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Accurate and timely detection of diabetic retinopathy (DR) is crucial for managing 
its progression and improving patient outcomes. However, developing algorithms 
to analyze complex fundus images continues to be a major challenge. This work 
presents a lightweight deep-learning network developed for DR detection. The 
proposed framework consists of two stages. In the first step, the developed model 
is used to assess the presence of DR [i.e., healthy (no DR) or diseased (DR)]. The 
next step involves the use of transfer learning for further subclassification of DR 
severity (i.e., mild, moderate, severe DR, and proliferative DR). The designed model 
is reused for transfer learning, as correlated images facilitate further classification 
of DR severity. The online dataset is used to validate the proposed framework, and 
results show that the proposed model is lightweight and has comparatively low 
learnable parameters compared to others. The proposed two-stage framework 
enhances the classification performance, achieving a 99.06% classification rate 
for DR detection and an accuracy of 90.75% for DR severity identification for 
APTOS 2019 dataset.
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1 Introduction

Diabetes is a growing global health concern, with approximately 830 million people 
affected worldwide in 2022, according to the World Health Organization (1). The prevalence 
of diabetes is expected to continue rising, resulting in an increasing number of people 
developing related complications, such as diabetic retinopathy (DR). Maintaining optimal 
visual health is essential for ensuring the well-being of individuals worldwide. Visual 
impairment and blindness pose significant threats to global health, driven by various factors 
including chronic diseases and unequal access to healthcare (2). As the number of people with 
DR grows from an estimated 103 million in 2020 to around 160 million by 2045, so does the 
number of individuals experiencing vision problems, posing a substantial challenge to public 
health and the economy (3). DR is a significant contributor to visual impairment and blindness 
worldwide. According to a study published by Al-Ghamdi (4), in Saudi Arabia, individuals 
over the age of 50 experience higher rates of blindness and visual impairment. For instance, 
among those aged 60 years and above, about 20% have blindness, while as many as 66.2% have 
visual impairment. Being a chronic and insidious disease, DR generally affects persons with 

OPEN ACCESS

EDITED BY

Yukun Zhou,  
University College London, United Kingdom

REVIEWED BY

Min Shi,  
Harvard University, United States
Lie Ju,  
Monash University, Australia

*CORRESPONDENCE

Seong-Han Kim  
 shkim8@sejong.ac.kr

†These authors have contributed equally to 
this work and share first authorship

RECEIVED 25 December 2024
ACCEPTED 10 March 2025
PUBLISHED 02 April 2025

CITATION

Zafar A, Kim KS, Ali MU, Byun JH and Kim S-H 
(2025) A lightweight multi-deep learning 
framework for accurate diabetic retinopathy 
detection and multi-level severity 
identification.
Front. Med. 12:1551315.
doi: 10.3389/fmed.2025.1551315

COPYRIGHT

© 2025 Zafar, Kim, Ali, Byun and Kim. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 02 April 2025
DOI 10.3389/fmed.2025.1551315

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1551315&domain=pdf&date_stamp=2025-04-02
https://www.frontiersin.org/articles/10.3389/fmed.2025.1551315/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1551315/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1551315/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1551315/full
mailto:shkim8@sejong.ac.kr
https://doi.org/10.3389/fmed.2025.1551315
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1551315


Zafar et al. 10.3389/fmed.2025.1551315

Frontiers in Medicine 02 frontiersin.org

diabetes, often developing insidiously without overt early symptoms. 
If left unattended, DR can result in irreversible blindness.

DR can be effectively managed through regular screening, which 
enables the condition to be  detected early and treated. Advanced 
techniques promote the diagnosing and severity identification of tiny 
lesions at higher resolution imaging of the fundus. There are primarily 
two forms in which DR manifests itself: proliferative DR (PDR) and 
non-proliferative DR (NPDR) (5). NPDR can be classified into four 
different severity levels, ranging from mild to severe (6). Typical 
symptoms in DR include microaneurysms, retinal hemorrhage, and 
exudates. In the early development of DR, there are usually only slight 
manifestations of microaneurysms. With its progress, along with 
significant intraretinal hemorrhages and venous beading or 
microvascular abnormalities, complications can become more severe 
(7). The formation of new blood vessels defines PDR, often 
accompanied by vitreous or retina hemorrhage (8). Fundus imaging 
plays an imperative role in the diagnosis of DR (9), enabling 
ophthalmologists to analyze lesions, decide on the severity, and hence 
recommend treatment.

