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Di�usion models, a class of deep learning models based on probabilistic

generative processes, progressively transform data into noise and then

reconstruct the original data through an inverse process. Recently, di�usion

models have gained attention in microscopic image analysis for their ability to

process complex data, extract valuable information, and enhance image quality.

This review provides an overview of di�usion models in microscopic images and

micro-alike images, focusing on three commonly used models: DDPM, DDIM,

and SDEs. We explore their applications in image generation, segmentation,

denoising, classification, reconstruction and super-resolution. It shows their

notable advantages, particularly in image generation and segmentation. Through

simulating the imaging process of biological samples under the microscope,

di�usion model can generate high-quality synthetic microscopic images. The

generated images serve as a powerful tool for data augmentation when

training deep learning models. Di�usion model also excels in microscopic

image segmentation. It enables to accurately segment di�erent cellular regions

and tissue structures by simulating the interactions between pixels in an

image. The review includes 31 papers, with 13 on image generation, nine on

segmentation, and the remainder on other applications. We also discuss the

strengths, limitations, and future directions for di�usion models in biomedical

image processing.

KEYWORDS

microscopic image, micro-alike image, di�usion model, image generation, image
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1 Introduction

1.1 microscopic images and micro-alike images

Micrographs are images captured using microscopes or other high-resolution imaging

devices to observe and study tiny structures in the microscopic world. These images

typically provide magnified views of biological, material, or other microscopic samples and

are indispensable tools in cell biology.Micrographs provide scientists with valuable insights

into the structure and function of cells, making them crucial not only in the medical field

but also in environmental science and materials chemistry research. On the other hand,

micro-alike images, typically obtained through other high-resolution imaging techniques

or devices, share similar properties with conventional microscopic images, such as high
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resolution and the ability to observe and analyze minute structures.

Consequently, micro-alike images also hold comparable research

value and are applicable in similar scenarios as microscopic images.

In histopathological studies, microscopic images play a crucial

role in medical research, diagnosis, and treatment. In pathology,

microscopic images of tissue sections offer detailed views of

the internal structure and lesions of biological tissues. An

example of a histopathological image is shown in Figure 1. These

images are critical for disease diagnosis, pathology research,

and decision making in medical practice. It can help doctors

and researchers better understand and diagnose diseases (1).

Ajay proposed a method to identify the extent of lymphocyte

infiltration in histopathological images of breast cancer, offering

a new quantitative approach for pathological assessment (2).

Additionally, cellular images have wide-ranging applications in

pathology. In clinical trials, cytological examination can detect

abnormal cell morphology, including changes in cell size, nuclear

morphology, and organelle structure, aiding in the early detection

of lesions. For example, neutrophils with abnormal features

are shown in Figure 2. These are hypersegmentation, D..ohle

bodies and hypergranulation of neutrophil. It is usually used

to diagnose a number of malignancies and leukaemias in the

hematological system (3). Finally, micrographic techniques can be

combined with methods such as fluorescent labeling. Thus, the

localisation and distribution of biomolecules (e.g. proteins, nucleic

acids, etc.) in cells and tissues can be observed and analyzed

(4). In environmental science research, microscopic image can

be used to observe microbial community structure, abundance

and distribution. Through micrographic techniques to study the

relationships of microbial diversity, ecological functions with

environmental change. It provides effective technical means and

important data support for the study of environmental microbial

ecology. For example, algae are good bioindicators for water

pollution assessment. Using micrographic techniques it is possible

to measure changes in algal species and abundance to identify

changes in water quality and nutrient status (5).

Micro-alike images, such as skin cancer and fundus images,

are typically captured using specialized imaging equipment. For

example, skin cancer images, often obtained with devices like

dermoscopy (6), are vital in dermatological medicine, allowing

for the assessment of lesion type, size, color, shape, and other

characteristics. These images aid in diagnosing and monitoring

skin cancer and other skin conditions, as well as determining

the malignancy and depth of lesions (7). Figure 3 shows several

common melanoma images. Similarly, fundus images, captured

using specialized fundus cameras, are designed to observe and

analyze the posterior structures of the eye, including the retina,

optic nerve, blood vessels, macula, and optic disc.

An image obtained by optical coherence tomography (OCT)

(8) is shown in Figure 4. These images are crucial tools for doctors

to diagnose and monitor eye health (9). Studies have shown

that fundus imaging is associated with a wide range of diseases.

For example, Liesenfeld et al. found that regular digital fundus

imaging allows for the early detection and treatment of diabetic

retinopathy, which is common among diabetics (10). Parham

proposed a CNN-based method for retinal analysis, enabling the

automated identification of lesions such as exudates, hemorrhages,

and microaneurysms in fundus images (11).

FIGURE 1

Histopathologic image of intestines tissue sections observed under

the microscope.

Endoscopic images are another type of micro-alike image.

With technological advancements, endoscopic imaging devices

have evolved from magnifying endoscopes and autofluorescence

imaging (AFI) to confocal laser microendoscopy. These high-

resolution endoscopic images, which can reach up to 1 million

pixels, provide endoscopists with clearer views of capillaries and

submucosal vessels (12).

1.2 Di�usion model

In recent years, deep generative modeling has gained significant

attention, with three mainstream approaches emerging: variational

autoencoders (VAEs) (13), generative adversarial networks (GANs)

(14), and diffusion models (15). GANs face challenges such as

unstable training, which can lead to model crashes and a lack of

diversity in generated samples (16). VAEs, on the other hand, often

produce more blurred images because their training objective is to

maximize data likelihood (17). In contrast, diffusion models have

shown significant potential due to their relatively stable training

process and robustness to noise. These models operate through

two key steps: a forward diffusion process, where noise is added

to corrupt the training data into pure Gaussian noise, and a

reverse denoising process, where the noise is gradually removed to

restore the original data structure (18). As cutting-edge generative

models, diffusion models are being extensively researched for their

applications across various fields.

To date, diffusion models have been utilized in a wide range

of generative modeling tasks. Following the advancements of

VAEs and GANs, diffusion models have made significant progress
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FIGURE 2

Examples of cellular images displaying various abnormalities. From left to right these are hypersegmentation, D..ohle bodies and hypergranulation of

neutrophil. Reproduced with permission from “Examples of images of cells with di�erent abnormalities” by Louise Zettergren and Fanny Nilsson,

licensed under CC BY 4.0.

FIGURE 3

Representative images of various melanoma, highlighting di�erences in lesion appearance, including variations in type, size, color, and shape.

Reproduced with permission from “Synthetic melanoma images generated by the stable di�usion model after fine-tuning it with melanoma images

using the input text prompt “melanoma””, by Mohamed Akrout, Bálint Gyepesi, Péter Holló, Adrienn Poór, Blága Kincsõ, Stephen Solis, Katrina Cirone,

Jeremy Kawahara, Dekker Slade, Latif Abid, Máté Kovács and István Fazekas, licensed under CC BY 4.0.

FIGURE 4

Fundus images of a 70-year-old woman with an ERM. (A) The retinal nerve fiber layer (RNFL) defect is di�cult to detect in the ocular fundus image

obtained by a conventional fundus camera (A). (B)Epiretinal membrane can be seen in OCT images. Adapted with permission from “Fundus images of

a 70-year-old woman with an ERM” by Hiroto Terasaki, Shozo Sonoda, Masatoshi Tomita and Taiji Sakamoto, licensed under CC BY 4.0.

in fields such as computer vision and medicine. Their wide

applicability extends to micrography, where they are not only used

for image generation but also for image segmentation, denoising,

and various image restoration tasks, including super-resolution and

translation (19).

Image generation (20, 21): Image Generation is the process

of automatically generating images using algorithms and deep

learning techniques. This technique usually relies on neural

network models, especially Generative Adversarial Networks,

Variational Auto-Encoders and Diffusion Models. These models

are can generate new images from random noise, pre-existing

images, or conditional information such as text descriptions.

Generating synthetic images through diffusion models can be

used for data augmentation, effectively addressing data scarcity

and reducing the risk of model overfitting. A novel generative

framework (22) combines the diffusion process with composable

modules, allowing dynamic combination of image parts, thus

enhancing flexibility in generating complex images with better

semantic information and structure.

Image classification (23): Microscopic image classification is

an important task in computer vision, especially in the fields of

medical image analysis, pathology, and cell biology. The aim is to

classify microscopic images into different categories based on their

content (such as pathological state). However, Medical data often
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face issues of imbalance, especially with rare diseases or abnormal

cells. Diffusion models can generate high-quality, photorealistic

images to enhance image classification performance by applying

both generated and original images to classifiers (24, 25).

