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Immune-mediated disorders are a broad range of diseases, arising as
consequence of immune defects, exaggerated/misguided immune response or
a mixture of both conditions. Their frequency is on a rise in the developed
societies and they pose a significant challenge for diagnosis and treatment.
Traditional pharmacological, monoclonal antibody-based or polyclonal antibody
replacement-based therapies aiming at modulation of the immune responses
give very often dissatisfactory results and/or are burdened with unacceptable
adverse e�ects. In recent years, a new group of treatment modalities has
emerged, utilizing cells as living drugs, especially with the use of the up-
to-date genetic engineering. These modern cellular therapies are designed
to o�er a high potential for more targeted, safe, durable, and personalized
treatment options. This work briefly reviews the latest advances in the treatment
of immune-mediated disorders, mainly those related to exaggeration of the
immune response, with such cellular therapies as hematopoietic stem cells
(HSCs), mesenchymal stromal cells (MSCs), regulatory T cells (Tregs), chimeric
antigen receptor (CAR) T cells and others. We highlight the main features of
these therapies as new treatment options for taming the dysregulated immune
system. Undoubtfully, in near future such therapies can provide lasting remissions
in a range of immune-mediated disorders with reduced treatment burden and
improved quality of life for the patients.
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1 Introduction

Properly functioning immune system is indispensable for human health as it defends

the body against pathogens, cancer and other foreign threats. However, it must be tamed

by tolerance mechanisms to spare healthy tissues and co-exist with the commensal

microbiome. The complex nature of immune system makes it vulnerable to malfunctions,

either in a form of immune deficiencies, exaggerated or misdirected immune activation

or a co-existence of both types of these pathological conditions. The consequences of

these abnormalities are termed the immune-mediated disorders (IMD). Overall, IMD are

currently affecting up to 10% of the population (1–3). In this review, we will mostly focus

on the abnormal exaggeration of the immune responses, sometimes referred to as immune-

mediated inflammatory disorders (IMID), as the most remarkable progress has been done

in cellular therapies in this field (1).
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It is important to mention that the overactivity of the

immune system can be primary/spontaneous (idiopathic or caused

by a pathological genetic trait) or induced as secondary to

immune defects or external/environmental factors (e.g., allergens,

pathogenic infections or pharmacological treatment), and can also

occur under specific conditions of allogeneic organ transplantation

(4–6). The disbalance of immune system can eventually cause

damage to the inflamed tissues, leading to their functions

impairment and diseases development. The main groups of such

illnesses are autoinflammatory syndromes, allergies and rejection of

the transplanted organ and other immune-mediated inflammatory

diseases (Figure 1). Many of these conditions are chronic and

require long-term management.

Importantly, the cross-relations between various IMD, indicate

a potential gene-related common predispositions. Especially

among connective tissue diseases, such as systemic lupus

erythematosus (SLE) and rheumatoid arthritis, between diabetes,

celiac disease, and thyroid disorders (2), as well as allergic

reactions and inflammatory diseases (7). Indeed, variants of

approximately 500 genes are currently suspected as capable of

posing a predisposition to immune dysregulation (8), and this list

is definitely still incomplete. Moreover, several clinical factors can

significantly enhance or suppress the personal immune responses

(9), resulting in modulation of the disease progression. Among the

key clinical factors (Table 1), the most pronounced are: age, gender,

pre-existing chronic diseases, infections, and therapies.

Infections control is particularly important for IMD

management. Infections can both stimulate the disease onset

and exacerbate its course. Among infants and young children, the

immune system develops, that might lead to a higher susceptibility

to infections, while the elderly immune system, which naturally

weakened with age, has a reduced effectiveness against infections

(10). Other significant factors, such as malnutrition (11), obesity

FIGURE 1

An overview of the pathomechanisms of immune mediated disorders.

(12), chronic stress (13), sleep deprivation (14), exposure to

pathogens or pollutants (15), lifestyle (low physical activity,

smoking and alcohol consumption) (16–18), can also impair

immune function and increase susceptibility to infections. These

factors influence the immune system in complex ways and

can make the results of applied therapies inadequate. Hence,

understanding the interplay of these factors is crucial for disease

management. Moreover, the exact causes of many IMD remain

unknown. Therefore, classical pharmacotherapy, monoclonal

antibody-based or immunoglobulin replacement-based methods

may produce transient or dissatisfactory results or burden

unacceptable adverse effects. Therefore, search for more tailored,

thus more efficient therapeutic strategies continues. Remarkably,

recent advances in using cells as living drugs have revolutionized

the field of medicine, offering innovative therapies for a number of

diseases that were previously difficult to treat. This also holds true

in the management of several types of IMD. In the current review,

we aimed to summarize the cellular therapy-based approaches

in IMD, marking a significant shift from traditional drug-

based interventions to highly personalized precision medicine.

