikon scanner requires 15 min for scanning, 
utilizing 0.5GB of storage. Following model training, the system enhanced the 
clarity of imaging pathological sections of oral epithelial tissue. Both the DS30R and 
Nikon scanners demonstrate high sensitivity and specificity for detecting structural 
features in OED pathological images; however, DS30R excels at identifying certain 
cellular features. The agreement in full-section diagnostic conclusions by the same 
pathologist using different imaging systems was exceptionally high, with kappa 
values of 0.969 for DS30R-optical microscope and 0.979 for DS30R-Nikon-optical 
microscope. The performance of the super-resolution microscopic imaging system 
based on deep learning has improved. It preserves the diagnostic information of 
the OED and addresses the shortcomings of existing digital scanners, such as 
slow imaging speed, large data volumes, and challenges in rapid transmission and 
sharing. This high-quality super-resolution image lays a solid foundation for the 
future popularization of artificial intelligence (AI) technology and will aid AI in the 
accurate diagnosis of oral potential malignant diseases.
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1 Introduction

Oral potential malignant diseases (OPMDs) are a general term for a 
class of diseases with the potential for malignant transformation 
occurring in the oral mucosal membrane, including oral leukoplakia, 
oral erythema, oral submucous fibrosis, etc. Current research shows that 
the overall malignant transformation rate of OPMDs is between 2.6 and 
7.9% (1–5). Once OPMDs become malignant into oral squamous cell 
carcinoma, the patient’s 5-year survival rate and quality of life are 
significantly reduced. Pathological diagnosis often directly guides clinical 
intervention measures in the management of OPMDs patients. Oral 
epithelial dysplasia (OED) is the primary predictor of malignant 
transformation risk. The gold standard for tumor discrimination and 
grading is histopathological examination (6, 7). However, due to the 
diversity of pathological manifestations of OED and the subjective 
differences among pathologists, the diagnostic consistency for OED 
grading is low (8–10). Considering these issues in the pathological 
diagnosis of OED, numerous studies have indicated that consulting 
different pathologists on challenging cases can enhance the accuracy of 
the diagnosis (11, 12). Furthermore, with the advancement of computer 
technology, AI-assisted diagnosis has emerged as a prominent research 
focus in the pathological diagnosis of OED. Adeoye et al. (13) developed 
an OED malignant transformation prediction system that integrates 
clinical photographs of oral leukoplakia with deep learning algorithms, 
which achieved favorable calibration and discrimination. However, 
researchers have argued that this system cannot replace conventional 
biopsy for oral leukoplakia assessment. Consequently, recent 
investigations have explored the integration of digital pathology 
techniques, advanced imaging technologies, and deep learning 
methodologies to achieve precise diagnosis of OED (14).

Digital pathology technology utilizes advanced digital scanners to 
capture slices, transforming slice information into digital data that can 
be  stored, analyzed, and shared. This advancement significantly 
enhances the efficiency of remote consultations between hospitals and 
establishes the groundwork for using AI technology in OED diagnosis 
(15, 16). The digital scanning of slices is an important aspect of the 
application of digital pathology technology. However, traditional 
scanning technologies encounter several problems. When a high-
magnification objective lens is used to scan clear, high-resolution images, 
the scanning efficiency, equipment stability, and single-scanning success 
rate of traditional scanning systems must be improved. In addition, the 
large storage capacity of digital images and the high cost of scanning 
equipment limit the use of digital slice scanning and remote diagnosis 
in primary medical institutions and pose a great burden to individuals 
or small and medium-sized scientific research teams. To meet these 
challenges and make the obtained higher-definition cell microstructure 
images easy for clinical application, many optical super-resolution 
technologies have been developed, such as structured illumination 
microscopy, photoactivated localization microscopy (17), and 
sub-diffraction-limit imaging using the stochastic optical reconstruction 
microscopy technique (18). Single-image super-resolution (SISR) 
technology, an image-transformation method, reconstructs high-
resolution (HR) images from degraded low-resolution (LR) images (19). 
Recently, SISR technology, enhanced by deep learning, has been 
extensively utilized by researchers in digital pathology and clinically 
verified. This technology has been applied to the pathological diagnosis 
of leiomyosarcoma of the ovary and uterus. It was confirmed that both 
whole and local features were preserved during the reconstruction of 
high-resolution images using deep learning. Additionally, 20× whole 