Image denoising: Microscopic images are always affected by

different types of noise. The development of denoising techniques

is crucial for image clarity and analysis. Image Denoising improves

the quality of the image, which in turn improves the accuracy of

subsequent analysis. Diffusion models provide adaptive denoising

based on image characteristics and noise type, preserving structure

and edge information while avoiding excessive smoothing or

blurring, ensuring clarity and recognizability in the denoised

image (26).

Super-resolution reconstruction (27): Super-Resolution

Reconstruction is a technique for recovering a high-resolution

(HR) image from a low-resolution (LR) image. The goal is to

enhance the resolution and detail of the image, making it clearer

for more accurate analysis and processing. Diffusion models can

enhance image quality and details through the diffusion process.

The Super-Resolution via Repeated Refinement (SR3) framework,

based on DDPM, progressively improves low-resolution images

via iterative denoising to produce high-resolution outputs (28).

Image segmentation (29, 30): Microscopic image segmentation

is one of the key tasks in microscopic image analysis. It is

mainly used to extract regions of interest (cells, tissues, subcellular

structures, etc.) from images acquired under a microscope. With

precise segmentation, researchers are able to perform more deep

analysis such as cell counting, tissue analysis, and lesion detection.

Traditional segmentation methods require significant time and

cost for labeling training data. Diffusion models, however, learn

similarities and correlations between samples, propagating labeling

information from a small number of labeled samples to unlabeled

ones, thereby reducing reliance on labeled data and achieving

comparable or better performance than traditional methods (31).

Image-to-image translation (32, 33): Diffusion models are also

effective in image-to-image translation, converting images from

one domain to another with different visual characteristics and

semantic meanings (34). Their adaptive nature allows for efficient

conversion by adjusting diffusion process parameters based on

input image (35).

1.3 Motivation of this review

Microscopic and micro-alike images play a critical role in

various fields. By extracting features from these images, a wide

range of image analysis algorithms can be applied to achieve

different objectives. For instance, in pathology, microscopic image

analysis is essential for tumor diagnosis, histopathological analysis,

and cancer detection.Medical professionals can determine the type,

extent, and treatment options for diseases by examining tissue

sections (36). In biological research, microscopic images are used

to study cell structure, function, and biomolecular interactions,

helping biologists understand biological processes andmechanisms

within organisms (37).

However, microscopic images often have complex structures

and rich details that traditional analysis methods struggle to

process effectively. Traditional techniques tend to extract only basic

features, making accurate analysis and identification of complex

structures and cellular morphology difficult and time-consuming

(38). In contrast, diffusion models, as non-linear models, are well-

suited to handle these complexities. They capture higher-order

features and non-linear relationships, enhancing the expressive and

fitting capabilities of the models (18).

Over the past two years, there has been a growing body of work

exploring the application of diffusionmodeling in various domains,

particularly in computer vision and medical imaging. For example,

Croitoru et al. (39) outlines three subclasses of diffusion models–

DDPM, noise-conditioned score networks (NCSNs) (40), and

Stochastic Differential Equations (SDEs) (41)–which have shown

superior results in tasks such as image generation, segmentation,

and image-to-image translation. However, only two of the 114

applications discussed in this paper focus on microscopic image

analysis. The work of Kazerouni et al. (42) systematically reviews

advances in diffusion models within medical image analysis,

including tasks like image-to-image conversion, reconstruction,

alignment, classification, segmentation, and denoising. Of the 192

papers cited, only six deal with microscopic images.

In Zhang et al. (43), the current state of diffusion modeling

for text-guided image generation is reviewed. This paper cites

150 references, all focused on applications in computer vision

and natural images, and further examines methods for guiding

image generation at different diffusion prior positions. The work

ofLi et al. (44) addresses the challenges of using diffusion models

in image processing, particularly in non-autoregressive (NAR)

text generation. While NAR methods reduce computational time,

they significantly decrease the accuracy of generated images. This

review focuses on the contributions of NAR text generation in

natural images and does not cover microscopic images. In Cao

et al. (45), new conditioning techniques in text-guided image

generation are discussed, including condition-specific, multi-

conditional, and universal controllable generation, with a primary

focus on applications involving natural images.

The study by (19) explores ways to enhance diffusion model

performance, focusing on three key areas: efficient sampling,

improved likelihood estimation, and handling specially structured

data. The paper also proposes combining diffusion models with

other generative models, such as VAEs, GANs, and Energy-

based Models, to broaden their applicability. Despite citing 349

references, none specifically address microscopy images. The

work of Chen et al. (46) provides a comprehensive survey

of diffusion model advancements in fields such as computer

vision, audio, medicine, bioinformatics, and others. It covers

theoretical advances in both unconditional and conditional

diffusion models and discusses optimization techniques, including

black-box optimization. Out of 216 references, only one pertains

to microscopic images. Similarly, Cao et al. (15) investigates

different applications of diffusion models across computer

vision, natural language processing, and medicine, focusing

on optimized diffusion models with techniques like sample

acceleration, diffusion process design, and ELBO optimization.

Out of 92 references on image analysis, only two relate to

microscopic images.

The review in Li et al. (47) systematically outlines the

use of diffusion models in image restoration, discussing

two main approaches: supervised diffusion-based models
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TABLE 1 A summary and comparison of the primary surveys in the field of di�usion model, where percentage is the ratio of the third column to the

second column.

Artical Number of
references
cited in the

review

Number of references
related to microscopic
and micro-alike image

Percentage Field of application

Diffusion models in vision: A
survey
(39)

114 2 1.75% This paper comprehensive review of articles on
diffusion
models applied in vision.

A survey on generative diffusion
models
(15)

92 2 2.17% This paper studies different applications of
diffusion
model in different fields about computer vision,
natural
language processing, medicine

Diffusion models in medical
imaging: A
comprehensive survey (42)

192 6 3.12% This paper summaries diffusion models applied in
medical images. However, it focuses on mainly in
CT
and MRI.

Diffusion models: A
comprehensive survey
of methods and applications (19)

349 0 0 This paper concentrates on the application of
diffusion
model to image synthesis, video generation,
and molecular design.

Text-to-image diffusion model in
generative
ai: A survey (43)

150 0 0 This paper presents a review of state-of-the-art
methods
on text-conditioned image synthesis, i.e.
text-to-image.

Diffusion models for image
restoration and
enhancement-a comprehensive
survey
(47)

64 0 0 This paper provides an overview of diffusion
model for
image restoration on natural images, medical
images,
and biomolecules.

Diffusion models for
non-autoregressive
text generation: A survey (44)

53 0 0 This paper summarizes diffusion Modeling for
Non-Autoregressive Text Generation in natural
language field.

Controllable generation with
text-to-image
diffusion models (45)

249 0 0 This paper presents improved diffusion model for
text-conditioned image synthesis in natural
language
field.

Diffusion models in
bioinformatics and
computational biology (48)

273 2 0.73% This paper primarily summarizes the application
of
diffusion models in bioinformatics.

An overview of diffusion models:
Applications,
guided generation, statistical rates
and
optimization (46)

216 1 0.46% This paper concludes advances of diffusion models
in
the fields of computer vision, audio, reinforcement
learning, and computational biology.

A state-of-the-art review of
diffusion model
applications for microscopic
image and
micro-alike image analysis

119 32 26.89% Our paper concludes three commonly used
models:
DDPM, DDIM, and SDEs. We explore their
applications
in image generation, segmentation, classification,
denoising, reconstruction and super-resolution.

and zero-bounce diffusion-based models. It summarizes

64 papers, covering natural images, medical images, and

biomolecules. Guo et al. (48) summarized the application

of diffusion models to biomolecules, highlighting recent

advances in protein molecule design, small molecule design,

cryo-electron microscopy image analysis, and single-cell data

analysis. Of the 273 articles cited, only two were related to

micrograph studies.

