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Over 64 million people worldwide are affected by heart failure (HF), a condition 
that significantly raises mortality and medical expenses. In this study, we explore 
the potential of retinal optical coherence tomography (OCT) features as non-
invasive biomarkers for the classification of heart failure subtypes: left ventricular 
heart failure (LVHF), congestive heart failure (CHF), and unspecified heart failure 
(UHF). By analyzing retinal measurements from the left eye, right eye, and both 
eyes, we aim to investigate the relationship between ocular indicators and heart 
failure using machine learning (ML) techniques. We conducted nine classification 
experiments to compare normal individuals against LVHF, CHF, and UHF patients, 
using retinal OCT features from each eye separately and in combination. Our analysis 
revealed that retinal thickness metrics, particularly ISOS-RPE and macular thickness 
in various regions, were significantly reduced in heart failure patients. Logistic 
regression, CatBoost, and XGBoost models demonstrated robust performance, with 
notable accuracy and area under the curve (AUC) scores, especially in classifying 
CHF and UHF. Feature importance analysis highlighted key retinal parameters, 
such as inner segment-outer segment to retinal pigment epithelium (ISOS-RPE) 
and inner nuclear layer to the external limiting membrane (INL-ELM) thickness, 
as crucial indicators for heart failure detection. The integration of explainable 
artificial intelligence further enhanced model interpretability, shedding light on 
the biological mechanisms linking retinal changes to heart failure pathology. 
Our findings suggest that retinal OCT features, particularly when derived from 
both eyes, have significant potential as non-invasive tools for early detection and 
classification of heart failure. These insights may aid in developing wearable, portable 
diagnostic systems, providing scalable solutions for personalized healthcare, and 
improving clinical outcomes for heart failure patients.

KEYWORDS

cardiovascular diseases, heart failure, machine learning, deep learning, explainable AI, 
UK Biobank

1 Introduction

Heart failure (HF) is a significant global health condition that threatens more than 64 
million individuals globally. It is a major contributor to healthcare expenses and the main 
reason for hospital admissions, especially for elderly individuals (1). In many countries, heart 
failure is the primary cause of cardiovascular-related deaths and disability-adjusted life years 

OPEN ACCESS

EDITED BY

Haoyu Chen,  
The Chinese University of Hong Kong, China

REVIEWED BY

Thiago Gonçalves dos Santos Martins,  
Federal University of São Paulo, Brazil
Aharon Wegner,  
Technical University of Munich, Germany

*CORRESPONDENCE

Sona M. Al Younis  
 100058882@ku.ac.ae

RECEIVED 06 January 2025
ACCEPTED 03 March 2025
PUBLISHED 17 March 2025

CITATION

Al Younis SM, Ghosh SK, Raja H, Alskafi FA, 
Yousefi S and Khandoker AH (2025) Prediction 
of heart failure risk factors from retinal optical 
imaging via explainable machine learning.
Front. Med. 12:1551557.
doi: 10.3389/fmed.2025.1551557

COPYRIGHT

© 2025 Al Younis, Ghosh, Raja, Alskafi, Yousefi 
and Khandoker. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 17 March 2025
DOI 10.3389/fmed.2025.1551557

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1551557&domain=pdf&date_stamp=2025-03-17
https://www.frontiersin.org/articles/10.3389/fmed.2025.1551557/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1551557/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1551557/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1551557/full
mailto:100058882@ku.ac.ae
https://doi.org/10.3389/fmed.2025.1551557
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1551557


Al Younis et al. 10.3389/fmed.2025.1551557

Frontiers in Medicine 02 frontiersin.org

(2). A coordinated strategy centered on early detection, efficient 
treatment, and public health programs aiming at risk factor 
management is required to address this global epidemic. The 
classification of HF into distinct types allows for more targeted 
treatment strategies (3, 4). In this study, we focus on three main types: 
left ventricular heart failure (LVHF), congestive heart failure (CHF), 
and unspecified heart failure (UHF).

The most frequent type of HF is LVHF, often known as left-sided 
heart failure (5). It is caused by a weakening or stiffening of the left 
ventricle, the heart’s main pumping chamber. There are two other 
subtypes of LVHF: systolic heart failure (HFrEF) and diastolic heart 
failure (HFpEF). HFrEF is characterized by a reduced heart’s capacity 
to contract, which lowers the heart’s ejection fraction (EF); damage 
from a heart attack or persistent hypertension are common causes of 
this kind of heart failure. Patients with HFpEF have a normal 
ejection fraction, but a stiffened left ventricle that restricts blood 
flow. The failure of the ventricle to relax effectively during diastole 
causes fluid to accumulate in the lungs and tissues in this illness, 
which is usually linked to advanced age, obesity, and hypertension. 
However, CHF is a clinical term that describes a condition where 
fluid buildup becomes prominent throughout the body due to 
impaired heart function. CHF can affect the left or right side of the 
heart, but it is most commonly associated with biventricular heart 
failure, where both sides of the heart are compromised (6). The 
heart’s reduced pumping efficiency in CHF leads to congestion, or 
fluid accumulation, in various tissues, particularly the lungs, liver, 
and lower extremities. UHF is a broad classification used when a 
patient presents with symptoms of heart failure, but the specific 
type—whether systolic, diastolic, left-sided, or right-sided—has not 
been identified. This category is often applied during the initial 
stages of diagnosis when further testing is necessary to determine 
the precise nature of the heart failure. It may also be used in cases 
where heart failure coexists with other complicating conditions, 
making it challenging to categorize heart failure into well-defined 
types (7, 8).

The retina, an anterior extension of the central nervous system, 
exhibits notable anatomical and physiological similarities to the brain. 
Furthermore, retinal vasculature is the only vascular tissue that can 
be directly observed, and it exhibits embryological, physiological, and 
anatomical similarities to the coronary vasculature (9). Alterations in 
the retinal microvasculature may indicate chronic vascular damage 
due to multiple cardiovascular risk factors, including aging, diabetes 
mellitus, hypertension, and conditions such as vascular dementia. This 
may be because the microcirculation is responsible for determining 
the necessary adjustments in vascular tone to meet the oxygen 
demands of local tissues (10). The endothelial release of compounds, 
such as nitric oxide, other reactive oxygen species, and arachidonic 
acid metabolites, also contributes to the modulation of vascular tone 
in the microvasculature. Therefore, microvascular dysfunction is a 
potent indicator of cardiovascular events and may serve as a valuable 
target for developing novel treatment and prevention strategies. A 
chronic inflammatory condition affecting the vasculature throughout 
the body is atherosclerosis, a prevalent feature of cardiovascular 
diseases (CVD). Furthermore, retinal vascular geometry has been 
demonstrated to be associated with cardiac function, and endothelial 
dysfunction and microvascular disease also play significant roles in 
the development and progression of cardiovascular diseases, including 
heart failure.