These approaches include among others cellular therapies with

hematopoietic stem cells (HSC), mesenchymal stromal cells

(MSC), regulatory T cells (Tregs) or chimeric antigen receptor

(CAR) T cells.

2 Clinical applications of cell therapies
in IMD

2.1 Hematopoietic stem cells (HSC)

Hematopoietic stem cells, usually of the

CD34+CD38−CD45RA− phenotype (19), are responsible for
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TABLE 1 Examples of clinical factors a�ecting the immune response and

IMD development.

History of diseases and

infections

History of diseases and infections, treatment

(chemotherapy, immunosuppression,

immunomodulation).

Age Young age (<18 years): greater risk of disease

occurrence, faster diagnosis, better prognosis and

response to treatment; adult age (> 18 years):

lower incidence of disease, complex diagnosis,

poorer prognosis and limited response to

treatment; elderly (>65 years): second peak of

greater disease incidence, complex diagnosis,

poorer prognosis and limited response to

treatment.

Gender Increased risk for IMD in women comparing to

men, most probably as a result of endocrine

(estrogen and testosterone) balance.

Extrinsic factors Pre-existing immunity, dysbiosis, infections,

antibiotics, geographic location, season, family

size, exposition to toxins, smoking, alcohol

consumption, exercising, sleep, nutrition, body

mass index, micronutrients.

Physiological

mechanisms

Skin, mucous membranes, microbiota, enzymes,

physiological, reflexes, accelerated metabolism,

phagocytosis.

the formation of blood and immune cells. HSC are primarily

localized in the bone marrow, but after mobilization they can

be also present in peripheral blood or intrinsically in umbilical

cord blood. These cells have the unique ability to differentiate

into all types of blood cells, which is crucial in managing

of various types of diseases, including hematological cancers,

solid tumors and IMD (20). HSC were primarily discovered in

early 1950′s, the first allogeneic transplant was completed in

1957, while six patients were treated with intravenous infusion

of marrow from a normal donor (21). Since then HSC have

become crucial in regenerative medicine, treating conditions as

anemia, immune system dysfunctions, and bone marrow failures

(20). Indeed, HSC transplantation is currently a mainstay for

treating some IMD, particularly those characterized by profound

immune deficiency or, recently, highly exaggerated autoimmune

dysfunctions (22). The main reason for this fact is the capability

of HSC transplant to “reprogram” the immune system—it is

obvious for allotransplantation, but also in autologous settings

HSC transplantation can “reset” the immune system by replacing

the patient’s malfunctioning immune cells with new healthy cells.

Therefore, transplantation of autologous HSC in an IMD patient

can lead to a long-term remission by eliminating autoreactive T-

and/or B cells and promoting tolerance to self-antigens, e.g., by

generation of new regulatory T cell clones. Indeed, such long-term

outcomes have been confirmed in patients with SLE (23), multiple

sclerosis (24), systemic sclerosis (25), refractory autoimmune

retinopathy (26) and other IMD (27). Nevertheless, despite

multiple observations of prolonged remission and improved

quality of life, especially in patients with severe, refractory

forms of autoimmunity, the major limitation of autologous HSC

transplantation is the requirement for myeloablation or extensive

lymphodepletion. These preconditioning regimens, essential for

eliminating autoreactive lymphocytes and allowing engraftment

of HSC to the bone marrow make the patients exposed

to potential complications, including severe infections, organ

toxicity, and long-term immune suppression, which can lead to

secondary cancer formation. This fact significantly restricts broader

application of auto-HSC transplant as a treatment for IMD, as

the risks often outweigh potential gains from this procedure.

Therefore, auto-HSC transplants, especially empowered with

genetic engineering of HSC, are currently considered beneficial

for only a subset of individuals with autoimmunity refractory to

standard treatment and/or with profound immune deficiencies

(27, 28).

While discussing HSC transplantation as an anti-inflammatory

cellular therapy, it is important to mention, that allogeneic HSC

transplantation is burdened with a significantly high risk of Graft-

vs.-Host Disease (GvHD), which, for the sake of the current

review, can be definitely referred to as “immune-mediated disease”.