Grading DR from a fundus image is difficult even for expert 
ophthalmologists because diagnosis involves several lesions and often 
overlapped borders of those lesions, making perfect diagnosis time-
consuming and unreliable. Hence, computer-aided systems are needed 
to grade DR. Various computer-aided systems have been presented in 
the literature to grade the DR severity (10–14). Such solutions intend 
to assist ophthalmologists in correctly assessing fundus images to 
detect lesions.

Various image processing methods are used to automatically 
detect hemorrhages, one common retinal manifestation related to 
diabetic patients (10). Other works have focused on developing 
strategies for detecting microaneurysms (11), one of the primary 
indicators of DR. Dimensionality reduction using techniques such as 
principal component analysis has been used to enhance 
microaneurysm detection. Fuzzy C-means clustering has also been 
utilized to diagnose DR and maculopathy automatically (15). Other 
researchers have also tried curvelet-based edge enhancement and 
wideband bandpass filters to improve the contrast between lesions and 
retina background (16).

Several classical machine learning methods have been employed 
by researchers using decision trees, support vector machines (17), 
random forests (18), logistic regression (19, 20), and Gaussian naive 
Bayes (19) for DR grading. These algorithms extract features from 
images with the aid of image processing techniques. For instance, 
Lachure et al. (17) used erosion, dilatation, opening, and closure for 
feature detection by applying morphology-based image processing 
methods to differentiate microaneurysms from exudates. Recently, 
studies of deep features for local and global feature extractions from 
fundus images have been conducted (18). These features are then 
utilized to train classifiers and predict the final DR classification. Most 
of the classical machine-learning methods depend heavily on feature 
extraction, which is often a complicated and time-consuming process. 
This may not capture all the intricate characteristics necessary for 
accurate classification.

In contrast, deep learning techniques have emerged as a 
powerful tool in imaging applications. Deep learning models have 
demonstrated remarkable success in identifying DR by 
automatically extracting complex features using convolutional 
layers (21, 22). This approach eliminates manual feature extraction, 

allowing for more efficient and accurate classification (12–14). 
Zhou et al. (23) introduced a multitasking deep neural network 
architecture for DR classification. By leveraging a multitasking 
approach, they forecasted labels through classification and 
regression, achieving an 84% kappa score. The interconnectedness 
of DR phases contributed to the achieved performance. In addition 
to deep learning models, transfer learning has also been explored 
for detection. Researchers have leveraged pre-trained models and 
fine-tuned them for DR detection, achieving promising results (24, 
25). Furthermore, various feature selection approaches, including 
wrapper-based (26, 27) and filter-based methods (28), have been 
investigated for DR detection. These techniques aim to identify the 
relevant features, reducing the data dimensionality and improving 
model performance. Deep neural networks dominate image 
processing and computer vision applications. However, traditional 
deep learning models may not effectively capture complex, 
irregular objects. Despite advancements, multi-class categorization 
remains an area for improvement. On the other hand, transfer 
learning models are effective, but can be  even more beneficial 
when fine-tuned on weights frozen with images that are highly 
correlated with the target task. This study aimed to enhance 
classification performance while minimizing layers 
and parameters.

This research presents a novel deep-learning architecture and 
framework for detecting DR and identifying its severity. The approach 
involves a two-stage process. Initially, a custom-designed deep 
learning lightweight classification model is developed to distinguish 
between healthy (no DR) and DR-affected (mild DR, moderate DR, 
severe DR, and PDR) fundus images. Upon identifying the presence 
of DR, the pre-trained model is reused using transfer learning to 
subclassify the severity of DR into specific categories, including mild, 
moderate, severe DR, and PDR. Leveraging the initial model’s frozen 
weights on related images facilitates the severity identification process. 
The proposed deep learning model and framework are validated using 
a publicly available online dataset. The proposed framework is 
compared to existing state-of-the-art models to check its simplicity 
and efficiency.

2 Materials and methods

This section provides a complete description of the methodologies 
and materials in this work, particularly the developed deep learning 
model and its framework. Additionally, it describes the data 
augmentation techniques used to tackle the dataset’s imbalanced issues.