Moreover, diabetic retinopathy has been linked to an elevated risk 
of CVD, peripheral neuropathy, renal disease, and mortality for 
decades, as evidenced by extensive research (11–14). Although the 
predictive relationship remains unclear, individuals with CVD are 
known to have an elevated risk of developing retinal vascular 
occlusions (15). The development of hypertension was associated with 
retinal arteriolar narrowing and retinal venular widening, independent 
risk factors (16, 17).

Researchers have examined associations between age, blood 
pressure, arterial stiffness index, body mass index (BMI), and retinal 
vasculometry. This procedure measures the diameter of the arteriolar 
and venular blood vessels and arterial stiffness. The retinal arteriolar 
diameter decreases as age increases, while the retinal venular diameter 
increases. Both diameters decrease as systolic blood pressure increases. 
It has been reported that these vascular alterations are direct indicators 
of the risk of stroke and other cardiovascular diseases (18). These 
findings suggest that the eye may provide valuable insights into heart 
health—assuming no eye-specific diseases are present—as changes in 
retinal vasculature can often reflect systemic vascular aging or 
underlying conditions (19). Flicker light-induced dilatation of retinal 
arterioles and venules, along with non-invasive analyses of retinal 
vessel diameters, have proven to be sensitive and reliable diagnostic 
tools for cardiovascular risk stratification and treatment strategy 
monitoring in both primary and secondary prevention across younger 
or older populations with or without CVD (20).

The deep learning (DL) models and advanced image analysis 
techniques can extract meaningful features (such as vessel caliber, 
vessel geometry, and retinal layers) from the ocular images [fundus 
images, optical coherence tomography (OCT), and optical coherence 
tomography angiography (OCT-A)] which can be  passed to the 
prediction models (19). As summarized in Table 1, the study (21) 
investigated the potential of fundus images to predict cardiometabolic 
risk factors, including age, sex, blood pressure, smoking status, 
glycaemic status, total lipid panel, sex steroid hormones, and 
bioimpedance measurements. It was concluded that the retina stores 
unique information about blood pressure, hemoglobin A1c, relative 
fat mass, and sex, and a fundus image can reliably predict age and sex. 
Hamada et al. (22) employed a novel multi-modal approach based on 
DL techniques for distinguishing the CVD group from the control 
group, which involved designing a case–control study that combined 
data from multiple modalities—including DXA and retinal images. It 
was concluded that the proposed model can recognize and implement 
specific prognostic indicators for ischemic heart disease and 
hypertension. Ehsan et al. (23) developed a DL model that could tell 
from retinal images and limited demographic information if a person 
has a high-risk score for ASCVD. The retinal images, age, race/
ethnicity, and sex at birth were combined to create the DL model, 
designed to predict an individual’s 10-year ASCVD risk score. The 
pooled cohort equation (PCE) provided the ground truth. 
Subsequently, the model was evaluated on the US EyePACS 10 K 
dataset, which consisted of 18,900 images from 8,969 diabetic 
individuals and comprised 5.8% non-Hispanic White and 99.9% 
diabetic population. A PCE score of ≥7.5% was used to define an 
elevated risk of ASCVD. The study (24) presented a new approach to 
detecting CVD by analyzing retinal fundus images. The principal 
process involved the extraction of tissue from retinal vessels to 
diagnose and treat CVD. The Gaussian filter was applied to retinal 
images, followed by binarization, circle fitting, and statistical data 
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extraction to identify the optic disc. The Chronological Chef Based 
Optimisation Algorithm (CCBOA)-based Res-Unet separates the 
blood vessels. In the study (25), we  introduce a novel SSL-based 
foundation model for retinal images (RETFound) and 
comprehensively assess its generalizability and efficacy in various 
disease detection tasks. A large AI model trained on a vast quantity of 
unlabelled data at scale is called a foundation model. This model can 
be adapted to a broad range of downstream tasks. They employed an 
advanced SSL technique (masked autoencoder) to create two distinct 
RETFound models, one utilizing retinal images and the other utilizing 
OCT. They evaluated the model performance in predicting systemic 
diseases such as heart failure, ischaemic stroke, myocardial infarction, 
and Parkinson’s disease with retinal images. RETFound has 
demonstrated substantial improvement in internal evaluations for 
CFP and OCT, even though the overall performance was compromised 
in these complex tasks. The study’s objective (26) was to analyze the 
potential differences in retinal microvascular and structural 
parameters (i.e., capillary vessel density and retinal layer thickness) 
between patients with HFpEF and control individuals as determined 
by OCTA. They evaluated the correlations between retinal parameters 
and clinical and echocardiographic parameters in HFpEF. Only 
patients with HFpEF underwent echocardiography, while controls did 
not. Volume scans of both eyes were computed as 6 × 6 mm volumes 
centered on the macula. The study (27) reported that OCT is crucial 
in diagnosing cardiovascular diseases and identifying plaques. Usually, 

physicians manually analyze OCT images to identify vulnerable 
plaques, a process prone to subjective errors and high workload. To 
address this, a convolutional neural network (CNN)-based model was 
developed to improve diagnostic accuracy and efficiency. The model 
learned multilevel features from raw OCT images and employed 
decision-making layers to classify and recognize vulnerable plaques. 
Experimental results using clinically labeled datasets showed that the 
CNN model achieved a high recognition rate, offering significant 
support for early diagnosis, intervention, and prevention of 
cardiovascular diseases.

Retinal layers, including the ISOS-RPE (inner segment/outer 
segment to retinal pigment epithelium), INL-ELM (inner nuclear 
layer to external limiting membrane), ELM-ISOS (external limiting 
membrane to inner segment/outer segment junction), and INL-RPE 
(inner nuclear layer to retinal pigment epithelium) may provide 
important information about the vascular and structural integrity of 
the eye. They may indicate systemic conditions, such as cardiovascular 
health (28, 29). Research has demonstrated that the retinal vasculature 
is comparable to the cerebral and coronary circulatory systems, 
suggesting it may be used as a biomarker for heart failure and other 
cardiovascular disorders (22). Retinal thickness variations, particularly 
in macular subfields, may indicate microvascular disease (30–32).

Despite advances in heart failure diagnosis and management, the 
intricate relationship between retinal measurements and HF types 
remains insufficiently understood. Providing a non-invasive, easily 

TABLE 1 Summarizing the studies detecting CVD through ocular imaging.