slide images (WSIs) were converted into 40× WSIs (20). By maintaining 
image clarity, super-resolution scanning technology significantly 
accelerates scanning speeds compared to previous technologies, 
facilitating the widespread adoption and application of digital pathology 
in clinical settings (21). In this study, we integrated a digital pathological 
scanner with super-resolution technology and developed a digital slice 
optical scanner using an array objective lens (DS30R DAKEWE). 
We utilized images of OED slides as training data for deep learning. By 
combining it with SISR technology, the OED slide imaging algorithm 
was established. Given the pathological characteristics of oral tissues, this 
integration enables clearer and more detailed microscopic imaging, 
enhancing the accuracy of observations of dense cells in oral epithelial 
tissues and their nuclear morphological features.

2 Materials and methods

2.1 Dataset

This is a cross-sectional diagnostic study in which the dataset 
included 240 hematoxylin and eosin (H&E) stained WSIs of OPMDs with 
biopsy-proven dysplasia and clinical presentation as homogeneous and 
non-homogeneous leukoplakias at one or more sites, diagnosed between 
2018 and 2023. This study adhered to the Declaration of Helsinki and 
received approval from the ethics committee of The Affiliated Hospital of 
Qingdao University (registration number: QDFYWZLL29058). All 
patients were required to have at least 1 year of follow-up, with 
comprehensive photography and documentation. Patients with oral 
lichen planus were excluded, while those presenting with simple 
hyperplasia and mild, moderate, or severe dysplasia/carcinoma in situ 
were included (7). All pathological sections have previously passed quality 
control checks. The fixation time for the samples was uniformly 
maintained between 6 to 24 h, and the thickness of all sections consistently 
measured within the range of 3-5 μm. The slides were scanned and stored 
using a DS30R scanner and a Nikon scanner. Of these materials, 40 slides 
were utilized for super-resolution machine training, and 200 slides were 
used for diagnosis and verification. The proposal super-resolution deep 
learning model is deployed locally on the DS30R product, without 
connecting to the Internet or being accessible from the Internet. The 
pathology slides used for training and evaluation data are sourced from 
the Affiliated Hospital of Qingdao University. The digital images are 
stored in a private storage of the Affiliated Hospital of Qingdao University. 
The storage and use of digital images are conducted in an environment 
with data network security and under the authorization of relevant 
regulations. The super-resolution deep learning model and software 
system in the DS30R comply with the standards of ICE/TR 80001–2-2 
and ISO/IEC 81001–5-1, as well as the YY/T 1843–2022 standard.

2.2 Imaging optimization of 
super-resolution scanning system based 
on deep learning

We used the SISR technology based on the transition from LR image 
to HR image to realize super-resolution imaging. Based on SISR 
framework, this technology used multiscale fully convolutional networks 
and conditional generative adversarial networks. Through stochastic 
curriculum learning training strategies, the complexity of data pairs was 
gradually increased in the training stage to urge the model to capture 
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more complex image details, thus achieving the imaging clarity equivalent 
to 20× NA0.8 objective lens.

2.2.1 Collection and preparation of 
super-resolution image data set

Forty oral tissue slides were scanned using a DS30R scanner 
equipped with a 20× array objective lens to generate low-resolution 
WSIs. Comparative high-resolution acquisitions were performed 
through a Nikon scanner under dual configurations: 20× NA0.4 
optical parameters (designated HR01) and 20× NA0.8 specifications 
(designated HR02). The resultant dataset comprising 150,000 
LR-HR01-HR02 triplets was partitioned through stratified 
randomization into training (n = 120,000), testing (n = 15,000), and 
validation (n = 15,000) subsets, maintaining an 8:1:1 allocation ratio.