2.1 Proposed DR detection multi-level 
severity identification framework

This research presents a deep learning-based approach for 
detecting and identifying the severity of DR. This approach is divided 
into two phases. Phase I involves designing a deep learning model to 
classify fundus images as healthy (no DR) and DR-affected (mild DR, 
moderate DR, severe DR, and PDR). Stage II utilizes the trained 
model from Stage I  to further categorize DR retinas into mild, 
moderate, severe DR, and PDR. The overall framework is illustrated 
in Figure 1.
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2.2 Proposed deep learning model and 
transfer learning model for DR detection 
and severity identification

This section explores two deep learning approaches for DR 
detection and severity identification: (i) isolated deep learning 
networks and (ii) transfer learning.

An isolated model is trained from scratch without prior 
knowledge (29), whereas transfer learning leverages pre-acquired 
knowledge from other models (30). The transfer learning approach 
involves training a base model on a base dataset and then reusing the 
learned features to train a new model for a specific task (31–33). This 
study employs a developed deep learning model approach for transfer 
learning, where a pre-trained model is reutilized by modifying its 
architecture to accommodate the specific task of DR severity  
identification.

Two deep learning models are examined: the isolated deep 
learning model and the transfer learning-based deep learning model. 
The isolated deep learning model is designed to categorize fundus 
images into healthy (no DR) and DR-affected (mild DR, moderate DR, 
severe DR, and PDR) classes, while the transfer learning-based models 
are used to subclassify DR-affected retinas into mild, moderate, severe 
DR, and PDR.

The isolated model consists of five primary layers: input, 
convolution, pooling, fully connected, and classification. The features are 
extracted in convolution and pooling layers, while the fully connected 
and classification layers facilitate prediction. This study develops and 
evaluates various isolated models with different architectures (36-layer, 
33-layer with one parallel branch, 37-layer with one parallel branch, 
41-layer with one parallel branch, and 42-layer with two parallel branch) 
to determine the optimal model for DR detection. Figure 2 illustrates the 
detailed architecture of the optimal model (37-layer with one parallel 
branch) used for further analysis of DR detection.

The optimal isolated deep learning model is reused for DR severity 
identification. The last three layers of the pre-trained model are 

replaced and retrained to accommodate the multi-class classification 
task. Figure 3 presents the detailed architecture of the transfer learning 
model used for DR severity identification.

2.3 Dataset and preprocessing

The study employed the FairVision dataset (34), the Asia Pacific 
Tele-Ophthalmology Society (APTOS) 2019 dataset (https://www.
kaggle.com/c/aptos2019-blindness-detection/overview, accessed on 
20 November 2024), and the DDR dataset (https://www.kaggle.com/
datasets/mariaherrerot/ddrdataset, accessed on 28 February 2025). 
The dataset comprises fundus photographs captured from patients, 
representing a diverse range of imaging conditions. The FairVision, 
APTOS 2019, and DDR datasets included 6,000, 3,662, and 12,522 
fundus images, respectively. Figure  4 offers more information 
regarding the distribution of fundus images.

The developed model required uniform input images, which were 
achieved by cropping all images to a fixed size of 227 × 227 pixels. 
Normalization was performed using a zero-center approach during 
the preprocessing stage.

A significant challenge in deep learning is the scarcity of data. 
Increasing the dataset size enables models to learn more robust 
features and reduces overfitting risks. Our datasets were initially 
imbalanced, with varying image counts across classes. We employed 
data augmentation techniques to address this, including flipping, 
rotation, scaling, and translation. These augmentations enhanced the 
dataset’s size and image quality; details are presented in Table 1.

3 Results

This research used MATLAB 2023a for all simulations and 
analyses on a personal computer, which has the following specs: Core 
i7, 12th Generation, 32 GB RAM, NVIDIA GeForce RTX 3050, 1 TB 

FIGURE 1

DR detection and severity identification framework using deep learning approach.
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SSD, and 64-bit Windows 11 operating system. Using hold-out 
validation, we  divided the dataset randomly into 80/20 ratios for 
model training and testing. The images used for model testing were 
not part of the training set. The initial parameters were as follows: 100 
epochs, 0.9 momentum, 128 mini batch-size, and 0.001 learning rate. 
The stochastic gradient descent with momentum (SGDM) solver is 
used for training and testing.