Studies Year Cohort Modality Model Results

Gerrits et al. (21) 2020 Qatar Biobank Fundus MobileNet-V2 Age: MAE: 2.78 years

Systolic blood pressure: MAE: 8.96 mmHg

Diastolic blood pressure MAE: 6.84 mmHg

Hemoglobin A1c: MAE: 0.61%

Relative fat mass: MAE: 5.68 units

Testosterone: MAE: 3.76 nmol/L

Sex: AUC:0.97

Al-Absi et al. (22) 2022 Qatar Biobank Retinal images

Dual-energy X-ray 

absorptiometry (DXA)

Machine learning models 

and DL (ResNet-34)

Accuracy retinal images: 75.6%

DXA: 77.4%

Multi-modal: 78.3%

Vaghefi et al. (23) 2024 UK Biobank, and 

EyePACS 10 K

Retinal images, Limited 

demographic data

DL (Resnet-V2/ResNet50) UK-Biobank

AUC:0.89

Sensitivity: 84%

Specificity: 90%

Kadry et al. (24) 2024 JSIEC Fundus Images Chronological Chef Based 

Optimisation Algorithm 

(CCBOA) and Deep Residual 

Network (DRN).

Accuracy: 89.8%

NPV: 86.4%

PPV: 86.8%

TNR: 90.5%

TPR: at 90.1%

Zhou et al. (25) 2023 MEH-AlzEye

UK-biobank

Fundus, OCT ViT AUROC:

UK Biobank OCT

Myocardial infarction: 0.605 (0.59, 0.621)

Ischaemic stroke: 0.559 (0.541, 0.577)

Heart failure: 0.682 (0.678, 0.685)

Parkinson’s disease: 0.551 (0.534, 0.567)

Weerts et al. (26) 2024 Local dataset 

from Maastricht 

University

Echocardiographic 

parameters

OCTA

Statistical model p = 0.027 (74 [68–80] vs. 68 [58–77] years)

p = 0.034 (73% vs. 42% females)
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accessible approach to aid in diagnosing these different heart failure 
types without the need for costly or highly specialized equipment 
would significantly enhance patient care. Machine learning (ML) 
techniques, including deep learning, hold promise for leveraging 
retinal measurements to predict the specific type of heart failure.

This study investigates how well retinal optical characteristics, 
such as retinal layer and macular thickness measurements, can predict 
heart failure types. We aim to explore the relationship between these 
ocular indicators and heart failure using Machine Learning models 
trained on retinal data. This innovative strategy emphasizes retinal 
health as a possible proxy for cardiovascular function, providing a 
widely available, non-invasive diagnostic tool that may supplement 
conventional techniques. This study will also evaluate whether retinal 
measurements from the right eye, left eye, or a combination of both, 
provide greater predictive accuracy in detecting HF. By systematically 
comparing these ocular measurements, we  aim to uncover novel 
insights into the systemic effects of the heart. Additionally, we will 
incorporate explainable AI techniques to understand better the 
importance of individual retinal features and their correlations with 
specific heart failure types. This approach will enhance the 
interpretability of our machine-learning models and shed light on the 
underlying biological mechanisms linking retinal changes to heart 
failure pathology.

2 Methods

2.1 Data collection

The UK Biobank, established between 2006 and 2010, is a large-
scale prospective cohort study and a comprehensive biomedical 
research resource. It includes data from 502,000 adults aged 40–69 
across England, Scotland, and Wales. The database encompasses an 
extensive array of genetic, physiological, and lifestyle information, 
with participants’ health outcomes systematically tracked through 
electronic health records (33, 34). Participants contributed to this 
resource by attending a baseline assessment visit after informed 
consent. During this visit, detailed information on their health, 
lifestyles, hearing, and cognitive function was collected through a 
touchscreen questionnaire and a brief verbal interview. Various 
physical measurements were also performed, including assessments 
of blood pressure, arterial stiffness, eye health, body composition, 
handgrip strength, ultrasound bone densitometry, spirometry, and 
fitness testing with electrocardiography. Furthermore, biological 
samples such as blood, urine, and saliva were obtained for subsequent 
analyses, enhancing the depth of the dataset. The present analysis of 
the UK Biobank data was conducted and approved by the North West 
Multi-Centre Research Ethics Committee (reference no. 06/
MRE08/65). The study followed the guidelines outlined in the 
Declaration of Helsinki, and all participants provided written 
informed consent. Detailed information about the survey can 
be found on the UK Biobank website.1

The study initially included a cohort of 57,636 participants. 
Health-related outcomes in the UK Biobank were identified using the 

1 www.ukbiobank.ac.uk

International Classification of Diseases version 10 (ICD-10) codes, 
specifically code I50.0 for congestive heart failure, I50.1 for left 
ventricular failure, and code I50.9 for unspecified heart failure, 
extracted from hospital records (data field ID 41270, UK Biobank 
dataset). The prevalence of these conditions was distributed as follows: 
8,858 cases of congestive heart failure, 10,380 cases of left ventricular 
failure, 8,397 cases of unspecified heart failure, and 2,922 normal cases 
(participants not having ICD-10). However, participants missing 
information for left and right eye images were excluded from further 
analysis. Consequently, the dataset comprised a total of 2,824 patients, 
categorized into 701 Normal (Type 0), 744 Left Ventricle Heart Failure 
(Type 1), 701 Congestive Heart Failure (Type 2), and 678 Unspecified 
Heart Failure (Type 3).

2.2 Ophthalmic assessments

Ophthalmic assessments were conducted for a subset of 
participants between 2009 and 2010 at six assessment centers. These 
assessments included visual acuity (LogMAR) measurements, 
refractive error, intraocular pressure (IOP), and ophthalmic imaging 
captures. Baseline best-corrected visual acuity was measured using a 
computerized semi-automated system at a distance of 3 meters. 
Autorefraction was performed using an RC5000 Auto Refkeratometer 
(Tomey, Nagoya, Japan), and the spherical equivalent was calculated 
by summing the spherical power and half of the cylindrical power. 
Corneal compensated intraocular pressure (IOPcc) was measured 
with the Ocular Response Analyzer (ORA; Reichert Corp., 
Philadelphia, PA), with one measurement taken per eye. Participants 
with possible eye infections or recent eye surgery (within 4 weeks) 
were excluded from IOP measurements. Single-field color fundus 
photographs (45° field-of-view, centered on the optic disc and macula 
and including both) and macular OCT scans were captured using a 
digital Topcon-1000 integrated ophthalmic camera (Topcon 3D 
OCT1000 Mark II, Topcon Corp., Tokyo, Japan) (9).

2.3 Spectral-domain optical coherence 
tomography imaging protocol

The Topcon 3D OCT 1000 Mk2 (Topcon Corp., Tokyo, Japan) was 
used for Spectral-domain OCT imaging. This was done after collecting 
visual acuity, autorefraction, and intraocular pressure (IOP) 
measurements. The OCT images were captured under mesopic 
lighting conditions without pupillary dilation, utilizing the 
3-dimensional 6 × 6 mm macular volume scan mode, which includes 
512 A-scans per B-scan and 128 horizontal B-scans in a raster pattern. 
The right eye was photographed first, followed by the left (35).