HR01 images, acquired through the 20× NA0.4 objective lens, 
served as the ground-truth reference for establishing baseline optical 
parameters. These were paired with array-derived LR images to 
computationally model a point spread function (PSF) and imaging 
resolution parameters equivalent to conventional optical microscopy. 
Subsequent super-resolution learning employed stochastic curriculum 
learning (SCL) with progressive difficulty escalation, wherein HR02 
images (20× NA0.8 acquisitions) were integrated as advanced training 
targets to enhance imaging fidelity.

Two distinct training paradigms were implemented:
Dataset A: HR01 (20× NA0.4) ↔ LR (array-based) mapping.
Dataset B: HR02 (20× NA0.8) ↔ LR (array-based) mapping.
Critical implementation consideration: Spatial registration between 

Datasets A and B was rigorously maintained through field-of-view 
alignment, effectively mitigating catastrophic forgetting during 
incremental model training. The flow chart of the collection and 
preparation of super-resolution image data sets is shown in Figure 1.

2.2.2 Super-resolution model training
In the OED slide dataset, the scaling factor between the LR and HR 

images is 6, and SISR with this and other large scaling factors presents 
significant challenges. Consequently, adopting a coarse learning 
mechanism proves advantageous for training the SISR model to handle 
large scaling factors. Initially, the model is trained using simple samples, 
and progressively, more complex samples are incorporated into the 
training set. This strategy enhances the model’s ability to restore 
low-resolution images to high-resolution ones. Therefore, utilizing the 
coarse-learning mechanism, we segmented the model training process 
into two distinct phases: Stage 1: Training begins on an untrained 
model using Dataset-A, focusing on super-resolution training in deep 
learning to match the imaging clarity of 20 × NA0.4. Stage 2: Building 
on the model trained in the first stage, further super-resolution training 
is conducted using Dataset-B, aiming to achieve imaging clarity of 
20 × NA0.8 and meet diagnostic definition requirements.

2.3 Super-resolution scanning system 
based on deep learning for OED 
pathological image feature recognition and 
full-slide diagnosis evaluation

2.3.1 Recognition of pathological features of OED 
images

The OED pathological tissue samples from our slide database 
were randomly selected based on their positions within the 

epithelium. Images in the same field of vision were captured using a 
DS30R scanner, Nikon scanner, and optical microscope, comprising 
200 low magnification and 200 high magnification images. The 
images were categorized into groups A (DS30R 10×), B (Nikon 10×), 
C (optical microscope 10×), D (DS30R 20×), E (Nikon 20×), and F 
(optical microscope 20×). Groups A, B, and C focused on identifying 
structural features, while groups D, E, and F targeted cellular features. 
Upon acquiring the images, a senior oral pathologist randomly 
reviewed and annotated each group based on the pathological 
features defined in the WHO classification standard (2022) for OED 
(22). The results from the optical microscope groups (C and F) 
served as the gold standard. Subsequently, the sensitivity and 
specificity of feature recognition in groups A, B, D, and E were 
calculated. The calculation formulas for sensitivity and specificity are 
as follows:

 

True PositivesSensitivity 100%
True Positives False Negatives

= ×
+

 

True NegativesSpecificity 100%
True Negatives False Positives

= ×
+

These metrics represent fundamental statistical parameters, where:
True Positives = number of correctly identified positive features.
False Negatives = number of incorrectly identified 

negative features.
True Negatives = number of correctly identified negative features.
False Positives = number of incorrectly identified positive features.