Table 1 illustrates the number of papers related to microscopic

and micro-alike images within the cited literature of the reviewed

works. An analysis of this figure and the related literature reveals

that while diffusion models are gaining attention, there is still

limited research specifically focused on microscopic and micro-

alike image analysis. Most studies continue to concentrate on

natural image analysis in computer vision, protein molecular

design in bioinformatics, and related areas.
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Pre-processing

l Image Normalization

l Resampling and Rescaling

l Equalization

l Data Augmentation

l Denoising

l Image Calibration

Medical Image

Micro-alike Image

l Skin Cancer

l Fundus Image

Microscopic Image

l Colon Cancer

l Breast Cancer

l Lung and Squamous Cell Carcinoma

l Cervical Cancer

l Head and Neck Cancer

l Leucocyte

l Red Blood Cell

Unconditional Generation

l DDPM

l Medfusion Self-encoder

Reconstruction

l DDPM Perceptual Priority

Weighting Module

l DDIM R2U-net

Conditional Generation

l Stable Diffusion Generation Pipeline

l DDPM Multilayer Spatial Adaptive

Normalization Operator

l Latent Diffusion Model(DDIM)

l ViT-DAE(DDIM)

l DDPM GLIDE CLIP

l Latent DDPM

l DiffInfinite (DDIM combined with VQVAE)

l DDPM β-VAE architecture

l Stable Diffusion Step Counting

Configurations

Unsupervised Learning

l SANO

l DDPM Cascade Diffusion

Mode1

l DTSeg(DDPM) Transformer-

based Decoder

DDPM

l Image Denoising

l Image Reconstruction Image

l Super-Resolution

l Image Classification

l Image Translation

Self-supervised Learning

l MedSegDiff(DDPM) Dynamic

Conditional Coding and FF-Parser

l MedSegDiff-V2 (DDPM) Anchoring

Conditions and Spectral Space

Transformer(SS-Former)

l DermoSegDiff(DDPM) Boundary

Sensing Module

l GenSelfDiff (DDPM) Multiple Loss

Function

l DDPM Spontaneous Symmetry

Breaking

Diffusion Model For Image Generation Diffusion Model For Image Segmentation Diffusion Model For Other Image Analysis

FIGURE 5

The algorithmic process of using di�usion models for microscopic image analysis, encompassing stages such as image acquisition, pre-processing,

image generation, segmentation, and other image analysis methods.

1.4 Structure of the review

This review provides an overview of the application of diffusion

models to microscopic and micro-alike images. In Section 2, we

introduce the basic theory of diffusion models, focusing on the

three primary approaches: NCSN, DDPM, and SDE. Section 3

delves into advances in diffusion models for image generation,

particularly conditionally guided generation, and discusses their

benefits for medical research and education. Sections 4 and 5

summarize the applications of diffusion models in segmentation

and other tasks, providing a detailed overview of different use cases.

In Section 6, we evaluate the strengths, weaknesses, and areas for

improvement of diffusion models, as discussed in the previous

sections. Finally, Section 7 offers conclusions and explores potential

future research directions in diffusion models.

Figure 5 summarizes the general flow of microscopic image

analysis using diffusion models over recent years, highlighting

popular methods for each type of analysis. Despite the growing

interest, there is a scarcity of literature specifically addressing the

application of diffusion models to microscopic and micro-alike

images. Figure 6 shows the whole process of filtering articles from

keywords such as histopathological images, cellular images, and

microscopic images through Google Scholar.

On the one hand, the relevant papers are filtered through the

references of the related reviews. On the other hand, relevant papers

are searched by keywords of diffusion model, histopathological

images, microscopic images and other keywords in Google Scholar.

The literature is filtered according to its content. Part of the

literature is the application of diffusion model on CT images, MRI,

which does not involve microscopic images and then are excluded.

A total of 44 relevant papers are screened from 1,717 articles on

both occasions.

In summary, this review is the first to provide a comprehensive

overview of the application of diffusion models to microscopic

and micro-alike images, covering a wide range of tasks including

image generation, segmentation, classification, denoising, image

reconstruction, and super-resolution.

2 Basic knowledge of di�usion model

In this section, we outline two fundamental formulations

of diffusion models: Denoising Diffusion Probabilistic Models

(DDPMs) and Stochastic Differential Equations (SDEs). We

describe the process of adding noise and themethods for generating

new data in the reverse process for both formulations. Additionally,

to accelerate the sampling process in DDPMs, we introduce a new

generative model called the Denoising Diffusion Implicit Model

(DDIM). This model achieves more efficient sample generation by

employing a non-Markovian diffusion process, resulting in faster
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33 papers are screened 

in the first round

1617 papers in the first 

search

44 papers are screened 

in the first round

11 papers are screened 

in the second round

1584 papers on 

irrelevant topics

FIGURE 6

Flow chart illustrating the screening process for selecting relevant

papers.

generation, improved sample quality, and support for semantic

interpolation in latent spaces.

2.1 Denoising Di�usion Probabilistic
Models (DDPMs)

DDPM is a probabilistic model designed for image denoising

(18, 49), which characterizes the relationship between noise and the

signal in an image. It removes noise by controlling the diffusion

process to recover a clear image, utilizing parameter estimation

and image denoising by maximizing the log-likelihood between

observations and model predictions.

2.1.1 Forward process
Given an initial data distribution x0 ∼ q(x), Gaussian noise can

be continuously added to the distribution(The standard deviation

of Gaussian noise is determined from a fixed value of βt). The

mean value is determined from a fixed value βt and the state xT
at the current moment t. As the time step t increases (t → T)

the final data xT becomes an individual Gaussian distribution, as

shown in Figure 7. The initial moment q(x0) is the distribution of

the real image. We can do this by randomly sampling an image

from the real image in the training datas, denoted as x ∼ q(x0).

Then the forward process q(xt|xt−1) as shown in Figure 7 means

that adding Gaussian noise to the image xt−1 to get xt at each

step of the forward. The mean of the added Gaussian noise is

µt =
√
1− βtxt−1 and the variance is σt = βtI:

q(xt|xt−1) = N(xt;
√

1− βtxt−1,βtI) (1)

The process of obtaining xt from xt−1 satisfies the distribution

of N(xt;
√
1− βtxt−1,βtI). Thus we see that this noise is only

determined by βt and xt−1, which is a fixed value rather than a

learnable process. Therefore, as long as we have x0 and determine

in advance a fixed value for each step β1, · · · , βT , we can roll out the

noise-added data x1, · · · , xT for any step. According to the previous

description, the forward diffusion process of DDPM is a Markov

process. Then the posterior probability distribution from input x0
to xT can be expressed as follow:

q(x1 :T |x0) =
T

∏

t=1

q(xt|xt−1) (2)

We let αt = 1 − βt ,αt =
∏t

i=1 αi, then there is βt = 1 − αt .

Besides, via the original image x0 and βt , it is possible to sample xt
of any moment:

xt ∼ q(xt|x0) = N(xt;
√

αtx0, (1− αt)I) (3)

2.1.2 Reverse process
The forward process of DDPM is to continuously add noise to

the known data. The implicit variable xT can be considered as an

isotropic Gaussian distribution when the time step T →∞. While

the reverse process p(xt−1|xt) of DDPM is a denoising process. In

other words, we first take a random sample of a 2D Gaussian noise

at the time t and then progressively denoise it. The final result is a

generated image that is consistent with the distribution of the real

image x0.

The core process of DDPM is how the above denoising process

is performed. Since the reverse diffusion process is unknown. We

can learn this denoising process using a neural network. In the

process of diffusion, the distribution xt of moments t is known.

Thus the purpose of the constructed neural network is to learn the

probability distribution function of xt−1 based on xt . In summary,

the reverse process of DDPM can be modeled as p(xt−1|xt). At each
moment in the forward diffusion process adds Gaussian noise to

the implicit variables. Then the reverse denoising process filters

out Gaussian noise as well. Theoretically, a random Gaussian noise

is determined by the parameter mean µθ and variance �θ . So,

p(xt−1|xt) can be defined as:

pθ (xt−1|xt) = N(xt−1;µθ (xt , t),6θ (xt , t)) (4)

The inverse process of DDPM is also a Markov process. The

inverse process of the diffusion model is obtained via Markov chain

defined as:

pθ (x0 :T) = p(xT) ·
T

∏

t=1

pθ (xt−1|xt)) (5)

where p(xT) = N(xt; 0, I) is a randomly sampled Gaussian noise;

pθ (xt−1|xt) denoted the Gaussian distribution for which the mean

and variance need to be calculated.

2.1.3 Training losses
The loss function of the DDPM is based on the negative

likelihood logarithm plus a KL dispersion. Thus, forming an upper
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FIGURE 7

Denoising Di�usion Probabilistic Models. x0 → xt is the forward process of DDPM, xt → x0 is the reverse process of DDPM.

bound on the negative likelihood logarithm.