2.4 Data processing

The patient cohort was categorized into four groups based on 
heart failure type: Normal, Left Ventricular Heart Failure, Congestive 
Heart Failure, and Unspecified Heart Failure. The statistical analysis 
involved computing each parameter’s means, standard deviations, and 
counts. Data processing and analysis were performed using Python, 
utilizing pandas for data management, scipy for statistical testing, and 
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seaborn and Matplotlib for generating visualizations such as box 
plots. Pairwise t-tests were employed to analyze differences in eye 
measurements across the heart failure types. Each retinal measurement 
was compared against the baseline group (Type 0: Normal) to assess 
significant variations in the other groups (Types 1, 2, and 3). A p-value 
of less than 0.05 was considered statistically significant, indicating that 
observed differences in eye measurements between ‘Normal’ patients 
and those with specific types of heart failure were unlikely to be due 
to random chance. Additionally, box plots were generated for each 
retinal measurement to visually illustrate the distribution of data 
points across the heart failure categories. The dataset includes optical 
coherence tomography (OCT) imaging data for both left and right 
eyes, offering a comprehensive view of retinal features. Detailed 
descriptions and definitions of these retinal optical features are 
provided in Supplementary Table S1.

2.5 Experiment setup

A set of extensive tests was carried out to investigate the influence 
of different retinal OCT features on the classification of heart failure. 
Nine configurations were used to arrange the trials, with classifications 
for measurements taken with the left, right, and both eyes. These 
setups involved differentiating between normal and heart failure types: 
LVHF, CHF, and UHF. To be more precise, we classified the following: 
(1) Normal versus LVHF using left eye measurements; (2) Normal 
versus CHF using left eye measurements; (3) Normal versus UHF 
using left eye measurements; (4) Normal versus LVHF using right eye 
measurements; (5) Normal versus CHF using right eye measurements; 
(6) Normal versus UHF using right eye measurements; (7) Normal 
versus LVHF using both eyes; (8) Normal versus CHF using both eyes; 
and (9) Normal versus UHF using both eyes. Examining the measures 
of the left eye, right eye and both eyes separately investigate any 
asymmetries or distinctive features that each eye might bring to the 
categorization process. By looking at each eye separately, we can find 
characteristics unique to each eye that may be important for correctly 
classifying heart failure. Combining measurements from both eyes 
may also provide a more complete view, and by utilizing 
complimentary data from both sides, classification performance may 
be  improved. This methodology guarantees a comprehensive 
assessment of the contribution of retinal OCT measurements from 
individual eyes to the identification and categorization of heart failure.

All experiments used a single GeForce NVIDIA MX350 (2 GB) 
graphics card to train and validate the models with an Intel Core 
i5-1135G7 (11th Gen) processor. The six machine learning methods 
we  employed in each experiment were Decision Tree (DT) (36), 
Artificial Neural Network (ANN) (37), Random Forest (RF) (38), 
Extreme Gradient Boosting (XGBoost) (39), CatBoost (40), and 
Logistic Regression (LR) (41). The data is split into 80% for training 
and 20% for testing. The GridSearchCV utility in Python was utilized 
to modify hyperparameters through layered cross-validation, utilizing 
the Scikit-learn package (42). These hyperparameter values were 
selected based on a combination of domain expertise and 
experimentation, and Table 2 contains all of the tuned parameters for 
the ML models.

A Multi-Layer Perceptron (MLP) classifier trained on retinal OCT 
measurements is used in this study to evaluate feature significance and 
diagnose heart failure types. The absolute values of the coefficients 

associated with the input features are averaged to indicate their relative 
contributions to the model’s decision-making process, and the weights 
of the MLP model are analyzed to determine the significance of each 
feature. This method improves the machine learning model’s 
interpretability while highlighting the retinal parameters with the 
most predictive power for heart failure. Feature significance is a key 
component of explainable machine learning, as it sheds light on which 
retinal measurements are important for categorization. It enables 
physicians to comprehend the relationship between many features and 
the identification of heart failure, enabling improved patient 
management decision-making.

2.6 Performance evaluation metrics

We used several important performance indicators, such as 
Accuracy, Precision, Sensitivity, F1 Score, Matthews Correlation 
Coefficient (MCC), p-value, and Area Under the Receiver Operating 
Characteristic Curve (ROC AUC), to assess our classification models. 
Based on retinal OCT measurements, these metrics offer a thorough 
knowledge of how well the models identify heart failure. For every 
model, we used a 5-fold cross-validation technique to guarantee the 
reliability of our findings. This method divides the dataset into five 
subgroups, trains the model on four of them, and then validates it on 

TABLE 2 Classification models and hyperparameters tuning.

Classification model Hyperparameters

Decision tree Max depth: [3, 5, 7, 10]

Min. samples leaf: [10, 20, 50, 100]

Criterion: [gini, entropy]

Splitter: [best, random]

Artificial neural network Hidden layer sizes: [50, 100]

Activation: [logistic, relu]

Solver: [lbfgs, adam]

Alpha: [0.0001, 0.01, 0.1]

Random forest Max depth: [10, 20, 30]

Min samples leaf: [1, 14]

Min samples split: [5, 12]

Estimators: [100, 200]

Random state: [42]

Criterion: [gini, entropy]

Logistic regression Max iteration: [100, 500, 1000]

Solver: [liblinear, lbfgs]

Penalty: [12, 16]

C: [0.1, 1.0, 10.0]

CatBoost Depth: [4, 16]

Learning rate: [0.01, 0.1]

Iterations: [100, 500]

Subsample: [0.5, 0.8]

Extreme gradient boosting Max depth: [4, 5]

Estimators: [60]

Learning rate: [0.01, 0.1]

Subsample: [1.0]

Colsample bytree: [0.5, 1.0]

Lambda: [0.5, 1.0]
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the fifth, allowing for a more accurate estimation of model 
performance. This process is done five times to reduce the possibility 
of overfitting, with each subset acting as a validation set once.

3 Results

Supplementary Table S2 presents a comprehensive summary of 
the statistical analysis results for the demographic parameters and the 
retinal optical coherence tomography (OCT) measurements used in 
this study, covering data from both left and right eyes. To determine 
the statistical significance between the Normal group and each of the 
three heart failure types, p-values were computed for each parameter. 
Pairwise t-tests were conducted to evaluate group variations, with 
p-values indicating whether meaningful differences exist between the 
Normal group and each heart failure category.

Box plots, shown in Figures 1, 2, visually represent the distribution 
of retinal OCT measurements for the left and right eyes, respectively. 
These plots compare the Normal group with the three heart failure 
types, displaying the median, interquartile ranges, and any outliers. This 
visual summary highlights the spread and variability of retinal 
parameters across the groups, offering more profound insight into the 
observed differences.