Therefore, GvHD can be a subject for tolerogenic cellular therapies,

including the ones utilizing mesenchymal stromal cells (MSC)

(29) or regulatory T cells (Tregs) (30). The role of long-term

observational studies in HSC transplant recipients, concerning

the incidence of such complications as late cardiac events (31),

gastrointestinal (32), neurological (33), and other disorders (34) is

crucial for patient-oriented safety management.

2.2 Mesenchymal stromal cell (MSC)

MSC are present in various tissues, including bone marrow,

adipose tissue, and the umbilical cord (35). They were identified

and described by Friedenstein et al. (36), while conducting research

on bone marrow. Since then, MSC have been extensively studied

for their ability to modulate immune responses and promote tissue

repair, and have been used for the treatment of poor prognosis

or refractory severe AD since 1995 (37). Recognized mechanisms

of MSC-mediated immunoregulatory activities include inhibition

of activation and proliferation of T- and B-lymphocytes, dendritic

cells, pro-inflammatory macrophages, as well as natural killer cells

by arrest in the G0/G1 phase of their cell cycle (38). Furthermore,

MSC cell to cell interactions are mediated by adhesion molecules,

such as P-selectin, intercellular adhesion molecule-1 (ICAM-1)

and vascular cell-adhesion molecule-1 (VCAM-1). It is known

that these adhesion molecules trigger T-cells rolling, arrest, and

then transmigration through the endothelium. MSC are able to

upregulate the adhesion molecules expression and to engage T-

cells to MSC (39). They have also potential to inhibit proliferation

of the T-cells, in particular pro-inflammatory helper populations

Th1 and Th17; and to activate Tregs (40). These properties

were used in the therapeutic approaches to IMD, including RA,

SLE, type 1 diabetes (T1D), multiple sclerosis and inflammatory

bowel disease (41–44). For example, in 81 patients with severe

and drug-refractory SLE the transplantation of allogeneic bone

marrow- and umbilical cord-derived MSC was able to significantly

reduce proteinuria and improve serum albumin, complement,

white blood and platelet cells counts early after intravenous MSC

infusion. Moreover, a significant long term decline in disease

activity could be reached. The 5-year survival rate of these patients

was 84%, whereas 27% achieved complete and 7% partial clinical
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FIGURE 2

CAR-T therapy in clinical practice.

remission (45). Beneficial effects of MSC transplantation was

recently reported in SLE patients with refractory disease-related

cytopenia. Significant improvement in blood cell count, along

with a 43.65% reduction in disease activity index at 3-months

and 72.44% at 2-years of follow-up was observed. Importantly,

a 53.7% increase in Treg cells and a 54% reduction in Th17

cells were detected at one month after MSC transplantation,

confirming their immunoregulatory properties (46). On the other

hand, data obtained from a randomized double-blind placebo-

controlled trial of allogeneic MSC transplantation for the treatment

of lupus nephritis did not reveal any additional therapeutic benefit

compared to standard pharmacological immunosuppression (47).

The results of these studies clearly show that there is no “one size

fits all” therapy for SLE. First, because it is a very heterogeneous

disease and second, because SLE patients (similarly to other IMD

patients) encounter numerous endogenous and environmental

factors described in the section above.

2.3 Chimeric antigen receptor (CAR) T cells

CAR-T cell therapy involves patient’s T cells modification

to express receptors that target and destroy specific cells

(Figure 2). The term chimeric comes from the different origins

of CAR components. Their extracellular antigen recognition

domain is usually derived from antibodies or ligands, whereas

transmembrane and intracellular activation domains are derived

from T cell-specific proteins. The genetic sequence encoding CAR

in a viral vector is transferred ex-vivo into T cells to generate CAR-T

cells. After their infusion into the host they recognize the antigen,

get activated, and destroy the target cell.