The APTOS 2019 dataset was initially utilized to evaluate the 
proposed model’s performance. A preliminary analysis was conducted 
to identify the optimal layer configuration for the lightweight deep 
learning model. The results of this analysis are summarized in Table 2. 
Based on the findings, the 37-layer model was selected, as it 
demonstrated superior accuracy.

Several state-of-the-art models, including VGG-16, MobileNet-v2, 
Efficient-b0, Inception-v3, ResNET-50, and GoogLeNet, were also 
trained and tested to compare comprehensively using APTOS 2019 
dataset. The results of this evaluation are summarized in Table 3.

After comprehensively analyzing Table 3, it can be observed that 
the Efficient-b0 showed the highest classification rate of 82.4% (kappa 
value = 0.73), with almost 162 min 6 s training time, and also has 4 
million learnable parameters. The second best is the Inception-v3 
model with 81.86% classification accuracy (kappa value = 0.72), 

FIGURE 2

Proposed deep learning model architecture for DR detection.

FIGURE 3

Proposed transfer learning deep learning model architecture for DR severity identification.

FIGURE 4

Overview of the various datasets for DR detection and severity 
identification.
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110 min 17 s training time, and 21.8 million learnable parameters. 
ResNET-50 showed the lowest performance, with only 75.3% accuracy 
(kappa value = 0.62) and 23.5 million learnable parameters. Notably, 
our proposed deep learning model demonstrated a reasonable 
classification rate of 80.08% (kappa value = 0.70), with a significantly 
shorter training time of just 14 min 28 s. As shown in Table 3, the 
model correctly classifies 587 out of 733 fundus images. Moreover, the 
developed network has the fewest learnable parameters compared to 
the other.

Therefore, the proposed model was employed to investigate DR 
detection and severity identification using the APTOS 2019 dataset, 
as discussed in section 2. The process involves initially distinguishing 
between healthy and DR-infected fundus images and detecting the 
DR severity in the second stage. Data augmentation was applied to 
address dataset imbalance, as illustrated in Table 1. The outcomes of 
this analysis for the APTOS 2019 dataset are presented in 
Figures 5–7.

Figure 5 demonstrates that the presented methodology effectively 
enhances the accuracy of DR detection. Specifically, the model 
achieved a high accuracy rate of 99.06% (kappa value = 0.98), correctly 
classifying 792 out of 800 DR images and misclassifying only seven 
healthy (no DR) fundus images.

In the case of DR severity level identification, some 
misclassification occurred, with 40 out of 200 fundus images for 
moderate DR class. However, these numbers are relatively low 
compared to the true positives. The model performed strongly in 

identifying mild and severe DR classes, with 95.5% recall for both 
classes (see Figure 5). Overall, the approach accomplished a high 
classification rate of 90.75% (kappa value = 0.88) for DR 
severity identification.

Figures  6, 7 illustrate both trained models’ learning curves, 
showing that they become stable after approximately 40 epochs. To 
further validate the generalizability of the proposed approach, 
we evaluated its performance on two additional datasets: FairVision 
and DDR (dataset details are provided in Figure 4 and Table 1). The 
results obtained from these datasets using 5-fold cross-validation are 
presented in Figures 8, 9.

The FairVision dataset offered two classes for DR detection: 
non-vision-threatening DR and vision-threatening DR. However, the 
dataset was highly imbalanced, comprising 5,435 images of 
non-vision-threatening DR and 565 images of vision-threatening 
DR. To address this imbalance, we  applied an augmentation 
approach, resulting in 6,000 images for each class, as shown in 
Table 1. Our model achieved a high classification rate of 98.56% 
(kappa value = 0.97) to distinguish between non-vision-threatening 
DR and vision-threatening DR class, as shown in Figure 8. Similarly, 
the DDR dataset is also highly imbalanced, comprising 6,266, 630, 
4,477, 236, and 913 images of none, mild, moderate, severe, and 
PDR. We  applied an augmentation approach to address this 
imbalance, resulting in 6,000 images for the no DR class and 1,500 
images for the remaining DR classes (1,500 × 4 = 6,000). The model 
again achieved a high classification rate of 95.43% (kappa 

TABLE 1 Details about the images used for DR detection and severity identification.