2.3.2 Evaluation of pathological full-slide 
diagnosis of OED

A senior oral pathologist successively browsed and read the whole 
sections using a DS30R scanner, a Nikon scanner, and an optical 
microscope. The order of each section was randomized. The 
pathologist arrived at the diagnostic conclusion for each slide and 
recorded it. All slide samples were grouped according to the original 
diagnostic conclusion, and the agreement rate between the diagnostic 
conclusions of the pathologists in each group and the original 
diagnostic conclusion was calculated. The formula used is as follows:

 

Number of slides with the same 
diagnosis within the groupAgreement Rate 100%

Total number of slides 
contained in the group

= ×

The consistency of the diagnoses made by pathologists using the 
three instruments was compared, with DS30R-optical microscope, 
DS30R-optical microscope, Nikon-DS30R and three evaluators (23, 
24). The results were consistent by Kappa test.

2.4 Statistical analysis

The collected data were analyzed using the Statistical Package for 
the Social Sciences (SPSS) for Windows, version 22.0. The weighted 
kappa test was used for the consistency test between two, and Fleiss’ 
kappa test was used for the consistency test between three. When the 
Kappa coefficient is greater than 0, it indicates meaningful consistency. 
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A larger Kappa coefficient denotes better consistency. A Kappa 
coefficient of 0.00–0.20 indicates low consistency, 0.21–0.40 indicates 
general consistency, 0.41–0.60 indicates moderate consistency, 0.61–
0.80 indicates high consistency, and 0.81–1.00 also indicates very 
high consistency.

3 Results

3.1 Imaging optimization of 
super-resolution scanning system based 
on deep learning

When preparing the super-resolution dataset, we used the DS30R 
and Nikon scanners to scan the same slice data and save them as 

digital data. The operating parameters of the two scanning devices are 
listed in Table 1.

The DS30R scanner can automatically focus the slide and scan it 
in single or multiple layers through parallel array scanning. It 
requires 0.25 min to scan a slide in a single layer, with the data 
storage volume for the entire slide at 0.35GB. A Nikon scanner was 
used for area scanning, taking 15 min per slice, with a storage 
volume of 0.5GB. In the deep learning framework, the critical 
hyperparameters were configured as follows: the model underwent 
900 training epochs with a generator learning rate of 1 × 10−4 and a 
discriminator learning rate of 1 × 10−5, while the adversarial loss 
coefficient was maintained at 0.9 throughout the training process. 
We employed two metrics, the peak signal-to-noise ratio (PSNR) 
and Fréchet inception distance (FID), to assess the model’s 
performance and produce a super-resolution image, as depicted in 

FIGURE 1

Preparation process of super-resolution data set. Image data were acquired from H&E-stained oral pathology slides using three objectives: (i) DAKEWE 
DS30R array objective 20×, (ii) NIKON CFI Plan Apochromat 20× NA0.8, and (iii) NIKON CFI Plan Achromat 20× NA0.4. Step 1 Cross-high-resolution 
registration: Scale-Invariant Feature Transform (SIFT) feature matching achieved subpixel alignment between HR01 and HR02 (error < 1px), with 
adaptive color normalization to minimize brightness differences (Δ grayscale ≤ ±2). Step 2 Cross-scale precise registration: A novel combination of 
Template Matching and SIFT algorithms aligned low-resolution WSI to HR02 (error < 1px), followed by adaptive color normalization (Δ grayscale ≤ ±2). 
Step 3 Dataset creation: Cropped images to 256 × 256 pixels, generating two datasets: A (LR-HR01 pairs) and B (LR-HR02 pairs).
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Figure 2. Throughout the training, we examined the image data and 
determined that the PSNR primarily assessed the image clarity, 
whereas the FID gaged the image fidelity. In the SISR model training, 
these two metrics produced divergent outcomes; the peak PSNR did 
not guarantee the lowest FID. This divergence arises because the 
PSNR measures only image clarity and not fidelity. An overly high 
PSNR may indicate that an image is either too smooth or distorted, 
leading to a feature distribution that does not align with the actual 
image, thereby elevating the FID. To generate a comprehensive 
evaluation index that considers both definition and fidelity, 
we  introduced the PSNR-FID difference. A greater difference 
suggests that the model output is more balanced in terms of 
definition and fidelity, offering a more thorough evaluation of the 
model’s performance. Pivotal images from the SISR model training 
are illustrated in Figure  2A. After super-resolution training, the 
images became clearer, and intracellular granularity was enhanced. 
As shown in Figure  2B, the deep learning model underwent 
progressive optimization (manifested by a reduction in the FID 
metric) and enhanced processing performance (demonstrated by an 
elevation in the PSNR values) during training, ultimately stabilizing 
at equilibrium. The maximal discrepancy between the PSNR and 
FID metrics served as the determinant for optimal training 
termination, thereby achieving an optimal equilibrium between the 
model optimization (fidelity preservation) and processing efficacy 
(output clarity). The full dataset is available in the Supplementary  
material (Sections S1–S3).