CAR-T cells were first mentioned in literature in 1989, by

Dr. Zelig Eshhar, who pioneered their development (48). The

first clinical trials were conducted in 2006 in patients with

ovarian cancer (49) and metastatic renal cell carcinoma (50),

these studies however did not received the Food and Drug

Administration (FDA) approval. First therapy with CAR T cells

(Kymriah/tisagenlecleucel), approved by FDA was launched in

2017, for the treatment of pediatric and young adult acute

lymphoblastic leukemia (51). The concept of using CAR-T cells

therapy in IMD is based on resetting the immune system and

allowing patients to avoid immunosuppressive drugs (51). In

pre-clinical setting, the use of CD19 CAR-T cells targeting B

lymphocytes abrogated disease-specific B-cell autoimmunity and

renal inflammation inmurine SLEmodels (52, 53). In the treatment

of human IMD, the CD19 CAR-T cells were used for the first

time in 2021, in a 20-year old woman with severe SLE resistant

to therapy. She tolerated well CAR-T cell infusion, which led to

successful B cells depletion and CAR-T cell expansion in peripheral

blood.Moreover, this approach enabled complete clinical remission

and discontinuation of all immunosuppressive agents, including

glucocorticoids (54). This single patient observation was recently

confirmed and more profoundly analyzed in a series of five patients

with treatment resistant SLE. Authors of this study reported

reproducible CD19 CAR-T cells generation from their peripheral

blood, despite preceding standard of care use of mycophenolate

mofetil and glucocorticoids. SLE clinical manifestations remitted
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FIGURE 3

The balancing square model of four T-cell types.

in all studied patients and seroconversion of anti-dsDNA,

anti-nucleosomes, and anti-Sm antibodies was achieved. Moreover,

humoral responses to previous vaccinations remained stable (55).

The effects of CD19 CAR-T cell therapy are not limited to SLE, but

can be obtained also in other IMD. One such might be a multidrug-

resistant dermatomyositis, as reported in a patient who achieved

immunosuppression-free clinical remission and seroconversion of

anti-Jo-1 antibodies after infusion with CD19 CAR-T cells (56).

What is more, the diversity of antigen-binding domains could

further expand the targeting field of CAR-T therapies (57).

The B cell maturation antigen (BCMA), which is expressed on

plasmablasts and plasma cells became another target. An anti-

BCMA CAR-T therapy has been used in relapsed or refractory

neuromyelitis optica spectrum disorders (58) and its efficacy in

combination with CD19 CAR-T therapy is under investigation

in SLE, Sjoegren’s syndrome, necrotizing myopathies, scleroderma

and vasculitis (59). Another potential target is a transmembrane

glycoprotein CD7, expressed by T cells and NK cells and their

precursors. Clinical trials investigating anti-CD7 CAR-T cells in

refractory dermatomyositis, Still disease and inflammatory bowel

disease are ongoing (59).

In addition, CAR-T cells have the potential to be used in

transplantology, to prevent GvHD (60) or to enhance Graft-vs.-

leukemia effect (61). That kind of therapy could also potentially

be engineered to promote tolerance to the transplanted organ,

reducing the need for lifelong immunosuppressive drugs or to

suppress specific immune cell subsets involved in organ rejection.

Although CAR-T cells are very promising treatment tools,

especially for hematological cancers, the major concern with

the potential life-threatening adverse events (cytokine release

syndrome and immune effector cell-associated neurotoxicity

syndrome) can occur (62), therefore this strategy is a subject of

further improvement (63).

2.4 Regulatory T cells (Tregs)

Treg cell therapy are a subset of T cells which are the

inflammatory response regulators, playing differential role in

immune tolerance and homeostasis (64). Their clinical application

involves among others: T1D, multiple sclerosis, asthma, and

allergies (65–67). Treg cells were first mentioned in 1995 (68)

and clinically applied in 2009 (69). It is worth to mention,

that unmodified Tregs, isolated from peripheral blood, have only

moderate efficacy, which can be increased by genetic modifications,

such as CAR expression. This approach is thought to provide

targeted CAR-Treg lymphocyte activity in target organs. The

clinical and genetic engineering challenge is to prevent Tregs

ability to reprogram themselves into a Th17 phenotype, with

pro-inflammatory effects and its abnormal activation of the

immune system. Maintaining the balance (Figure 3) between

each phenotype is crucial in prevention of disease occurrence

and/or progression. Recently, the efficacy of autologous polyclonal

expanded Tregs were investigated in a randomized phase 2 multi-

center, double-blind, clinical trial in 110 children and adolescents

with new-onset T1D. The therapy was reported to be safe but

it did not prevent decline in residual β cell function over 1

year compared to placebo (70). In parallel, the murine model of

heart transplant, demonstrate the efficacy of CAR Treg therapy,

alone or in combination with immunosuppressive agents, toward

protecting vascularized grafts in fully immunocompetent recipients

(71). In other preclinical study, involving mouse models, Tregs

were reported to prevent severe GvHD without eliminating

the potent graft-vs.-tumor effects of allo-HSC transplantation.