All models were trained using these features. In the results section, 
the average performance metrics of the six models are presented in the 
tables below, with all models using the optimal combination of 
hyperparameters. In these tables, each column represents a distinct 
regression model. Table 3 shows the performance of detecting each type 
of heart failure from normal (control) individuals using only the left eye 
retinal OCT measurements. Table 4 displays the performance metrics 
for detecting HF types using only the right eye retinal OCT 
measurements. Lastly, Table 5 represents the performance of detecting 
HF types from normal individuals using both left and right eye retinal 
OCT measurements. These comprehensive results demonstrate the 
classification performance across different combinations of retinal OCT 
data, helping to evaluate the models’ abilities to differentiate between 
normal and heart failure conditions.

The performance of the six models for detecting heart failure types 
using right retinal OCT measurements is shown in Figure 3. The models 
achieved accuracy ranging from 56.2 to 63.0% for distinguishing normal 
individuals from those with congestive heart failure. Logistic Regression 
outperformed the others, with an accuracy of 63.0%, precision of 64.3%, 
and ROC AUC of 0.641. The highest F1 score was 60.8% using CatBoost, 
while LR also achieved the highest MCC of 0.260. Except for the Tree 
model, all models demonstrated statistically significant differences with 
p-values below 0.05. In the case of detecting left ventricular heart failure, 
the models exhibited more modest performances, with accuracy values 
between 54.3 and 56.4%. Precision was highest for the ANN at 62.5%, 
while the best sensitivity was observed with the DR (Tree) model at 
60.4%. F1 scores were generally lower than those for CHF detection, 
with LR performing at 58.3%. However, p-values indicated borderline 
significance for several models, and the ROC AUC values showed 
moderate discriminatory power, with the highest AUC of 0.612 for both 
LR and CatBoost. For distinguishing normal individuals from those 
with unspecified heart failure (UHF), the models showed higher 
accuracy overall, ranging from 55.8 to 65.6%, with LR again providing 
the best accuracy at 65.6% and MCC at 0.305. The highest ROC AUC 
value was 0.677 for LR, and p-values for all models indicated strong 

statistical significance, with the lowest being 7.53E-07 for LR. Regarding 
sensitivity, the DT model achieved the highest at 78.6%, although LR 
balanced precision and sensitivity effectively with a strong F1 score 
of 61.8%.

Whereas, using right retinal OCT measurements for distinguishing 
normal individuals from those with congestive heart failure (Figure 4), 
the models achieved accuracy ranging from 57.7 to 66.2%, with Logistic 
Regression performing the others, having the highest accuracy of 66.2%, 
with precision of 65.9%, and ROC AUC of 0.701. The highest F1 score 
was also observed with LR at 64.7%, and LR achieved the highest MCC 
of 0.323. All models demonstrated statistically significant p-values, with 
LR having the lowest p-value at 1.19E-07. The models detecting left 
ventricular heart failure showed moderate performance, with accuracy 
values between 51.6 and 58.1%. LR again performed best, with an 
accuracy of 58.1%, an F1 score of 60.3%, and the highest MCC of 0.161. 
However, several models had p-values indicating weaker statistical 
significance, with only LR showing a significant p-value of 0.009. ROC 
AUC values were moderate, with LR achieving the highest AUC at 
0.612. For distinguishing normal individuals from those with 
unspecified heart failure, accuracy ranged from 52.9 to 64.5%, with LR 
achieving the highest accuracy at 64.5% and the best F1 score of 63.2%. 
The highest ROC AUC value was 0.686 for CatBoost, and p-values 
indicated strong statistical significance for all models except Tree. LR 
had the highest MCC at 0.292, and sensitivity was also high for all 
models, with values above 62.7%.

Furthermore, using both left and right retinal OCT measurements 
to distinguish normal individuals from those with congestive heart 
failure (Figure 5), accuracy values ranged from 55.5 to 63.3%, with 
XGBoost achieving the highest accuracy of 63.3%. XGBoost also 
demonstrated the best performance in precision, at 61.6%, sensitivity at 
65.7%, F1 score at 63.6%, and MCC at 0.268. Additionally, XGBoost had 
the most statistically significant p-value, 1.21E-05, and ROC AUC 
values were generally strong across the models, with Logistic Regression 
achieving the highest ROC AUC of 0.681. For detecting left ventricular 
heart failure, the accuracy values varied between 52.2 and 57.8%, with 
Random Forest performing the best, achieving an accuracy of 57.8%. 
RF also recorded the highest F1 score, 60.6%, and MCC, 0.153. 
However, p-values for this comparison indicated that only RF 
demonstrated statistical significance p = 0.013. ROC AUC scores ranged 
from 0.511 to 0.614, with RF again leading. The models performed 
particularly well in detecting unspecified heart failure, with LR 
achieving the highest accuracy of 67.4% and an F1 score of 64.0%. LR 
also had the highest MCC, 0.342, and the strongest p-value, 2.68E-08. 
The highest ROC AUC was also achieved by LR at 0.692. Across the 
board, models displayed strong performance in distinguishing normal 
individuals from those with UHF.

Moreover, in this study, we  employed the best classification 
models to evaluate the relevance of retinal OCT features from the left, 
right, and combined eyes. The results are illustrated in Figures 6–8, 
which highlight the significance of each feature in predicting heart 
failure type. Feature importance values were computed based on their 
impact on the target variable, providing valuable insights into the key 
factors driving the model’s predictions. In addition, the Local 
Interpretable Model-agnostic Explanations (LIME) algorithm was 
applied to enhance the local interpretability of models, utilizing OCT 
from both eyes for the prediction process in the XGBoost, RF, and LR 
models (proven to provide best results), as shown in Figures 9–11. 
Providing valuable insights into the model’s decision-making process 
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for congestive, left ventricle, and unspecified HF, respectively. The use 
of explainable ML offers significant clinical implications. By 
identifying and ranking the most influential retinal features, clinicians 
can focus on key biomarkers more strongly associated with heart 
failure progression or detection. For instance, if a specific macular or 

retinal layer thickness proves to be  a dominant factor, it could 
be integrated into diagnostic protocols, potentially improving early 
diagnosis and personalized treatment. This approach promotes trust 
in AI systems by allowing healthcare professionals to interpret and 
validate the model’s predictions.

FIGURE 1

Box plots of left eye parameters by heart failure type. Normal (Type 0), Left Ventricle Heart Failure (Type 1), Congestive Heart Failure (Type 2), and 
Unspecified Heart Failure (Type 3).
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4 Discussion

This study offers insightful information about retinal OCT 
features’ significance in detecting heart failure patients. The study also 
evaluates the significance of specific features in accurately 

distinguishing heart failure categories across the left, right, and both 
eyes through detailed analysis. Utilizing classification analysis, the 
research aims to enhance precision for optimal predictive 
performance. The investigation effectively attains elevated accuracy 
across all nine classification scenarios by identifying ideal 

FIGURE 2

Box plots of right eye parameters by heart failure type. Normal (Type 0), Left Ventricle Heart Failure (Type 1), Congestive Heart Failure (Type 2), and 
Unspecified Heart Failure (Type 3).
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TABLE 3 Performance of different ML techniques using left retinal OCT features only.