3.2 Super-resolution scanning system 
based on deep learning for OED 
pathological image feature recognition and 
full-slide diagnostic evaluation

Oral pathologists examined the characteristic pathological images 
of each group and identified the information they contained. As 
shown in Figure 3A, the histopathological analysis of OED lesions 
revealed characteristic architectural disturbances. Figure 3Aa shows 
the disorganization of epithelial stratification accompanied by the loss 
of basal cell polarity and irregular cellular alignment. Figure  3Ab 
illustrates the well-defined epithelial drop-shaped rete ridges, which 
are a hallmark of early dysplastic progression. Figure  3Ac shows 
abrupt transition zones between orthokeratotic and parakeratotic 
keratinization patterns, indicative of advanced epithelial maturation 
abnormalities. Notably, these diagnostic morphological signatures 

were preserved with high fidelity following computational 
enhancement using the DS30R super-resolution imaging system. 
Moreover, the color information of the H&E-stained slices was closer 
to the actual values. In the structural feature group, as illustrated in 
Figure 3, the sensitivity and specificity of the feature recognition were 
high, particularly when the specificity exceeded 95%. The sensitivity 
and specificity of image recognition using the DS30R and Nikon 
scanners closely matched. Detailed data are presented in 
Supplementary Table S1. Figure 4A shows the three characteristic 
cellular features observed in OED. Figure 4Aa shows an increased 
nuclear-to-cytoplasmic (N/C) ratio, accompanied by nuclear 
abnormalities, such as nucleolar enlargement and hyperchromasia, 
indicative of enhanced cellular proliferation and elevated mitotic 
activity. Figure 4Ab shows a distinct abnormal mitotic pattern with 
concomitant nuclear enlargement and chromatin condensation. 
Figure  4Ac shows multiple single-cell keratinization patterns, a 
hallmark of dysplastic epithelial differentiation. Initial low-resolution 
scanning using the DS30R system yielded suboptimal image clarity 
for these subtle cytological features compared to the Nikon scanner. 
However, following the application of super-resolution reconstruction 
algorithms optimized with a generative adversarial network loss 
function, the DS30R SR output exhibited significantly enhanced image 
quality. The processed images showed improved spatial resolution, 
optical translucency, and intracellular granularity. As shown in 
Figure 4, the sensitivity for the identification of cellular features was 
high, although the specificity was somewhat lower than that of the 
structural feature group. Specificity diminished when the size and 
morphology of the cells and nuclei were recognized. With the 
exception of cell size, the DS30R’s specificity for identifying cellular 
characteristics surpassed that of the Nikon scanner. Further details are 
provided in Supplementary Table S2.