Interestingly, such desirable immunomodulation strategy was

confirmed in patients, in whom Tregs were administered ahead

of conventional T cells that mediate GvHD, in some cases

without any pharmacological immunosuppression (72). Also

in xenogeneic transplantation the levels of Tregs early after

transplant were predictive of survival. In the latter study the

high levels of Tregs between days 7–17 post-transplant were

associated with a GvHD-free and disease relapse-free outcome

(73). Therefore, clinical trials, focusing both on efficacy and

long-term safety are being conducted in various IMD, including,

SLE (74), multiple sclerosis (75) or Crohn’s disease (76). These

trials demonstrated the safety of Treg cell therapy, while

additional research is ongoing to further establish their efficacy in

transplantology (NCT05987527).
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FIGURE 4

Timeline of experimental development of selected cellular therapy methods.

2.5 Natural killer cells (NK)

Natural Killer cells, exhibit high cytotoxicity against tumors

and virally infected cells without prior sensitization (no antigen

presentation or prior exposure) (77). NK cells originating from

peripheral blood, were discovered in early 1970′s (78, 79), later

described as a part of the innate immune system, capable of

detecting stress signals on the surface of the altered cells (80).

NK cells can be also modified with CAR receptors (81). The

clear advantage of CAR NK cells in comparison with CAR

T cells is much lesser tendency to induce cytokine release

storm, hence can be deemed safer (82). The other potential

advantage is that, when CAR is directed against a T-cell specific

antigen in order to eliminate autoimmune T cells, NK CAR

cells would not be hampered by the fratricidal effect (83). Lastly,

because NK-cells practically do not exert anti-allogenic effect,

they potentially can be used as off-the-shelf therapy (84), which

would dramatically lower the cost of such treatment. NK cell

therapy is being actively investigated for the treatment of cancer

(85, 86), infectious diseases (87), and certain IMD, such as:

lupus nephritis (NCT06265220, NCT06557265), systemic sclerosis,

idiopathic inflammatory myopathy (NCT06464679) and ANCA-

associated vasculitis (Ntrust-2 study, Nkarta, Inc). Several clinical

studies are still ongoing, to confirm the potential of NK cells as a

suitable platform for IMD treatment (88, 89).

2.6 Dendritic cells (DC)

Dendritic cells were discovered by Ralph Steinman and Zanvil

Cohn, described primary as a rare cell type in murine spleen

cells with phagocytic properties (90). DCs play a critical role in

the immune system as the most potent antigen-presenting cells,

activating T cells and thereby initiating and regulating adaptive

immune responses. DC therapy is being studied in particular

for cancer treatment, with the goal of enhancing the immune

system to recognize and attack cancer cells or other disease-causing

agents (91). Moreover, a phase 1/2, randomized, double-blind,

placebo-controlled trial of the autologous DC therapy was recently

TABLE 2 Clinical trials using cell thrapeutics in selected IMDs.

Trial ID Target disease Phase

HSC

NCT04047628 Multiple sclerosis Phase 3

NCT01174108 Aplastic anemia, paroxysmal nocturnal

hemoglobinuria,

myelodysplastic syndrome

Phase 2

NCT05086003 Kidney and bone marrow transplant Phase 2

MSC

NCT03917797 Systemic lupus erythematosus Phase 2

NCT03901235 Crohn’s disease Phase 1/2

NCT04356287 Systemic sclerosis Phase 1/2

CAR-T

NCT06375993 Systemic lupus erythematosus/lupus

nephritis

Phase 1

NCT05869955 Systemic lupus erythematosus, idiopathic

inflammatory myopathy or systemic sclerosis

Phase 1

NCT04146051 Myasthenia gravis Phase 2

Treg

NCT05095649 Graft-vs.-host disease Phase 1

NCT06552169 Kidney transplant Phase 2

NCT05695521 Amyotrophic lateral sclerosis Phase 2

NK

NCT06010472 Systemic lupus erythematosus Phase 1

NCT06377228 Lupus nephritis Phase 1

NCT06464679 Idiopathic inflammatory myopathy,

rheumatoid arthritis, systemic sclerosis

Phase 1

performed, enrolling participants over 16 years of age, within 1

year of T1D diagnosis. Although treatment with DC was associated

with less decline in C-peptide AUC (nmol/l), compared to placebo,

no clear differences in change in HbA1c and insulin dose from

baseline were observed between groups (92). Thus, further studies

are necessary to evaluate this therapeutic approach.
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2.7 Induced pluripotent stem cells
(iPSCs)—source of cellular therapies