Dataset Category Subcategory Original 
images

Augmented 
images for DR 

detection

Augmented images 
for DR severity 
identification

FairVision Dataset

Non-vision-threatening 

DR
— 5,435 6,000 —

Vision-threatening DR — 565 6,000 —

APTOS 2019

Healthy (no DR) Healthy (no DR) 1,805 4,000 —

DR-affected

Mild DR 370

4,000

1,000

Moderate DR 999 1,000

Severe DR 193 1,000

PDR 295 1,000

DDR Dataset

Healthy (no DR) Healthy (no DR) 6,266 6,000 —

DR-affected

Mild DR 630

6,000

1,500

Moderate DR 4,477 1,500

Severe DR 236 1,500

PDR 913 1,500

TABLE 2 Results of the ablation study performed for the selection of layers using APTOS 2019 dataset.

Developed models Training loss Training 
accuracy (%)

Validation 
loss

Validation 
accuracy (%)

Training time

33-layer (1 parallel branch) 8.33 × 10−02 100 1.0811 78.04 20 min 16 s

36-layer (no parallel branch) 1.04 × 10−01 100 1.2028 75.03 12 min 11 s

37-layer (1 parallel branch) 1.8 × 10−02 100 0.9649 80.08 14 min 28 s

41-layer (1 parallel branch) 5.41 × 10−02 100 1.2432 78.04 12 min 38 s

42-layer (2 parallel branch) 3.66 × 10−02 100 0.9579 77.63 15 min 56 s
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value = 0.91) for detecting DR and 92.63% (kappa value = 0.90) for 
DR severity identification, as shown in Figure 9. The results of these 
well-known mainstream public datasets further validated the 

performance of the proposed model and multistage approach. 
Furthermore, a comparison of the proposed approach with other 
studies is presented in Table 4.

TABLE 3 Performance of various deep learning models against APTOS 2019 dataset.

Network True 
class

Predicted class Accuracy 
(%)

Cohen’s 
kappa

Training 
time

Learnable 
(M)

Mild 
DR

Moderate 
DR

No 
DR

PDR Severe 
DR

VGG-16

Mild DR 42 19 8 4 1

76.13 0.64 12 min 49 s 134.2

Moderate 

DR
29 137 8 17 9

No DR 3 1 357 0 0

PDR 12 25 4 13 5

Severe DR 2 16 0 12 9

MobileNet-v2

Mild DR 37 25 9 2 1

79.9 0.69 51 min 40 s 2.2

Moderate 

DR
8 153 11 8 20

No DR 4 3 354 0 0

PDR 3 22 0 24 10

Severe DR 0 19 0 2 18

Efficient-b0

Mild DR 47 17 5 5 0

82.40 0.73 162 min 6 s 4

Moderate 

DR
18 155 4 15 8

No DR 5 1 355 0 0

PDR 2 16 0 33 8

Severe DR 0 17 0 8 14

Inception-v3

Mild DR 47 18 4 4 1

81.86 0.72 110 min 17 s 21.8

Moderate 

DR
13 157 2 19 9

No DR 5 0 356 0 0

PDR 5 22 1 28 3

Severe DR 0 23 1 3 12

ResNET-50

Mild DR 41 19 12 1 1

75.30 0.62 75 min 49 s 23.5

Moderate 

DR
40 137 13 4 6

No DR 5 1 355 0 0

PDR 7 26 6 14 6

Severe DR 3 28 1 2 5

GoogLeNet

Mild DR 50 19 4 1 0

80.8 0.71 25 min 27 s 5.9

Moderate 

DR
21 156 3 10 10

No DR 8 1 351 1 0

PDR 5 28 0 21 5

Severe DR 1 19 0 5 14

Proposed

Mild DR 36 33 1 2 2

80.08 0.70 14 min 28 s 1.3

Moderate 

DR
24 146 4 17 9

No DR 6 2 353 0 0

PDR 6 17 2 32 2

Severe DR 4 11 0 4 20
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FIGURE 5

Performance of the developed deep learning model and DR detection and severity identification framework for the APTOS 2019 dataset.

FIGURE 6

Learning curves DR detection for the APTOS 2019 dataset.
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4 Discussion

DR is one of the major vision-threatening conditions faced by the 
healthcare department, which is quite challenging to diagnose and 
manage. Grading the severity of DR is vital for timely management 
and prevention of vision loss. This study presents a novel deep-
learning network and framework for determining the detection and 
severity of DR, which would help the healthcare professional 
community manage patients effectively and efficiently.