Based on the original diagnoses, the 200 oral histopathological 
sections selected in this study were classified as normal epithelium, 
simple hyperplasia, mild dysplasia, moderate dysplasia, severe 
dysplasia, or squamous cell carcinoma (Figure  5A and 
Supplementary Table S3). The coincidence rates between the 
diagnostic conclusion under light microscopy and the historical 
diagnostic conclusion were as follows: normal, 93.8%; simple 
hyperplasia, 92.6%; mild dysplasia, 89.8%; moderate dysplasia, 91.2%; 
severe dysplasia, 93.3%; and cancer, 100%. The DS30R scanning 
images corresponding to each diagnosis are shown in Figure 5B. These 
images were generated using super-resolution technology after 
scanning with a 20× array objective lens using a DS30R pathological 
section scanner. This demonstrated the characteristic features of OED 
across different histopathological grades. The key diagnostic criteria 
include the extent of epithelial involvement due to dysplastic changes 
and the presence of localized cellular atypia, such as nuclear 
pleomorphism, loss of polarity, and abnormal mitotic activity. These 
features are critical for distinguishing mild, moderate, and severe 
dysplasia. For example, in Figure 5B, normal or hyperplastic epithelial 
tissues showed no cellular or structural atypia. In mild dysplasia, 
atypical hyperplasia is confined to the lower third of the epithelial 
layer. Moderate dysplasia exhibits features extending to the middle 
third of the epithelial layer, whereas severe dysplasia demonstrates 
characteristics involving almost the entire epithelial layer and/or 
shows significant cellular atypia. The pathologists used a DS30R 
scanner, a Nikon scanner, and a light microscope to examine the entire 
section and establish a definitive diagnosis. The consistencies in the 

TABLE 1 Performance comparison between DS30R and Nikon scanners.

Parameter DS30R NIKON

Scanning mode Microscope Array Scanning Area Image Scanning

Imaging mode Bright Field Bright Field

Imaging resolution 0.179 um/pixel 0.24 um/pixel

Scanning speed* 0.25 min 15 min

Storage capacity* 0.35 GB/WSI 0.5 GB/WSI

Multi-layer scanning Supportive Unsupportive

Auto-focusing Supportive Supportive

Scanning speed*, Scanning capacity*: based on a full slice with a scanning range of 
15 mm*15 mm.
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diagnoses made using the three methods were calculated and 
compared (Supplementary Table S4 and Section S4). The kappa values 
were 0.981 for the Nikon-optical microscope (p < 0.05), 0.969 for the 
DS30R-optical microscope (p < 0.05), and 0.988 for the Nikon-DS30R 
(p < 0.05). The consistency test among the three evaluators was 
conducted using Fleiss’ kappa test, with a value of 0.979 (p < 0.05), 
indicating very high consistency among the evaluators.

4 Discussion

To the best of our knowledge, this study is the first to use deep-
learning-based super-resolution technology with the morphological 
features of oral epithelial tissues through methodological refinement 
for OED imaging. Employing H&E-stained slides of oral mucosal 
epithelial tissue for machine learning and continuously adjusting 

FIGURE 2

Display of training process data and key image results (epoch = 1–165). (A) Key H&E-stained image results of the training. LR, the original image 
captured by the DS30R array objective lens. HR, the image captured by the microscope using a Nikon 20× NA0.8 objective lens. SR, the super-
resolution image, which is obtained by processing the LR image through the super-resolution deep learning model. (B) Evaluation curves of the 
training results during the super-resolution model training process. The evaluation metrics selected FID, PSNR, and the difference between FID and 
PSNR.
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parameters, such as granularity, during training enhances image 
clarity and suitability for oral histopathological diagnosis. Our 
research confirmed that scanning the images of OED slides with this 
system effectively preserved the characteristics of tissue structure and 
cells. By incorporating a deep learning algorithm, the final generated 
image exhibits high sensitivity and specificity for identifying lesion 
features, particularly for imaging fine cellular structures. Compared 
with the regional scanning mode of the Nikon scanner, our system 
significantly enhanced the scanning speed and reduced the storage 
volume of the image files. These results indicate that the array objective 

scanning imaging system embodied by the DS30R combined with 
deep learning has significant application value in the histopathological 
diagnosis of OED.