Left retinal OCT features DT ANN RF LR CatBoost XGBoost

Normal vs. 

Congestive heart 

failure

Accuracy (%) 56.2 58.7 58.0 63.0 60.5 56.6

Precision (%) 54.4 58.5 56.3 64.3 58.9 55.3

Sensitivity (%) 63.5 52.6 62.0 54.0 62.8 56.9

F1 Score (%) 58.6 55.4 59.0 58.7 60.8 56.1

MCC 0.129 0.173 0.163 0.260 0.211 0.132

p-value 0.0406 0.0055 0.0092 2.32E-05 0.0006 0.04

ROC AUC 0.593 0.619 0.627 0.641 0.642 0.601

Normal vs. Left 

ventricle heart 

failure

Accuracy (%) 56.1 55.4 55.7 56.4 54.3 54.3

Precision (%) 57.0 62.5 57.6 57.5 55.9 56.1

Sensitivity (%) 60.4 33.6 53.7 59.1 54.4 52.3

F1 Score (%) 58.6 43.7 55.6 58.3 55.1 54.2

MCC 0.119 0.135 0.116 0.126 0.086 0.088

p-value 0.057 0.030 0.065 0.042 0.176 0.169

ROC AUC 0.557 0.552 0.612 0.612 0.602 0.575

Normal vs. 

Unspecified heart 

failure

Accuracy (%) 55.8 57.2 60.9 65.6 61.2 60.1

Precision (%) 51.0 52.2 57.1 62.6 57.4 56.3

Sensitivity (%) 78.6 75.4 57.1 61.1 58.7 57.1

F1 Score (%) 61.9 61.7 57.1 61.8 58.0 56.7

MCC 0.166 0.183 0.211 0.305 0.220 0.198

p-value 0.0086 0.0036 0.0007 7.53E-07 0.0004 0.0015

ROC AUC 0.593 0.641 0.666 0.677 0.668 0.639

Maximum accuracy is indicated in bold.

TABLE 4 Performance of different ML techniques using right retinal OCT features only.

Right retinal OCT features DT ANN RF LR CatBoost XGBoost

Normal vs. 

Congestive heart 

failure

Accuracy (%) 57.7 58.0 60.9 66.2 61.9 61.9

Precision (%) 54.7 55.8 59.4 65.9 60.4 60.4

Sensitivity (%) 75.9 66.4 62.0 63.5 63.5 63.5

F1 Score (%) 63.6 60.7 60.7 64.7 61.9 61.9

MCC 0.173 0.166 0.218 0.323 0.239 0.239

p-value 0.006 0.0076 0.00042 1.19E-07 0.0001 0.0001

ROC AUC 0.628 0.602 0.679 0.701 663 0.667

Normal vs. Left 

ventricle heart 

failure

Accuracy (%) 53.3 54.3 51.6 58.1 55.7 53.3

Precision (%) 54.9 56.0 52.9 59.0 56.9 54.6

Sensitivity (%) 52.3 53.0 54.4 61.7 58.4 55.7

F1 Score (%) 53.6 54.5 53.6 60.3 57.6 55.1

MCC 0.066 0.087 0.029 0.161 0.113 0.064

p-value 0.313 0.172 0.703 0.009 0.072 0.330

ROC AUC 0.545 0.579 0.559 0.612 0.582 0.563

Normal vs. 

Unspecified heart 

failure

Accuracy (%) 52.9 59.4 63.4 64.5 62.7 59.8

Precision (%) 48.9 55.8 58.6 60.0 58.0 55.2

Sensitivity (%) 71.4 53.2 67.5 66.7 65.9 62.7

F1 Score (%) 58.1 54.5 62.7 63.2 61.7 58.7

MCC 0.093 0.179 0.274 0.292 0.258 0.200

p-value 0.1586 0.0043 9.44E-06 2.20E-06 3.13E-05 0.001

ROC AUC 0.552 0.632 0.683 0.680 0.686 0.657

Maximum accuracy is indicated in bold.
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hyperparameters and model configurations. These results showcase 
the capability of incorporating retinal OCT features into ML 
algorithms, indicating their potential as valuable tools for screening 
for heart failure diagnosis and treatment.

The retinal measures show significant differences between control 
subjects and those with various forms of heart failure. Remarkably, 
several retinal thickness metrics, including total macular and macular 
thickness in the superior and outer nasal subfields, consistently exhibit 
lower values in heart failure patients than controls, with p-values 

typically less than 0.005. Heart failure groups also have thinner central 
and inner subfield thicknesses, especially the ISOS-RPE layer. 
Parameters like ISOS-RPE and macular thickness at multiple subfields 
show significant reductions, reflecting possible retinal structural 
changes linked to heart failure. In contrast, other retinal 
measurements, such as ELM-ISOS and INL-ELM thicknesses, show 
non-significant differences between groups. According to these 
results, retinal measures may be useful biomarkers for differentiating 
between heart failure patients and healthy people. With the highest 

TABLE 5 Performance of different ML techniques using both retinal OCT features only.

Left and right retinal OCT 
features

DT ANN RF LR CatBoost XGBoost

Normal vs. 

Congestive heart 

failure

Accuracy (%) 55.5 60.1 61.9 61.9 60.1 63.3

Precision (%) 54.6 59.5 61.7 59.4 58.7 61.6

Sensitivity (%) 51.8 56.9 57.7 69.3 61.3 65.7

F1 Score (%) 53.2 58.2 59.6 64.0 60.0 63.6

MCC 0.109 0.202 0.237 0.244 0.203 0.268

p-value 0.088 0.001 0.0001 7.03E-05 0.001 1.21E-05

ROC AUC 0.605 0.609 0.667 0.681 0.657 0.664

Normal vs. Left 

ventricle heart 

failure

Accuracy (%) 52.6 52.2 57.8 54.7 54.3 54.7

Precision (%) 54.1 53.3 58.4 56.2 55.8 56.2

Sensitivity (%) 53.7 59.1 63.1 55.0 55.0 55.0

F1 Score (%) 53.9 56.1 60.6 55.6 55.4 55.6

MCC 0.051 0.041 0.153 0.093 0.086 0.093

p-value 0.452 0.563 0.013 0.143 0.179 0.143

ROC AUC 0.533 0.511 0.614 0.604 0.593 0.576

Normal vs. 

Unspecified heart 

failure

Accuracy (%) 57.2 57.6 60.1 67.4 61.6 59.1

Precision (%) 52.8 52.5 56.3 64.5 57.2 54.7

Sensitivity (%) 59.5 74.6 56.3 63.5 62.7 60.3

F1 Score (%) 56.0 61.6 56.3 64.0 59.8 57.4

MCC 0.148 0.187 0.197 0.342 0.233 0.182

p-value 0.019 0.003 0.002 2.68E-08 0.000 0.004

ROC AUC 0.582 0.648 0.667 0.692 0.686 0.643

Maximum accuracy is indicated in bold.