−logpθ (x0) ≤ −logpθ (x0)+ DKL[q(x1 :T |x0)||pθ (x1 :T |x0)]

= Ex∼q(x1 :T |x0)

[

log
q(x1 :T |x0)
pθ (x0 :T)

]

= LLVB

(6)

As every time state variable of the diffusion process satisfies the

Markov distribution, so the above equation can be written as:

LLVB = −Ex∼q(x1|x0)[logpθ (x0|x1)]
︸ ︷︷ ︸

LRes

+DKL(q(xT |x0)||pθ (xT))
︸ ︷︷ ︸

LT

+

6T
t=2 Ex∼q(xt |x0)[DKL(q(xt−1|xt , x0)||pθ (xt−1|xt))]

︸ ︷︷ ︸

Lt−1

(7)

where LRES denotes the image reconstruction loss function. It

serves to reconstruct the original data and optimizes a negative log-

likelihood estimate. LT denotes a priori information match, which

computes the final noise input using KL Divergence. The denoising

loss function Lt−1 calculates the KL Divergence between the true

posterior distribution q(xt−1|xt , x0) and the predicted distribution

pθ (xt−1|xt). Since the goal of DDPM is to make the real denoising

process as consistent as possible with themodel predicted denoising

process. Simplifying Lt−1 by means of reparameterisation, the final

loss function of the DDPM simplifies to:

Lsimple−DDPM = Ex,t,ǫ

∥
∥
∥ǫt − ǫ̂θ

(√
αtx0 +

√

1− αtǫ, t
)∥
∥
∥

2

2
(8)

2.2 Stochastic Di�erential Equations
(SDEs)

SDEs are a class of mathematical modeling methods that use

stochastic differential equations to describe the evolution of a

system. In the field of image processing, SDEs are commonly used

to model the evolution of images. These methods work on the basis

that the image is a random process.

The forward diffusion of SDEs can be denoted in terms of both

drift and random noise components:

dx = f (x, t)dt + g(t)dω (9)

where f is a vector function referred to as the drift coefficient. g(t)

is a real function denoted as the diffusion coefficient. ω denotes

standard Brownian motion and dω is infinitesimal white noise. The

solution of the SDE is a continuous collection x(t)0 :T of random

variables. These random variables track the random trajectory of

time index t from 0 to T. Denote the marginal probability density

function of x(t) by pt(x). At t=0, p0(x) = p(x). No noise is

mixed into the original data distribution at the initial moment.

After a sufficiently long period of time T, with the mixing of

noise of increasing size, p(x) becomes a tractable noise distribution

(e.g., Gaussian), denoted as π(x), which is known as the prior

distribution. pT(x) corresponds to the case of maximum noise for

limited noise layers.

In the case of a limited number of noise sizes (DDPMs), we

generate samples by gradually reducing the noise through a reverse

process. Similarly, we use an inverse SDE to reverse the noise

mixing process for sample generation for an infinite number of

noise layers. The SDE form of the inverse diffusion process is

as‘ follows:

dx =
[

f (x, t)− g2(t)▽x logpt(x)
]

dt + g(t)dω (10)

where dt is an infinitesimal time step, this SDE needs to be solved

inversely, from t=T to t=0.▽xlogpt(x) is the score function of pt(x)

and log is the gradient of the data distribution. In order to estimate

the score function, we train a time-dependent score-based model

sθ (x, t), making sθ (x, t) = ▽xlogpt(x). In this way, an estimated

inverse SDEs can then be obtained:

dx =
[

f (x, t)− g2(t)sθ (x)
]

dt + g(t)dω (11)

Therefore, we can start from x(T) = π and obtain x(0) by solving

the above reverse SDEs.

2.3 Denoising Di�usion Implicit
Models(DDIM)

For diffusion model, the biggest drawback is that we need to

set a long diffusion step to get good results, which leads to slower

generation of samples. DDIM (50) and DDPM have the same

training goals. However, it no longer restricts the diffusion process

to be a Markov chain. This allows DDIM to use smaller sampling

steps to speed up the generation process. Another feature of DDIM

Frontiers inMedicine 08 frontiersin.org

https://doi.org/10.3389/fmed.2025.1551894
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Liu et al. 10.3389/fmed.2025.1551894

FIGURE 8

Skip-step sampling of DDIM: non-Markov chain. Breaking the

Markov assumption of the model’s original forward model, a specific

backward model is found that makes that backward process

deterministic.

is that the process of generating samples from a random noise is a

deterministic process.

Based on the above analysis, the inference distribution of DDIM

is defined as:

qσ (x1 :T |x0) = qσ (xT |x0)
T

∏

t=2

qσ (xt−1|xt , x0) (12)

Here it has to be satisfied qσ (xT |x0) = N(
√

αTx0, (1− αT)I) and all

of the t ≥ 2 at the same time. Then there is:

qσ (xt−1|xt , x0) = N(xt−1;
√

αt−1x0 +
√

1− αt−1 − σ 2
t

xt −
√

αtx0√
1− αt

, σ 2
t I) (13)

where the forward process is qσ (xt|xt−1, x0). Since the

generation of xt depends not only on xt−1 but also on x0. Hence,

it’s a non-Markov chain. As shown in the Figure 8:

Like DDPM, DDIM also uses neural networks ǫθ to predict

noise. Then according to the form of qσ (xt|xt−1, x0), we can use the

following formula to generate xt−1 from xt in the generation phase:

xt−1 = √
αt−1

(
xt −

√
1− αtǫθ (xt , t)√

αt

)

︸ ︷︷ ︸

predictedx0

+
√

1− αt−1 − σ 2
t · ǫθ (xt , t)

︸ ︷︷ ︸

directionpointingtoxt

+ σtǫt
︸︷︷︸

radonnoise

(14)

Where the generation process is divided into three parts: One

is for the prediction of x0. The second is made up of the parts that

point to xt . Third is random noise(ǫθ is the noise independent of

xt). Further define σ as follow:

σ 2
t = η ·

√

(1− αt−1/(1− αt)
√

(1− αt/αt−1) (15)

For Equation 15, consider two cases. When η = 1, at this point

the forward process becomes a Markov chain and the generation

process is the same as DDPM. The other case is η = 0, on this

occasion the generation process is not subject to random noise.

The model in this case is called DDIM. Once the initial random

noise xT is determined, then sample generation for DDIM becomes

a deterministic process.

3 Application of image generation

Micrographic image generation is a process of automatically

generatingmicrographic images using deep learning and generative

model. These images are usually of very high resolution and contain

microstructures of cells, tissues. The research of micrographic

image generation helps to address the challenges of scarcity, quality

issues and lack of data diversity. Traditional image generation

methods have difficulty in capturing subtle textures and diversity

in images. In contrast diffusion models show strong advantages

in these areas. Diffusion models are able to supplement data

deficits by generating new images. Through synthesizing more

images with different lesion types, the diffusion model helps

to train deep learning models to improve automated analysis

in pathology, cytology, and other fields. The application of

diffusion models in microscopic image generation highlights their

powerful generative capabilities, with significant advancements

in both unconditional and conditional generation. The common

conditional information in microscopic image generation are

textual descriptions and image inputs. In Figure 9, it overviews

diffusion-based approaches for generating microscopic and micro-

alike images from three perspectives.

3.1 Unconditional image generation

Histopathological images are the gold standard for diagnosing

many diseases, particularly cancer (51). For rare cancers, diffusion

models can generate new images for examination. Several scholars

have explored DDPM-based histopathological image generation.

For instance, (52) introduced aDDPM-basedmethod for genotype-

guided generation of histopathological images. To enhance the

model’s focus on morphological patterns, input images are first

converted to a uniform color domain using a color normalization

module (53). Additionally, a perceptual priority weighting module

(54) is employed, which emphasizes perceptual components of the

image by applying higher weights to losses at earlier levels and

lower weights at later stages. This approach achieves the generation

of detailed and complex histopathological images, as shown in

Figure 10, and demonstrates superiority over the ProGANmethod.

In recent work (55), Medfusion, a conditional DDPM-based

model, is introduced for medical image generation. The input

image is first encoded by an autoencoder into an 8-times

compressed latent space. In this latent space, the diffusion process

of DDPM and U-Net denoising occurs, followed by decoding back

into image space. In experiments comparing the quality of medical

image reconstruction, the stable diffusionmodel’s autoencoder with

four channels produces artifacts that affect diagnosis. In contrast,

Medfusion’s 8-channel VAE more accurately reconstructs small

structures, demonstrating its superior reconstruction capability.

Additionally, in fundus image generation experiments on the

AIROGS dataset, Medfusion outperforms StyleGAN-3 in terms of

FID, KID, Precision, and Recall.

The cell cycle is a critical phase of the cell life cycle, and

classifying its different stages is essential for understanding cellular

biological processes and disease treatment. However, the mitotic

phase is much shorter than interphase, leading to severe data
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FIGURE 9

Classification of microscopic image generation based on di�usion model. Unconditional Image Generation: (3, 52, 55, 56). Text-condition Image

Generation: (59, 62, 67, 70). Images-condition Image Generation: (24, 73, 78, 82, 85). We use the following abbreviations in the architecture column:

Medfusion, Medical Image Fusion; PathLDM, Pathology Latent Di�usion Model; NASDM, Nuclei-Aware Semantic Di�usion Models;

Di�Infinite(Di�usion-based Infinite Mask-Image Synthesis; ViT-DAE, Vision Transformer-driven Di�usion Autoencoder; RNA-CDM, RNA-Conditional

Di�usion Mode; DDIBs, Dual Di�usion Implicit Bridges.