To overcome the diffraction limit and achieve higher-
resolution imaging of cellular microstructures, various microscopic 
cellular imaging techniques have been developed since 2000, 
including super-resolution technologies based on the structured 
illumination microscopy (SIM) principles (25) and photoactivated 
localization microscopy (PALM) developed by Betzig et al. (17), 
which utilize fluorescent molecules combined with proteins. 

FIGURE 3

Structure characteristics in OED slides. (A) Examples of OED structural feature images: (a) irregular epithelial stratification, (b) drop-shaped rete ridges, 
and (c) altered keratin pattern for oral sub-site. Images at 10× magnification were obtained from H&E-stained tissue sections scanned using DS30R and 
Nikon. (B) Sensitivity and specificity of structural features recognition.
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However, these techniques require expensive optical equipment 
and involve complex procedures. The cellular imaging technology 
employed in this study adopts a pyramid architecture based on 
convolutional neural networks, referencing the SISR framework 
proposed by Li et al. in 2020 (26). This is one of the few clinically 
validated methodologies, and our findings demonstrate its 
applicability for the histopathological diagnosis of OED using 
H&E-stained slides.

Some limitations exist in this study. In OPMDs histopathological 
slides, epithelial tissue alterations such as inflammatory infiltration 
and ulceration  - which frequently coexist with OED  - may 
concurrently influence cellular and architectural characteristics, yet 

these confounding factors were not systematically addressed. 
Regarding OED diagnosis and intervention, immunohistochemical 
staining is occasionally required to assess the risk of malignant 
transformation (27). However, such analyses were not performed in 
this investigation. Therefore, future research should evaluate the 
efficacy of this technology for interpreting immunohistochemically 
stained specimens.

Moreover, different pathologists noted certain discrepancies in 
the diagnoses of the same tissue sections. This aligns with the 
findings of Allard et al. (28), namely that despite clear standards for 
identifying pathological features, subjective variances among 
diagnosing pathologists are inevitable due to OED. Although it 

FIGURE 4

Cell morphological characteristics in OED slides. (A) Examples of OED cell feature images: (a) increased N/C ratio, (b) atypical mitotic figures, (c) single 
cell keratinization. Images at 20× magnification were obtained from H&E-stained tissue sections scanned using DS30R and Nikon. (B) Sensitivity and 
specificity of cell morphological characteristics recognition.
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specifies the boundary involving epithelial layers, the exact 
indicators for pathological features remain vague, leading to a 
grading system that assesses the overall morphology of several 
attributes (29, 30). Owing to the challenges in diagnosing this 
disease, particularly in difficult cases, consultation with a more 
experienced physician may be required to confirm the diagnosis. In 
such instances, the utility of DS30R slice scanning data becomes 
evident. These histopathological data can be quickly shared among 
various physicians, enhancing collaboration, and facilitating 
educational sessions. With the advancements in computer science 
and technology, an increasing number of researchers are creating 
more objective systems for evaluating pathological sections using AI 
(31–33). Gupta et  al. (34) used a deep learning algorithm to 
categorize the severity of epithelial dysplasia in 52 histopathological 
sections of potentially malignant oral conditions, achieving an 

accuracy of 89.3%. Employing AI to develop a computer-aided 
diagnostic system offers the benefits of high precision, time and 
labor savings, and comprehensive analyses (35, 36). Compared to 
traditional scanners, the DS30R scanning system, which is enhanced 
with super-resolution imaging technology, shows significant 
potential for AI-assisted diagnosis owing to its faster imaging 
capabilities and lower storage and operational requirements. In 
future studies, we  plan to further assess the effectiveness of the 
AI-assisted diagnosis of oral diseases.
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FIGURE 5

Classification of oral epithelial tissues with different grading of dysplasia degree. (A) Composition ratios of each diagnostic category and their 
agreement rates in diagnostic outcomes. (B) Representative pathological H&E-stained images for each category, all acquired using the DS30R scanner 
at 10× objective magnification.
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