An ablation study was conducted, where various deep-
learning models were designed and tested for DR detection and 
severity identification. The 37-layer deep-learning model with a 
single parallel branch was selected due to its high classification 
accuracy and low training time (Table 2). Subsequently, various 
pre-trained models were trained and tested alongside the 
proposed 37-layer model, with detailed results presented in 
Table  3. After thorough analysis, it was observed that the 
developed deep-learning model achieved reasonable accuracy 

FIGURE 7

Learning curves DR severity identification for the APTOS 2019 dataset.

FIGURE 8

Performance of the developed deep learning model and DR detection framework for the FairVision dataset.
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with reduced training time and minimal learnable parameters (1.3 
million), making it lightweight. Onward, the model was initially 
trained to detect DR using augmented fundus images (APTOS 
2019), and the results are presented in Figure  5. The model 
demonstrated a high performance for DR detection (99.06%). 
Furthermore, in the case of DR severity detection, the results 
achieved a high severity level detection accuracy of 90.75%. To 
validate the proposed model and approach further, it was 
evaluated using the FairVision and DDR datasets. The results 

demonstrated excellent performance, with a classification 
accuracy of 98.56% on the FairVision dataset for distinguishing 
between non-vision-threatening and vision-threatening DR (see 
Figure 8). On the DDR dataset, our model achieved an accuracy 
of 95.43% for DR detection and 92.63% for severity level 
identification (see Figure 9).

APTOS 2019 is a benchmark dataset used for the performance 
evaluation of many different models in detecting DR severity. Table 4 
summarizes the performance of state-of-the-art models using this 
dataset. Recently, Alam et al. (35) investigated the use of the swapping 
assignments across multiple views technique for DR grading in 
conjunction with contrasting cluster assignments in retinal fundus 
images. The model achieved an accuracy of 87% with fewer parameters 
and layers. In another recent study (36), the authors introduced a 
novel transformer-based model called TMILv4 with an accuracy of 
85.6%. However, its sensitivity was relatively low, at 73.7%. Similarly, 
Shaik and Cherukuri (37) combined a convolutional autoencoder with 
a neural support vector machine. They reported an accuracy of 
84.31%, although the sensitivity score was as low as 66.16%. Contrarily, 
Kassani et al. (38) used the modified Xception network; it had higher 
sensitivity but lower accuracy at 83.09%. In contrast, the proposed 
model beats those state-of-the-art deep learning and transformer-
based models, as represented in Table 4.

5 Conclusion

This study presents a novel, lightweight, deep-learning DR 
detection and severity identification framework. A 37-layer deep-
learning model is designed to detect the DR using fundus images. The 
model is validated using a publicly available dataset and augmented 

FIGURE 9

Performance of the developed deep learning model and DR detection and severity identification framework for the DDR dataset.

TABLE 4 Comparative analysis of classification performance with state-
of-the-art models on the APTOS 2019 dataset.

Study Results (%)

Kumar et al. (39) 75.50

Dondeti et al. (40) 77.9

Bodapati et al. (41)
97.41 (for DR detection) 80.96 (for severity 

identification)

Gangwar and Ravi (42) 82.18

Bodapati et al. (43) 82.54

Kassani et al. (38) 83.09

Bodapati et al. (24) 84.31

Shaik and Cherukuri (37)
90.45 (for DR detection) 84.31 (for severity 

identification)

Yang et al. (36) 85.60

Alam et al. (35) 87

Proposed
99.06 (for DR detection) 90.75 (for severity 

identification)
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using image augmentation techniques to balance classes. 
Comprehensive experiments are conducted to evaluate the proposed 
model’s performance using various metrics. The results demonstrate 
exceptional accuracy, with the proposed model achieving 99.06% 
accuracy for DR detection. Notably, the model has significantly fewer 
learnable parameters than existing models. The trained model is 
reutilized to evaluate its performance in detecting DR severity levels 
using transfer learning, yielding a high classification accuracy of 
90.75%. Furthermore, our proposed model achieved high accuracy 
rates of 98.56% for FairVision, and 95.43% in detecting DR and 
92.63% its severity for DDR dataset. The outstanding performance 
surpasses previous deep learning algorithms, providing superior DR 
detection and severity identification results. This work serves as a 
reference for classifying fundus images using deep learning techniques, 
offering a lightweight, efficient, and robust model.
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