FIGURE 10

Results of histopathological image generation using the algorithm presented in (52). Reproduced with permission from “Selection of generated

patches with di�usion and ProGAN models” by Puria Azadi Moghadam, Sanne Van Dalen, Karina C. Martin, Jochen Lennerz, Stephen Yip, Hossein

Farahani and Ali Bashashati, licensed under arXiv.org perpetual, non-exclusive license 1.0.

imbalance and reduced classifier performance. To address this,

(56) proposes using DDPM for mitotic phase data augmentation

to balance the number of images at each phase. ResNet is then

used to train a classifier on the original dataset, images generated

by the WGAN-GP model, and the synthetic dataset. As a result,

the M-phase classification metric, PPV, improved from 0.718 to

0.941, while the PPV for G1, G2, and S-phase data showed minimal

difference from the original dataset. These results indicate that
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diffusion model-based data augmentation can effectively enhance

classification model performance.

In (57), a modified DDIM is introduced to synthesize

abnormal leukocyte images for classifier training. To improve

model performance, the U-Net denoising module in DDIM is

replaced by R2U-Net (58), which combines U-Net, RNN, and

residual networks. The synthetic images are evaluated using FID,

and the improved DDIM outperforms GAN-generated images in

both quality and diversity.

3.2 Conditional image generation

In contrast to unconditional generation, conditional generation

refers to the control of the output image by introducing additional

conditional information. Conditional generation overcomes the

randomness and uncontrollability of unconditional generation.

The common types of conditions are labels, images, text, and

others. This section focuses on text-condition and image-condition

image generation.

3.2.1 Text-condition image generation
In (59), a text-guided diffusion model GLIDE (60) (Guided

Language to Image Diffusion for Generation and Editing) is

proposed for the synthesis of histopathological images. It learns to

associate similar text and image representations using CLIP, and

create a link between these two modalities. While GLIDE without

CLIP guidance results in higher quality images, however, CLIP

guidance improves synthetic images. This model has surpassed

the performance of another up-to-date generative model, DALL-E

(61).

The work of (62) proposes an effective text-conditional

latent diffusion model, the PathLDM model. Pathology reports

were first summarized using GTP-3.5 (63) and leveraged as

text conditions. PathLDM mainly consists of Variable Auto-

Encoder (VAE), U-Net Denoiser and Text Encoder with additional

refinements. The SSIM of the reconstructed images is greatly

improved by using a VAE with a downsampling factor of 8. The

application of fine-tuned U-net also further improves the generated

results. What’ more, To embed sufficiently medium-length text

sequences, the OpenAI CLIP (64) is replaced with PLIP (65). As a

consequence, the FID is improved from 48.14 to 7.64, and text-to-

histopathology image generation is achieved on the TCGA-BRCA

dataset (66).

The dermatological datasets available for labeled training are

limited by issues such as privacy. Therefore, text-guided image

generation for dermatological diseases based on stable diffusion

model is proposed in (67). In order to separate out the low quality

images generated, a generation pipeline is presented. The data

generated by the stable diffusion model is first filtered out non-

skin images via a binary EfficientNet classifier (68). A pre-trained

ensemble model is then used to predict skin disease labels. Finally

the correctly labeled images can be utilized to enhance the initial

dataset. At last, the classifier is trained on real dataset, hybrid

dataset, and synthetic dataset using convolutional neural network.

The experimental results show an improvement in the accuracy

of the classifiers trained on the hybrid dataset. Barriers to sharing

labeled medical datasets are minimized without compromising

classification performance.

Cervical cytology is a diagnostic method to determine cervical

diseases by observing the morphological structure of cervical

cells (69). Generating synthetic images with cervical cytological

features using the fine-tuned stable diffusion model Dreambooth

presented by (70). Thereby assisting the physician in the diagnosis

and analysis of cervical disease. The model is fine-tuned using

various regularization images, training images and step counting

configurations (71). Dreambooth has two main processes: The low-

resolution image is first created by a text-guided diffusion model.

The super-resolution diffusion model is then used to generate

higher quality images (72). Experimental results show that the fine-

tuned stable diffusion model is capable of generating synthetic

images with cervical cytological features.

3.2.2 Image-condition generation
The work of Shrivastava and Fletcher (73) introduces a method

for generating synthetic images using DDPM, conditioned on

segmentation masks of the nuclei. To ensure consistency in

staining intensity and color distribution across tissue slice images,

the staining is first normalized. During the denoising process,

an improved U-Net architecture (74) is employed, embedding a

multilayer spatial adaptive normalization operator in the decoder

to retain and communicate semantic information throughout

the generation process. Additionally, classifier-free guidance (75)

is used to adjust the bootstrap weights of the conditional and

unconditional generation distributions, enhancing image features.

The synthetic images generated for different types of nuclei

are shown in Figure 11. The Fréchet Inception Distance (FID)

(76) and Inception Score (IS) achieved values of 15.7 and 2.7,

respectively, outperforming GAN-based generative models and

Morph-Diffusion models (52).

Human Epidermal growth factor Receptor 2 (HER2) is an

important tumor marker that is closely associated with the

development and prognosis of breast cancer (77). Due to the

large quantitative differences between the different HER2 tumor

subtypes, which results in a category imbalance in the training data.

A generative model-based semantic conditional synthesis of HER2

data is presented in (78). To compensate for different HER2 tumor

subtypes by modifying the label mask. HER2 histopathological

images were synthesized using three different generative models,

including GAN-generated (79), diffusion model (80) and diffusion

model-inpainted. Furthermore, the synthetic data is added to the

original data for tumor segmentation. when adding 100% synthetic

images, the diffusion-generated images improved the Dice score

(81) to 0.854. Outperforming the other two methods and attains

the optimal indicators.

Aversa et al. (82) introduces a method for generating large-

size, high-quality histopathological images called DiffInfinite.

DiffInfinite uses a semi-supervised learning approach based on a

joint Vector Quantised-Variational AutoEncoder(VQ-VAE) with a

denoising diffusion implicit model. The image passes through the

VQ-VAE encoder to the low-dimensional potential space, where

forward diffusion is performed. Then, it is decoded back into pixel

space (80). DiffInfinite utilizes a parallel random patch diffusion
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FIGURE 11

Synthetic images generated from masks for each type of nuclei, as described in (73). Reproduced with permission from “Qualitative Analysis” by

Aman Shrivastava and P. Thomas Fletcher, licensed under CC BY 4.0.

method to generate large size mask images. Experiments on the

lung tissue datasets synthesize 2048 × 2048 px and 512 × 512

px images. The Improved Recall metrics (83) reach 0.98 and

0.94, respectively.

In cancer, abnormal expression of certain genes can promote

the proliferation, invasion and metastasis of tumor cells, which

leads to aberrant tissue morphology (84). To this regard, Carrillo-

Perez et al. (85) proposes the RNA-CDM architecture, a gene

expression-guided for multi-cancer RNA-to-image synthesis based

cascade diffusion model. To generate RNA-Seq (86) embeddings,

the expression of 17,655 genes are mapped to the latent space via

the β-VAE architecture (87). The RNA-CDM architecture consists

of twoDDPMs. The first DDPMworks with β-VAE architecture for

multi-cancer synthesis of rna to 64 × 64 images. The other DDPM

acts as a super-resolution model. A high resolution of 256 × 256

image is generated. Experiments on the dataset TCGA accurately

synthesize 50k tiles with 10, 000 per cancer type. In addition, they

used HoverNet (88) to detect different cell types in synthetic data.

Demonstrated that the RNA-CDM architecture captures different

morphological features of each cancer type.

Xu et al. (24) introduces visual transformers (ViTs) (89)

into diffusion self-encoders (90), which are used to replace

convolutional neural networks as semantic encoders. In the first

stage, an input image is encoded into a semantic representation

by the ViT. This representation is taken as the condition for the

conditional DDIM to decode the noisy image. In the second stage,

a latent DDIM is trained to learn the distribution of semantic

representations of data. Then, feed it to the conditional DDIM

along with randomly initialized noisy image to generate new

histopathology samples. The experimental evaluation results FID

on NCT - CRC, PCam, Chaoyang datasets are 12.14, 13.39, 36.18

respectively. Ultimately, the synthetic images are mixed with real

images to train the classifier and the performance is improved.

Traditional staining of microscope images involves a physical

process that is time-consuming. Virtual staining technology, which

uses computational methods, can replace physical staining (91). It

compared the performance of Diffusion Models and CycleGANs in

virtual staining, translating slice-free microscope images (SFM) to

H&E images. The Dual Diffusion Implicit Bridges (DDIB) model, a

variant of the diffusionmodel, was used to achieve this [135]. DDIB

combines implicit generation and denoising diffusion techniques

to improve generation efficiency while maintaining high-quality

output. However, the translation results on the MUSE-to-H&E

and FIBI-to-H&E datasets revealed that DDIB suffers from feature

omission, and CycleGAN performs better in retaining the semantic

features of the original image. Additionally, DDIB underperforms

compared to CycleGAN in external critic accuracy and

FID metrics.