FIGURE 3

Comparing ML techniques using left retinal OCT features only.
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accuracy in differentiating between cases of normal from congestive 
(63.0%), left ventricle (56.4%), and unspecified heart failure (65.6%), 
logistic regression consistently outperformed other models when 
heart failure types were classified using left retinal OCT characteristics. 
The therapeutic promise of LR for identifying heart failure subgroups 
is suggested by its outstanding performance, which is demonstrated 
by significant p-values and remarkable precision. Additionally, 
CatBoost and XGBoost demonstrated strong performance, especially 
in congestive and unspecified cases, suggesting that retinal OCT 
features may be used as non-invasive indicators for the early detection 
and classification of heart failure, supporting individualized 
treatment plans.

Consistent performance across several models was found when 
right eye retinal OCT characteristics were analyzed for heart failure 
classification. The best results were obtained by Logistic Regression 
and CatBoost, especially when differentiating between healthy people 
and patients with congestive HF. LR had the highest accuracy (66.2%) 
and area under the curve (AUC) (0.701). Their high F1 scores, 
sensitivity, and accuracy further demonstrated these models’ resilience 
in identifying CHF. Although the models had difficulty achieving high 
accuracy in differentiating between patients with left ventricular heart 
failure and healthy individuals, LR and CatBoost outperformed the 

others, with LR exhibiting significant p-values of 0.009. The models 
performed poorly when distinguishing between patients with UHF; 
RF and XGBoost stood out with high accuracy.

Particularly for CHF and UHF, the combined left and right retinal 
OCT characteristics performed better in distinguishing between 
normal and heart failure types. XGBoost demonstrated its robustness 
by achieving the most fantastic accuracy (63.3%) and MCC (0.268) for 
CHF detection, along with a substantial p-value (1.21E-05) and ROC 
AUC (0.664). Additionally, LR demonstrated strong performance with 
an accuracy of 61.9% and an AUC of 0.681. With a noteworthy AUC 
(0.692) and the best accuracy (67.4%) and MCC (0.342) for UHF 
detection, LR demonstrated its efficacy in differentiating these 
individuals. All models performed poorly for LVHF; however, 
Random Forest had the best accuracy (57.8%) and MCC (0.153). 
Overall, the p-values were less significant, suggesting that it was more 
challenging to differentiate LVHF using OCT characteristics.

The feature importance analysis provides critical insights into 
distinguishing normal retinal characteristics from those associated 
with various heart failure conditions, including CHF, LVHF, and 
UHF. The most significant features in CHF classification include 
ISOS-RPE thickness in the inner subfield, INL-RPE thickness in the 
inner subfield, and macular thickness at the outer temporal subfield, 

FIGURE 4

Comparing ML techniques using right retinal OCT features only.

FIGURE 5

Comparing ML techniques using left and right retinal OCT features only.
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FIGURE 6

Normalized feature importance over the logistic regression models utilizing left retinal OCT features only.

FIGURE 7

Normalized feature importance over the logistic regression models utilizing right retinal OCT features only.
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that may indicate retinal stress, compromised blood flow, or fluid 
accumulation, which are commonly observed in CHF patients. 
Similarly, in LVHF classification, key features such as INL-ELM 
thickness in the central subfield, ELM-ISOS thickness in the outer 
subfield, and macular thickness at the inner nasal subfield may 
highlight ischemic damage, photoreceptor metabolic stress, or fluid 
retention, reflecting the impaired cardiac function associated with 
LVHF. For UHF classification, critical features include ISOS-RPE 
thickness in the central subfield, macular thickness at the outer nasal 
subfield, and INL-ELM thickness in the inner subfield, which are 
indicative of central retinal stress, peripheral retinal edema, or hypoxic 

damage, common in heart failure patients. These findings underscore 
the intricate relationship between retinal morphological changes and 
cardiovascular health, emphasizing the potential of retinal imaging as 
a non-invasive tool for heart failure detection and classification. 
Furthermore, explainable machine learning (ML) plays a crucial role 
in this analysis by providing transparency in model decision-making, 
ensuring clinicians can interpret and trust the predictions. By 
identifying the most influential retinal biomarkers for each heart 
failure type, explainable ML enhances the clinical applicability of 
AI-driven diagnostics, facilitating early detection, personalized risk 
assessment, and improved patient management.

FIGURE 8

Normalized feature importance over the XGBoost, RF, and logistic regression models utilizing both retinal OCT features.

FIGURE 9

A visualization of LIME model scores (patient ID 2) over XGBoost model in classifying normal and congestive heart failure patients, utilizing both retinal 
OCT features.
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Moreover, LIME results provide local interpretability, allowing 
ML models to provide explainable, patient-specific insights in complex 
medical applications, by highlighting the most influential features in 
each prediction. The model in Figure 9, predicts a 78% probability of 
congestive HF for patient ID 2. Primarily driven by macular thickness 
at the outer inferior (right) (242.7) and inner inferior (left) (290.7) 
subfields, along with ELM-ISOS of inner subfield thickness (left) 
(20.8). Whereas, ISOS-RPE thickness of inner subfield (left) (34.7) and 
INL-ELM thickness of the outer subfield (right) (67.4) strongly 
associated with the normal class. For the model in Figure 10, the 
patient ID 5 is 54% having left ventricle heart failure. Notably, macular 
at the outer inferior (244.3), and outer nasal (255.2) left subfields 
strongly contributing to the LVHF. Along with the ISOS-RPE outer 
(left) (30), and the INL-ELM central subfield (right) (118.44). 
Conversely, ELM-ISOS of the central subfields (left and right) (29.8, 
30.3, respectively) were among the highest contributing factors to the 
normal class.

The model in Figure 11, predicts an 83% probability of unspecified 
heart failure for patient ID 7, primarily driven by macular thickness 
at various subfields, along with intraocular pressure goldmann 
correlated in the right eye (11.93). The outer inferior subfield macular 
thickness (left) and inner superior subfield macular thickness (left and 
right) were among the highest contributing factors. Conversely, 
features such as the outer temporal subfield macular thickness (left 

and right), INL-ELM (left) and ELM-ISOS (left) thickness had a 
stronger association with the normal class.

Propping further, to ensure the clinical translation of our findings, 
several key steps must be undertaken to validate and integrate retinal 
OCT biomarkers and ML models into routine medical practice:

 1 Prospective Clinical Studies: A critical next step involves 
conducting large-scale, multi-center prospective studies to 
validate our ML models on diverse populations beyond the UK 
Biobank dataset. This would help assess model generalizability, 
reliability, and performance in real-world clinical settings.

 2 Regulatory Compliance and Standardization: To facilitate 
clinical adoption, our approach must comply with regulatory 
standards (e.g., FDA, EMA, MHRA) for medical AI applications. 
This includes demonstrating model robustness, bias mitigation, 
and clinical benefit through randomized controlled trials.