iPSCs are human somatic cells that have been genetically

reprogrammed to a pluripotent state, similar to embryonic stem

cells. iPSCs were discovered in 2006 by Shinya Yamanaka and

considered as a major breakthrough in medicine. Reprogramming

technology enables the generation of patient-specific stem cells that

can be used for disease modeling, drug development, screening

and personalized regenerative therapies. These cells have significant

potential, reducing the risk of immune rejection. iPSCs-based

therapies are being investigated for several diseases, including

neurodegenerative disorders, diabetes and cardiovascular disease

(93). Themain benefit of iPSCs is their capability to be programmed

into other types of cells, including such immune cells as T cells (94),

NK cells (95) and Treg like cells (96), which again rises the hope for

off-the-shelf therapies.

3 Challenges and limitations

Despite their potential, cell therapies face several significant

challenges. Although being promising, offering potentially

high-effective methods for diseases with limited treatment

options, they are often high-priced and such costs put these

therapies inaccessible for most of the patients. It is worth to

mention, that this kind of therapy usually requires individualized

manufacturing procedures, involving highly specialized personnel

and facilities. Many of these therapies raise important ethical

issues, considering the application of gene-editing technologies

and their long-term safety, particularly regarding to tumorigenesis,

immune-related complications or preparation and administration

protocols. The law restrictions and ethical standards vary between

countries, therefore the advancements of cellular therapies may

be affected.

While cellular therapies succeeded in certain areas, significant

technical challenges remain. One notable setback was the recent

withdrawal of Alofisel R© (darvadstrocel) from EU market in

December 2024. An allogeneic stem cell therapy for the treatment

of complex perianal fistulas in adult patients with Crohn’s

disease, failed to demonstrate to be more effective than placebo.

Similarly, treating solid tumors with CAR-T cells has proven

to be more complicated than treating hematologic malignancies.

These challenges highlight broader limitations in IMD treatment,

including disease heterogeneity, immune system complexity and

functional stability of cell-based therapies. Therefore, ensuring both

safety and efficacy of this type of therapy is a major challenge

for researchers.

4 Conclusions and future directions

The field of cellular therapies is rapidly evolving (Figure 4), the

improvement of safety and efficacy of these treatments is making

them more affordable and accessible for patients suffering from

IMD. In addition, there is significant interest in combining cellular

therapies with gene editing technologies, such as CRISPR, CAST

or Fanzor systems (97) to create even more precise and effective

therapeutic approach.

Ongoing clinical trials are expanding the applications of cellular

therapies, with promising results for diseases such as T1D (98),

chronic kidney disease (99), osteoarthritis and muscular dystrophy

(100), and, asmentioned above, SLE (23) and systemic sclerosis (25)

(selected clinical trials are summarized in Table 2). Future therapies

using allogeneic cells, which can be mass-produced and universally

available, would improve accessibility and reduce the time and cost

of producing patient-specific treatments.
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Wiewiórska-Krata et al. 10.3389/fmed.2025.1550527

References

1. Greco R, Alexander T, Del Papa N, Müller F, Saccardi R, Sanchez-Guijo
F, et al. Innovative cellular therapies for autoimmune diseases: expert-based
position statement and clinical practice recommendations from the EBMT
practice harmonization and guidelines committee. EClinicalMedicine. (2024)
69:102476. doi: 10.1016/j.eclinm.2024.102476

2. Conrad N, Misra S, Verbakel JY, Verbeke G, Molenberghs G, Taylor
PN, et al. Incidence, prevalence, and co-occurrence of autoimmune disorders
over time and by age, sex, and socioeconomic status: a population-based
cohort study of 22 million individuals in the UK. Lancet. (2023) 401:1878–
90. doi: 10.1016/S0140-6736(23)00457-9

3. GBD 2019 IMID Collaborators. Global, regional, and national
incidence of six major immune-mediated inflammatory diseases: findings
from the global burden of disease study 2019. EClinicalMedicine. (2023)
64:102193. doi: 10.1016/j.eclinm.2023.102193

4. Chong AC, Visitsunthorn K, Ong PY. Genetic/environmental contributions and
immune dysregulation in children with atopic dermatitis. J Asthma Allergy. (2022)
15:1681–700. doi: 10.2147/JAA.S293900

5. Wu X, Chen H, Xu H. The genomic landscape of human immune-mediated
diseases. J Human Genet. (2015) 60:675–81. doi: 10.1038/jhg.2015.99
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