3.3 Summary

From the above literature summary, it is clear that diffusion

models have a wide range of promising applications in image

generation. We have listed the datasets used for each model.

Whether histopathological images, cellular images or skin cancer

images, high quality images are produced. In addition, The

diffusion model outperforms the GAN-based model in terms of

quality of the generated microscopic images, image diversity, and

model stability.
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Classification of microscopic image segmentation based on di�usion model. Supervised Learning (93, 96, 98), (100), Self-supervised Learning

(104, 108, 110), Unsupervised Learning (112, 113). We use the following abbreviations in the architecture column: MedSegDi�, Medical Image

Segmentation with Di�usion Probabilistic Model; MedSegDi�-V2, Di�usion-based Medical Image Segmentation with Transformer; DermoSegDi�, A

Boundary-aware Segmentation Di�usion Model; GenSelfDi�-HIS, Generative Self-Supervision Di�usion Model; DARL, Di�usion Adversarial

Representation Learning.

4 Application of image segmentation

Image generation not only provides training data, but

can also be directly combined with segmentation models

to improve segmentation accuracy (92). Image segmentation

requires a lot of labeled data. While labeling high quality

medical images, microscopic images is very expensive and time

consuming. The images generated by the diffusion model can

be used with real data to train image segmentation models.

In addition, diffusion models can be combined with self-

supervised learning or weakly supervised learning. Thus, effective

image segmentation can be performed without fully labeled

data. The reverse denoising process of the diffusion model can

also be used as an unsupervised learning method. Extracting

potential structural information from unlabeled images and

providing assistance for segmentation tasks. The combination

of self-supervised learning methods and diffusion models can

significantly improve the effectiveness of segmentation models

in the case of scarce labeled data. As shown in the Figure 12,

this section will introduce the application of diffusion model

on image segmentation from supervised, self-supervised, and

unsupervised learning.

Moreover, standardized segmentation algorithms can help

reduce subjective factors and human errors in diagnosis.

This section covers image segmentation algorithms based on

diffusion models.

4.1 Di�usion Model with supervised
learning

Microscopic image segmentation is a complex yet essential

task. In (93), a DDPM-based segmentation model, MedSegDiff,

is introduced for optical cup segmentation. MedSegDiff

employs an improved ResUnet (94) in the denoising process

and introduces dynamic conditional coding to better leverage

medical image features. At each time step, the condition

information is fused with the current state using an attention-

like mechanism, allowing the conditional information to

have varying effects at different time steps. To address high-

frequency noise generated during this fusion, the Feature

Frequency Parser (FF-Parser) is proposed, which removes

high-frequency noise by modulating the spectrum in the

frequency domain using 2D FFT. Segmentation results on the

REFUGE-2 dataset (95) show that MedSegDiff outperforms most

baseline models.

The main structure of MedSegDiff is based on the

UNet network (93). Given the recent success of visual

transformers in medical image segmentation, the authors

further improved MedSegDiff by proposing the MedSegDiff-

V2 model, which combines a transformer-based UNet with

DDPM (96). To reduce diffusion variance, the model uses two

conditioning methods: anchoring condition, which integrates

segmentation features into the diffusion model encoder, and
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FIGURE 13

Visual comparisons of di�erent methods on the ISIC 2018 skin lesion dataset. Reproduced with permission from “Visual comparisons of di�erent

methods on the ISIC 2018 skin lesion dataset. Ground truth boundaries are shown in green, and predicted boundaries are shown in blue” by Afshin

Bozorgpour, Yousef Sadegheih, Amirhossein Kazerouni, Reza Azad and Dorit Merhof, licensed under CC BY 4.0.

Spectrum Space Transformer (SS-Former), which learns the

interaction between noise and semantic features. The Dice

coefficient and IoU for optical cup segmentation in fundus

images reach 87.9 and 80.3, respectively, indicating that

MedSegDiff-V2 outperforms both MedSegDiff and previous

state-of-the-art methods.

Skin lesions often have complex shapes and irregular

borders, making accurate boundary detection crucial for precise

segmentation (97). To enhance segmentation accuracy and

precision, a boundary-aware diffusion model, DermoSegDiff,

is proposed (98). DermoSegDiff introduces a boundary-aware

module into the diffusion process, where the lesion area’s

boundary information is detected in real-time using a distance

transform function (99). This boundary information guides pixel

adjustments during the generation process to ensure clear and

accurate boundaries. Additionally, a loss function incorporating

boundary information is designed to focus on both region

segmentation accuracy and boundary clarity. An improved

denoising network architecture is also presented to accelerate

convergence. As shown in Figure 13, DermoSegDiff effectively

captures complex boundaries compared to the baseline state-of-

the-art methods.

Segmentation of histopathological whole-slide images presents

challenges due to data scarcity and annotation difficulties.

(100) proposed a cascade diffusion model conditional on

segmentation label masks. In the first stage, an unconditional

diffusion model generates synthetic images, which are then

segmented using a UNet model to obtain segmentation masks.

In the second stage, a conditional diffusion model uses the

synthetic image segmentation mask and noise image from

the previous stage to generate the final synthetic image.

This image is used to expand the dataset, and performance

is evaluated using nnUNet (101) segmentation. The results

show that the conditional diffusion model outperforms the

unconditional model in image segmentation, and segmentation

models fine-tuned with synthetic images show significant

performance improvements.

4.2 Di�usion model with self-supervised
learning

In medical diagnosis, pathology image segmentation is critical.

Traditional segmentation methods (102, 103) often rely on fully

supervised learning, which requires large labeled datasets. Self-

supervised learning offers advantages in reducing labeling costs,

and DDPM typically outperforms GANs and VAEs in image

quality. Therefore, Purma et al. (104) combines DDPM with self-

supervised learning for pre-training on unlabeled data, followed by

fine-tuning with a UNet for histopathological image segmentation.

To address unbalanced data, multiple loss functions, including

structural similarity (SS) loss (105) and focal loss (FL), are

introduced. The results show that GenSelfDiff-HIS significantly

improves segmentation performance compared to other self-

supervised and supervised learning methods.

Cell instance segmentation is a key task in biomedical

image analysis. The aim is to accurately segment overlapping

or touching cells into separate instances. The symmetry issue is

a major challenge because models have difficulty distinguishing

and segmenting similarly shaped cell (106, 107). Hereby, an

approach to cell instance segmentation based on the diffusion

model is proposed (108). With the introduction of Spontaneous

Symmetry Breaking(SSBs) in the diffusion process, the model is

capable of better distinguishing and segmenting symmetric cell

instances. The model parameters are optimized by combining

traditional segmentation losses (e.g., cross-entropy loss, Dice

loss) and losses specific to symmetry breaking. The experimental

results on fluorescent cell data (109) validate the effectiveness and

superiority of the proposed method in dealing with overlapping

cell segmentation.

In addition to the studies mentioned earlier, Kim et al. (110)

proposed Diffusion Adversarial Representation Learning (DARL),

which combines a diffusion model with a self-supervised learning

method. The DARL model comprises diffusion and generation

modules along with a discriminator, incorporating a switchable

version of SPADE (79) in the generation module. The model’s

training process involves two main paths: the diffusion path
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FIGURE 14

Classification of Di�usion based model Applications.Including image Denoising (26, 119), image Classification (121), image Reconstruction

(122, 125, 129), image Super-Resolution (131, 133). We use the following abbreviations in the architecture column: MDDA, Multiscale Di�usive and

Denoising Aggregation Mechanism; Di�MIC, Dual-Guidance Mechanism; ArtiFusion, Artifact Restoration with Di�usion Probabilistic Models; DISPR,

Di�usion-Based Image Shape Prediction and Reconstruction; Di�useIR, Di�usion Models for Isotropic Reconstruction of 3D Microscopic Images;

EMDi�use, Expectation-Maximization Di�usion Model.

and the adversarial path. The diffusion path focuses on learning

global and local features of an image, providing a rich feature

representation for subsequent segmentation tasks. The adversarial

path, using PatchGAN (111), ensures that the model generates

realistic segmentation results. The DARL model has been applied

to segment the external retinal image dataset, where it outperforms

existing unsupervised and self-supervised methods.

4.3 Di�usion model with unsupervised
learning

Traditional skin lesion detection requires large amounts of

annotated data, which is often time-consuming, costly, and prone

to subjective differences that can affect the model’s generalization

ability. The SANO model addresses this by combining a diffusion

model with a score-based approach to improve the detection and

localization accuracy of skin lesions using unsupervised learning

(112). This approach reduces the time and cost associated with

data labeling and achieves better results in hand eczema detection

compared to other unsupervised methods.

