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Background: Abnormal lipid metabolism in chondrocytes, especially

arachidonic acid (AA) metabolism, has attracted considerable attention in

promoting osteoarthritis (OA) progression. However, the metabolic regulation

of chondrocytes in OA remains to be investigated.

Methods: Bulk RNA sequencing (RNA-seq) data and single-cell RNA sequencing

(scRNA-seq) data of human knee cartilage were downloaded from public

databases. Gene set variation analysis (GSVA) and weighted correlation

network analysis (WGCNA) were used to explore functional regulation and

gene expression characterization. A reference gene set from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database was used to validate

metabolic changes. CellChat analysis was performed to investigate the

communication among osteoarthritic chondrocytes. Human immortalized

chondrocytes were stimulated with macrophage migration inhibitory factor

(MIF), then quantitative real-time PCR (qPCR) and western blot (WB) analysis

were used to detect transcription or translation levels of genes. Enzyme linked

immunosorbent assay (ELISA) was used to measure AA content. Cartilage

from OA patients was collected for immunohistochemistry (IHC) to validate

protein expression.

Results: Functional analysis revealed significant activation of the AA metabolic

pathway was significantly enriched in the cluster of proliferative chondrocytes

(ProCs). CellChat analysis indicated that the incoming signals of MIF increased

in ProCs, and the expressions of extracellular signal-regulated kinase (ERK)

and phospholipase A2 group IVA (PLA2G4A) were upregulated. Moreover,

functional analysis showed that the ERK pathway was enriched in ProCs.

Cell experiments indicated MIF stimulation elevated phospho-ERK (p-ERK) and

PLA2G4A expression and AA content. IHC showed p-ERK and PLA2G4A were

significantly activated in OA cartilage. MIF also upregulated interleukin 1β (IL1B)

and matrix metalloproteinase 13 (MMP13) expression.

Conclusion: Our study shows that MIF stimulation of chondrocytes can

activate the ERK/PLA2G4A signaling pathway and increase AA production.

ProCs located in the proliferative layer of cartilage are likely the main cells
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executing this mechanism. Therefore, targeting and inhibiting MIF signaling in

chondrocytes, especially in ProCs, could be a novel strategy for the prevention

and treatment of OA.

KEYWORDS

MIF, arachidonic acid, osteoarthritis, chondrocyte, bulk RNA sequencing, single-cell
RNA sequencing

Introduction

Osteoarthritis (OA), a chronic inflammatory disease that affects
the joint tissue, is the leading cause of physical disability in
adults (1). OA involves various pathological changes, including
structural degradation and dysfunction of articular cartilage
(2, 3). In recent years, several studies have indicated that
abnormal chondrocyte metabolism resulting from inflammatory
microenvironment changes is an important factor in cartilage
degradation (4). The metabolism of healthy chondrocytes regulates
a delicate balance between the breakdown and production of the
cartilage matrix, which is crucial for facilitating the self-repair
of cartilage to maintain structure integrity (5). However, when
this balance is disturbed, such as dysregulation of amino acid
metabolism, dysfunction of mitochondrial energy metabolism, and
disturbances of lipid metabolism, it can facilitate the progression of
OA (6–8). Therefore, it is important to investigate the metabolic
regulatory mechanisms related to pro-inflammatory processes in
chondrocytes.

Recent studies have revealed that the inflammatory cascade
in chondrocytes of patients with OA is linked to the metabolism
of lipid mediators, with arachidonic acid (AA) being a prominent
pro-inflammatory mediator (9). It has been demonstrated that
metabolites of AA, such as prostaglandins and leukotrienes, play
essential roles not only in acute inflammation, such as sepsis, but
also contribute to the inflammatory response of OA. However,
there is currently limited research on the specific characteristics
of AA metabolism in chondrocytes of OA. Phospholipase A2
group IVA (PLA2G4A) is recognized as a key regulator in AA
metabolism that initiates AA metabolism. It has been reported
that macrophage migration inhibitory factor (MIF)-induced
activation of extracellular signal-regulated kinase (ERK) signaling
upregulates the expression of PLA2G4A in fibroblast cell line,
NIH/3T3., thereby promoting AA metabolism (10). However,
little has been reported on the expression and regulation of this
pathway in osteoarthritic chondrocytes. In addition, osteoarthritic
chondrocytes have been classified into various subtypes, including
proliferative chondrocytes (ProCs), pre-hypertrophic chondrocytes
(preHTCs), hypertrophic chondrocytes (HTCs) chondrogenic

Abbreviations: OA, osteoarthritis; AA, arachidonic acid; GO, gene ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes; ECM, extracellular
matrix; GSVA, gene set variation analysis; WGCNA, weighted gene
co-expression network analysis; PPI, protein-protein interaction; ProCs,
proliferative chondrocytes; preHTCs, pre-hypertrophic chondrocytes; CPCs,
cartilage progenitor cells; ECs, effector chondrocytes; HomCs, homeostatic
chondrocytes; PGE2, prostaglandin E2.