 3 Integration with Existing Diagnostic Pathways: The integration 
of retinal OCT-based ML models into cardiology and 
ophthalmology workflows requires seamless compatibility with 
electronic health record (EHR) systems and point-of-care 
diagnostics. This would allow for automated risk stratification 
of heart failure patients during routine ophthalmic exams.

 4 Validation of Clinical Utility: Future research should focus 
on evaluating how retinal-based predictions improve 

FIGURE 10

A visualization of LIME model scores (patient ID 5) over RF model in classifying normal and left ventricle heart failure patients, utilizing both retinal OCT 
features.

FIGURE 11

A visualization of LIME model scores (patient ID 7) over LR model in classifying normal and unspecified heart failure patients, utilizing both retinal OCT 
features.
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patient outcomes, such as early detection rates, treatment 
optimization, and cost-effectiveness compared to 
conventional cardiac assessments.

 5 Interdisciplinary Collaboration: Bridging cardiology, 
ophthalmology, and AI research will be essential for refining 
predictive algorithms, defining clinically relevant thresholds, 
and ensuring interpretability for physicians.

By following these steps, our study paves the way for retinal 
imaging as a scalable, non-invasive tool for heart failure screening and 
classification, ultimately enhancing early detection, personalized risk 
assessment, and precision medicine in cardiovascular care.

5 Limitations and future work

Although ML-based models effectively predict heart failure, our 
research recognizes many limitations. It is critical to recognize that no 
single parameter can accurately capture the whole spectrum of heart 
failure classification. For a more accurate and trustworthy evaluation, 
the intricacy of heart failure categorization necessitates a thorough 
evaluation of several parameters and diagnostic techniques. Our 
research highlights the necessity of a comprehensive strategy to 
guarantee reliable and clinically significant classification of individuals 
with heart failure. Moreover, although the present investigation 
employed a dataset encompassing patients from United Kingdom 
populations, subjecting the trained models to additional testing on 
more diverse patient groups is imperative to ensure broader 
applicability and generalization of their performance. In future 
investigations, the classification models formulated in this study might 
hold promise for adaptation or extension to predict diverse parameters 
associated with heart health, such as myocardial ischemia. However, 
their suitability for underlying conditions that may contribute to heart 
failure necessitates further research and validation.

Some demographic and clinical characteristics of heart failure 
groups (e.g., Age, Sex, BMI, HDL cholesterol, and Systolic Blood 
Pressure) found to be significantly different as compared to controls. 
Our study exclusively utilized retinal OCT measurements for predicting 
heart failure subtypes, intentionally excluding demographic and clinical 
characteristics such as age, and gender. This approach ensured that our 
models were solely driven by retinal parameters, such as ISOS-RPE and 
INL-ELM thickness, as non-invasive biomarkers for heart failure 
classification. While this strategy isolated the predictive power of retinal 
features, it inherently excluded confounding demographic variables, 
which could have provided additional context and improved model 
performance. The features identified by our explainable machine 
learning models as the most important for classification—such as 
reductions in ISOS-RPE and macular thickness—are strongly associated 
with microvascular dysfunction and structural changes linked to heart 
failure pathology. These alterations go beyond the gradual changes 
typically seen with aging, suggesting that the classification performance 
observed is predominantly driven by heart failure-related changes. 
Incorporating demographic and clinical characteristics, such as age and 
comorbidities, could further enhance model accuracy and robustness. 
Future work could integrate these variables alongside retinal OCT 
measurements to explore their combined predictive value.

To strengthen the clinical applicability of our findings, we propose 
avenues for future investigations such as focusing on longitudinal 

studies to track disease progression using retinal biomarkers. 
Conducting multi-center, long-term prospective studies will enable 
the continuous monitoring of retinal structural changes in correlation 
with heart failure progression, providing a deeper understanding of 
the temporal evolution of these biomarkers. This will help assess their 
predictive power in detecting early-stage cardiac dysfunction and 
evaluating the impact of therapeutic interventions over time.

Moreover, future studies could explore the integration of 
longitudinal retinal imaging data with machine learning models, 
leveraging sequential data analysis techniques such as recurrent neural 
networks (RNNs) and temporal convolutional networks (TCNs) to 
enhance predictive accuracy. Additionally, combining retinal 
biomarkers with other physiological indicators, such as ECG-derived 
circadian features, hemodynamic parameters, and serum biomarkers, 
may offer a more comprehensive and multi-modal approach for risk 
stratification and early detection of heart failure subtypes.

6 Conclusion

This study highlights the potential of using retinal OCT features 
as non-invasive biomarkers for detecting and classifying different 
types of heart failure. By analyzing and comparing retinal 
measurements from both the left and right eyes, the research 
successfully identifies key features that differentiate between normal 
individuals and heart failure patients, offering a novel approach to 
early diagnosis. The study achieves acceptable predictive accuracy 
through thorough classification analysis, showcasing the 
effectiveness of incorporating retinal features into machine learning 
algorithms. The study reveals significant differences in retinal 
thickness metrics between control subjects and heart failure 
patients, particularly in measures such as total macular thickness 
and ISOS-RPE thickness, which consistently showed reductions in 
heart failure patients. These findings suggest that structural changes 
in the retina may reflect the underlying pathophysiology of heart 
failure, further supporting the clinical relevance of these parameters 
as potential diagnostic tools.

The combined use of left and right eye features improved model 
performance, particularly for congestive and unspecified heart failure, 
where models like XGBoost and Logistic Regression achieved the 
highest accuracies. This highlights the importance of incorporating 
bilateral retinal data to enhance diagnostic precision. While the 
models demonstrated promising results for most heart failure 
subtypes, further research is needed to understand better the retinal 
changes associated with left ventricle heart failure, where the models 
performed less effectively. Moreover, this study highlights the critical 
role of explainable ML in distinguishing retinal biomarkers associated 
with different heart failure types, reinforcing the potential of retinal 
imaging as a non-invasive, cost-effective screening tool for early heart 
failure detection and classification. The feature importance analysis 
identifies key retinal parameters contributing to CHF, LVHF, and 
UHF classification, including ISOS-RPE thickness, INL-ELM 
thickness, macular thickness across various subfields, and intraocular 
pressure. Furthermore, LIME enhances local interpretability, ensuring 
model predictions remain transparent and clinically meaningful by 
identifying the most influential features in each classification. This 
patient-specific explanation strengthens trust in AI-driven diagnostics, 
supports early detection, personalized risk assessment, and improved 
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patient management, bridging the gap between automated decision-
making and clinical validation.

In conclusion, this study demonstrates the value of retinal OCT 
features in heart failure classification, emphasizing their potential as 
reliable, non-invasive indicators for early detection and personalized 
treatment strategies. By integrating these features into machine 
learning models, clinicians can improve heart failure diagnosis and 
management, offering a promising avenue for advancing cardiac care 
through ocular assessments.
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