Shao et al. (113) introduced a semi-supervised cell nucleus

segmentation framework based on unsupervised pre-training.

This framework consists of three main steps: first, unsupervised

pre-training on a large number of unlabeled images using a

latent diffusion model; second, aggregation of feature mappings

from different denoising blocks using a transformer-based

decoder (114), with pre-trained diffusion models serving as

feature extractors to generate pseudo-annotations and extend the

labeled dataset; and finally, integrating predictions from multiple

models using collaborative learning (115) to further enhance

segmentation performance. The experiments demonstrated

significant improvements in cell nucleus segmentation compared

to semi-supervised and supervised baselines.

4.4 Summary

The section above outlines the application of diffusion model-

based image segmentation in microscopic and micro-alike images,

covering relevant references, segmentation models, datasets, and

other key information. Most DDPM-based diffusion models utilize

self-supervised or unsupervised training to minimize reliance on

manual labeling, thereby reducing the risk of overfitting associated

with small labeled datasets. Moreover, the results consistently show

significant improvements compared to traditional methods.

5 The di�usion model for other
applications

The successful application of the diffusion model as a powerful

generative model for image generation and segmentation lays the

foundation for other tasks. Its main strengths include denoising,
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FIGURE 15

Dual-guidance mechanism of Di�MIC. Reproduced with permission from “Overview of our Di�MIC framework” by Yijun Yang, Huazhu Fu, Angelica I.

Aviles-Rivero, Carola-Bibiane Schönlieb and Lei Zhu, licensed under CC BY 4.0.

generating high-quality details, and data enhancement. These

advantages can be useful in several application scenarios, in fields

such as image translation, self-supervised learning, target detection,

and medical image analysis. As the diffusion model continues

to evolve, it will demonstrate its powerful generative capabilities

and versatility in more applications. As illustrated in Figure 14,

it will present other application areas of diffusion model on

microscopic images.

5.1 Image denoising

Optical Coherence Tomography (OCT) is a high-resolution

imaging technique prone to optical noise and interference patterns,

such as speckle noise. To address this issue, an unsupervised

denoising approach using DDPM is proposed in (26). During pre-

processing, a self-fusion method (116) is applied to obtain a clearer

input image. Subsequently, DDPM gradually denoises the image

while controlling the denoising step with a time signal to prevent

excessive smoothing. This method outperforms the Pseudo Modal

Fusion Network (PMFN) (117) in both noise suppression and

detail retention.

Adversarial samples can mislead deep learning models by

making small perturbations to the original image, causing

classification errors. This poses significant safety concerns,

particularly in sensitive applications like dermatological testing

(118). To counteract this, Wang et al. (119) introduces the Multi-

scale Diffusion and Denoising Aggregation (MDDA) mechanism,

which effectively defends against and reverses adversarial samples

in skin cancer images. The process involves multi-scale image

processing to preserve structural features, followed by adversarial

noise removal via a diffusion model. The denoised image is then

fused with images from neighboring scales through an aggregation

process. Experimental results demonstrate that MDDA offers

strong defense against various adversarial attacks, outperforming

other defense methods.

5.2 Image classification

With the increasing use of deep learning in medical image

analysis, accurate classification of medical images has become

crucial (120). Traditional classification methods face challenges,

such as variations in image quality and limited labeled data,

especially with complex medical images. To address these

challenges, Yang et al. (121) introduced the Dual-Guidance

Diffusion Network for Medical Image Classification (DiffMIC).

This approach enhances classification accuracy and robustness

through a Dual-Guidance (DG) mechanism. As illustrated in

Figure 15, DiffMIC leverages two types of guidance: label-based

supervision and diffusion information from unlabeled data. The

core of DiffMIC is a two-branch network architecture. The first

branch is a conventional CNN that extracts image features and

performs classification, while the second branch is a diffusion

network that learns implicit structural information from unlabeled

data. By fusing information from both branches, DiffMIC achieves

a deeper understanding and more accurate classification of

medical images. Additionally, DiffMIC introduces Maximum

Mean Discrepancy (MMD) regularization to minimize differences

between the feature distributions of labeled and unlabeled data.
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Experimental results demonstrate that DiffMIC outperforms

existing mainstream methods, showing superior accuracy and F1

scores on publicly available micro-alike images.

5.3 Image reconstruction

Histological images often suffer from various artifacts, such

as uneven staining, noise, and refraction artifacts, which can

impede pathologists’ analysis and diagnosis. Traditional image

restoration methods typically rely on labeled training data, which

is costly and difficult to obtain. To address this, He et al. (122)

proposed ArtiFusion, an unsupervised diffusion-based model for

histological artifact restoration. ArtiFusion generates images with

artifacts through a diffusion process and then restores them

via a reverse process, relying solely on artifact-free images. The

model replaces the U-Net network with the Swan-Transformer

denoising architecture (123), and introduces a time token within

the architecture, enabling the model to accurately recognize

and process images with varying noise levels. Compared to

CycleGAN (124), ArtiFusion demonstrates superior performance

across several metrics, including SSIM, PSNR, FSIM, and SRE.

Microscope imaging techniques are widely used in the

biomedical field, but they typically provide only two-dimensional

images of samples. Reconstructing the three-dimensional (3D)

structure of biological samples often requires multi-angle imaging

or specialized 3D microscopic techniques, which can be complex,

expensive, and time-consuming. To address this, Waibel et al.

(125) proposed DISPR, a diffusion-based shape prediction model

that reconstructs 3D cell shapes from 2D microscope images.

By training five independent DISPR models simultaneously, the

stochastic nature of the diffusion model allows for the prediction

of five different 3D cell images per 2D input. DISPR achieves a

lower relative volume error compared to SHAPR (126) and SHAPR

with topological loss (127), and also outperforms other models

in surface area error, surface roughness error, and relative surface

curvature error.

In medical imaging, high-resolution 3D images often face

anisotropic resolution challenges, where cross-sectional images

have higher resolution than vertical images (128). To address

this, Pan et al. (129) introduced DiffuseIR, an unsupervised

diffusion model designed to improve isotropic super-resolution

reconstruction. DiffuseIR incorporates Sparse Spatial Condition

Sampling (SSCS) during the inverse diffusion process to guide

the denoising process by exploiting spatial structure conditions,

thereby improving accuracy and reducing blurring and distortion

due to anisotropy. To address texture incoherence, a Refine-in-

loop Strategy is integrated into SSCS, allowing the model to

correct and reduce errors in each reconstruction cycle based on the

previous round’s results. Compared to conventional methods, such

as bicubic interpolation, and supervised super-resolution methods,

DiffuseIR produces 3D images with superior quality.

5.4 Image super-resolution

Super-resolution microimaging enables researchers to

observe structures smaller than the resolution limits of

conventional microscopes (130). Saguy et al. (131) proposed

a diffusion model-based method for generating high-quality

super-resolution microscopic images. To ensure the synthetic

images retain the features and structure of the training data,

cross-correlation scores between each generated image and

augmented patches from the training set are calculated. The

image with the highest cross-correlation score is selected for

evaluation. Additionally, Content-Aware Recovery (CARE) is

trained using diffusion-based and mathematical model-based

microtubule images (132), validating the superior reconstruction

quality of the diffusion-based model. Importantly, this diffusion-

based super-resolution method generalizes across different

types of image data, a feat not possible with traditional

mathematical models.

Electron microscope (EM) imaging often encounters noise,

particularly in low-dose imaging, and requires overcoming

numerous technical challenges to obtain high-quality ultra-

structural images. To address this, Lu et al. (133) introduced

EMDiffuse, an innovative deep learning method based on diffusion

models, aimed at enhancing the quality of EM images through

denoising and image enhancement. In the preprocessing stage,

ORB (134) and optical flow estimation (135) are used to align

the original image with the real reference image. EMDiffuse

employs a U-Net architecture with a global attention layer between

the encoder and decoder to capture global information and

dependencies (28). EMDiffuse excels in tasks such as image

denoising, super-resolution, and reconstruction for microscopic

images. As shown in Figure 16, EMDiffuse-n preserves the

resolution and ultra-structure of microscopic images during

denoising, outperforming other algorithms like CARE28, RCAN38,

and PSSR23 in distinguishing organelles such as mitochondria and

cell vesicles. EMDiffuse-r successfully improves image resolution

from 6 nm to 3 nm in super-resolution tasks. Moreover,

EMDiffuse demonstrates versatility by performing well across

different datasets, such as mouse cerebral cortex, liver, heart,

and bone marrow. The model also supports 3D microscopic

image reconstruction, addressing anisotropic resolution issues.

VEMdiffusion-i achieves isotropic resolution in vEM imaging by

generating an intermediate layer between two anisotropic volumes,

increasing imaging speed by a factor of 5. VEMdiffusion-a further

enables isotropic volume reconstruction using only anisotropic

training data, with VEMdiffusion-i trained along the z-axis and

VEMdiffusion-a along the y-axis of the isotropic volume.

5.5 Summary

In summary, we conclude the applications of diffusion models

in the different fields, including denoising, reconstruction, super-

resolution, classification, and translation of images. The flexibility

and powerful generative capabilities of diffusion model have shown

its potential for a wide range of applications. Each task is an

improvement of the base diffusion model with the use of existing

technology. Moreover, remarkable results have been achieved on

both microscopic and microscopic-like images. Nevertheless, the

diffusion model fails to outperform the Gan-based model in terms

of image translation. Hence, the application of diffusion model in

this area requires further research.
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FIGURE 16

Left: Comparison of the denoising ability of EMDi�us-n with CARE, PSSR and RCAN. Right: Comparison of EMDi�us-r super-resolution with CARE,

PSSR and RCAN. Top-right of each panel is the Fourier power spectrum. Adapted with permission from “EMDi�use exhibits excellent denoising

capability and generates images with high-resolution ultrastructural details” by Chixiang Lu, Kai Chen, Heng Qiu, Xiaojun Chen, Gu Chen, Xiaojuan Qi

and Haibo Jiang licensed under CC BY 4.0.

6 Method analysis and potential

Diffusion Models have performed well in the field of image

generation and analysis. However, there are still some limitations

and challenges. Following are the major limitations of Diffusion

Models and their impact in applications: High computational cost

of training: Diffusion models require learning complex probability

distributions over multiple steps of diffusion and inverse diffusion.

Each step requires training a large number of parameters. This

leads to longer training times and higher hardware requirements.

Especially when generating high resolution images, it needs

strong GPU/TPU support. It is not friendly enough for small

research institutions or users with limited resources, restricting its

popularity and application.

The sampling process is slow: The generation of images requires

a long single generation time, especially in high-resolution tasks.

Although some of the methods (e.g., DDIM, FastDPM) try to speed

up sampling, fast sampling usually reduces the generation quality.

This makes it difficult to apply diffusion models to real-time tasks

or scenarios where results need to be generated quickly.

Highly data-dependent: Diffusion models require large, high-

quality training data to learn complex distributions. Insufficient

samples may result in degradation of the quality of the generated

images and also Out-of-Distribution (OOD) errors. In scarce data

scenarios, such as the microscopic images studied in this paper, the

model performance may be less than optimal.

This section discusses the advantages and limitations of the

DDPM, DDIM, and SANOmodels, respectively.

6.1 Analysis of DDPM methods

As highlighted in the review, DDPM is one of the most widely

used diffusion models, particularly in micrography. DDPM has

shown great potential in image generation, segmentation, and

super-resolution. Its core idea is to gradually refine the generated

image through multiple denoising steps, enabling better recovery

of details and high-frequency information. DDPM progressively

reduces noise during the inversion process, optimizing generation

quality at each step, resulting in detail-rich images. For instance,

(55) used DDPM to synthesize histopathological images of colon

cancer and fundus images, achieving FIDs of 30.03 and 11.63,

respectively. Similarly, DDPM synthesized cells in the mitotic M

phase with a PPV of 0.941 (57). The stability of the denoising

process, where each step builds on the previous one, contributes

to a more steady training process. Additionally, DDPM avoids

the instability associated with adversarial training by relying

solely on maximum likelihood estimation. Furthermore, DDPM

can train on unlabeled data, making it suitable for large-scale

unsupervised learning.

6.1.1 Limitations
Despite its advantages, DDPM has some limitations. Both the

forward and reverse processes involve multiple iterative steps,

each requiring complex calculations, which demand significant

computational resources and time (136). Additionally, DDPMs

typically rely on deep CNNs (e.g., UNet) for noise prediction and

denoising, which contain numerous parameters and computational

operations (137). These networks have complex structures, leading

to long training and inference times, making real-time applications

challenging. Moreover, training high-quality generative models

generally requires large-scale datasets.

6.2 Analysis of DDIM methods

Unlike DDPM, DDIM is capable of generating high-quality

images in fewer steps, significantly reducing generation time. The

key innovation of DDIM is the introduction of deterministic

mapping, which allows for more efficient sampling without relying

on random noise during the process. This deterministic approach
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enables more accurate restoration of image details, improving the

quality and stability of the generated images.

For example, (82) combined a VQVAE encoder with DDIM,

achieving image evaluation indices of IR and IP at 0.94 and 0.7,

respectively. This method not only enhances sampling speed but

also maintains high image quality. Additionally, DDIM was used

with Vision Transformers (ViT) to synthesize histopathological

images of colorectal cancer and breast lymphoid sections (24),

resulting in FIDs of 13.39 and 36.18, respectively, indicating a close

match to the real data distribution.

6.2.1 Limitations
Although DDIM reduces the number of generation steps,

each step remains computationally intensive, requiring substantial

computational resources. The deterministic denoising process

introduces new hyperparameters, which may necessitate extensive

experimentation and debugging to optimize (138). Additionally,

DDIM’s performance is highly dependent on the distribution of

the training data, potentially limiting its generalization ability

in scenarios with significant variations in data distribution.

The deterministic nature of DDIM can also limit the diversity

of generated results compared to stochastic processes (139).

Despite the increase in generation speed, further optimization is

required to meet the demands of real-time applications. Scalability

remains a challenge for processing large-scale data and high-

resolution images, highlighting the need for continued research

into optimization strategies.

6.3 Analysis of SDEs methods

Compared to DDPM and DDIM, Stochastic Differential

Equations (SDEs) produce higher quality and more detailed images

by optimizing the noise addition and removal processes. In terms

of generation efficiency, SDEs improve sampling steps, significantly

reducing computation and increasing efficiency. SDEs also enhance

stability and robustness during training, minimizing issues such as

pattern collapse and gradient vanishing. Noise optimization further

improves the model’s robustness to input noise, generating more

consistent results. For instance, a Dice score of 0.358 was achieved

in hand eczema detection using the SDEs model combined with

unsupervised learning (112).

6.3.1 Limitations
However, SDEs still demand substantial computing resources

and have high memory requirements. The performance of the

generated models is heavily dependent on the quality and diversity

of the training data. In cases of insufficient or low-quality data, the

effectiveness of SDEs may be compromised.

7 Conclusion and future work

This paper summarizes the methodologies of diffusion

model-based analysis for micrographic and micro-alike images.

We presented three diffusion models–DDPM, DDIM, and

SDEs–and reviewed their applications in microscopic image

generation, segmentation, denoising, classification, super-

resolution, and reconstruction. Additionally, we compared

the strengths and weaknesses of these models in terms of

output image quality, generation efficiency, and model stability

and robustness.

While diffusion models are a novel and promising generative

approach, challenges such as multi-step training and sensitivity

to noise still hinder their broader application in microscopic

image analysis. The issues discussed in chapter six remain

unresolved. Recent advancements in optimization algorithms

and parallel computing techniques offer potential solutions

to improve the efficiency of diffusion models, particularly in

achieving real-time microscopic image generation (15). We

discuss potential future research directions for diffusion model

as follows.

7.1 Acceleration algorithm

The complex computational process is a significant challenge

for diffusion models compared to other generative models (140,

141). Pruning and quantization are popular model compression

techniques designed to reduce computational complexity and

memory requirements (142, 143). The main focus of improvements

in diffusion models is to develop more efficient training and

generation algorithms. By applying pruning, quantization, and

other techniques, the model can be compressed to become more

lightweight and suitable for practical applications.

7.2 Adaptive noise scheduling

In micrography, which involves studying and analyzing tiny

structures, high-quality images are essential. Optimizing the

noise addition and removal process in diffusion models can

significantly enhance the quality of generated images. Adaptive

Noise Scheduling dynamically adjusts the noise level based on

the quality of the generated image and feedback from the model

(144). A feedback mechanism calculates quality metrics (e.g.,

reconstruction error, perceptual loss) and adjusts the noise size for

subsequent steps, allowing for more flexible control of noise. This

approach prevents excessive or insufficient noise, improving detail

and overall image quality.

7.3 Improving the generalization of models

The generalization ability of a model is crucial for

its performance in real-world applications. Enhancing

generalization reduces overfitting and improves accuracy on

unseen data. This can be achieved through several strategies:

expanding the training data using various data augmentation

techniques, applying transfer learning to utilize pre-trained

models for new tasks, and training the model on multiple

related tasks simultaneously to boost generalization and

generation quality.
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