progenitor cells (CPCs), homeostatic chondrocytes (HomCs),
fibrocartilage chondrocytes (FCs), regulatory chondrocytes
(RegCs), and so on (11). However, metabolic regulation at the
level of OA chondrocyte subpopulations is currently unknown.
Additionally, previous bioinformatics analyses on OA primarily
focused on identifying hub genes in synovial and cartilage
tissues (12), as well as identifying key pathways associated with
inflammation (13). However, the role of metabolic regulation in
OA has been rarely analyzed. Thus, it is necessary to investigate the
metabolic signatures associated with the osteoarthritic progression
by integrating and analyzing RNA sequencing (RNA-seq) data.
Due to the heterogeneity of OA, there are variations in clinical
and biochemical characteristics of OA patients (14), leading to
significant uncertainties in the outcomes of analysis. Therefore, the
analysis of a substantial number of samples is an effective way to
alleviate such uncertainties (15). Collectively, integrated analysis of
multiple OA-related RNA-seq datasets is important for exploring
metabolic alterations in chondrocytes of patients with OA.

In this study, we conducted an in-depth analysis of bulk and
single-cell RNA sequencing (scRNA-seq) data and combined the
analysis with experiments to explore the mechanisms of metabolic
regulation in chondrocytes from OA patients. We found that MIF
incoming signals increased in arthritic chondrocyte ProCs. We
also found that MIF-mediated activation of the ERK/PLA2G4A
pathway led to increased AA production in chondrocytes. In
conclusion, our findings provide new ideas for the prevention and
treatment of OA.

Materials and methods

Data sources and pre-processing

The datasets GSE114007 (16) and GSE16850 (17) were
downloaded from the Gene Expression Omnibus (GEO) database.1

In the dataset GSE114007, sequencing of 18 samples was performed
using the Illumina HiSeq 4000 platform, and 20 samples were
sequenced using the Illumina NextSeq 500. The dataset GSE168505,
which consists of 7 samples, was sequenced using the Illumina
HiSeq 2500 platform. The dataset E-MTAB-7313 was downloaded
from the European Bioinformatics Institute (EBI) database2

and was sequenced using the Illumina HiSeq 4000 platform.
Collectively, these datasets encompass 99 samples from four

1 https://www.ncbi.nlm.nih.gov

2 https://www.ebi.ac.uk/
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sequencing platforms, including 48 normal samples and 51 OA
samples (Supplementary Table 1). We downloaded the FASTQ files
by Aspera and trimmed the reads using TrimGalore. Filtered reads
were aligned to the GRCh38 reference genome by HISAT2. After
obtaining the count matrices of these datasets, TPM normalization
was applied to normalize the read counts of the mRNA population
for each sample. Subsequently, we merged these three datasets
and used the removeBatchEffect function of the linear models
for microarray data (limma) in the R software package (18) to
remove batch effects.

Metabolism-related genes were sourced from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database.3 We
filtered out 11 pathways associated with human metabolism
and, subsequently organized the corresponding genes from these
pathways. After eliminating duplicated genes, a total of 1667
metabolism-related genes were obtained for subsequent analyses.

Screening for differentially expressed
genes (DEGs)

The limma R package is a differential expression screening
tool based on generalized linear models. Here, we used the limma
package (version 3.54.2) to conduct differential analysis on the
expression profiling dataset, resulting in the determination of
significance for differences in each gene. We screened DEGs by
applying the following criteria: an absolute value of log2 fold
change (log2FC) > 1, p < 0.05 to control for false discoveries.
Subsequently, we plotted a volcano plot and a heat map to represent
the expression of DEGs.

Functional enrichment analysis

We used org.Hs.eg.db R package (version 3.1.0) (19) to
transform the gene symbol into the Entrez ID. We performed
gene ontology (GO) and KEGG pathway enrichment analysis
with DEGs using the clusterProfiler R package (version
3.14.3) (20) (parameters: minGSSize = 5; maxGSSize = 5000;
pAdjustMethod = “BH”; qvalueCutoff = 0.05).

We calculated the enrichment score for each sample in the
referenced gene set of KEGG using the GSVA R package (version
1.40.1) (21). We combined all samples to obtain the matrix of
enrichment scores and analyzed the differences using the limma
R package. In addition, Gene set enrichment analysis (GSEA) (22)
was used to analyze the changes in metabolic pathway regulation in
patients with OA.

Protein-protein interaction (PPI) network

PPI network analysis, a commonly employed method for
discerning relationships among proteins, was created using the
STRING database (version 11.5) (23). PPI network was downloaded
from the STRING database, and was visualized using the Cytoscape

3 http://www.kegg.jp/kegg/

software (Version: 3.9.1). We conducted the enrichment analysis of
the genes in the PPI network using the ClueGO plugin (Version
v2.5.9) (24) with default settings.

Weighted gene co-expression network
analysis (WGCNA)

WGCNA package (version 1.69) (25) was employed to explore
expression modules related to OA. We identified correlations
between gene modules and OA/sex/age using WGCNA with default
parameters. Gene connectivity was measured by the absolute value
of Pearson correlation. It was used to filter the central genes of the
module with gene significance (GS)≥ 0.4 and module membership
(MM) ≥ 0.8.

Analysis of scRNA-seq data

The single-cell dataset from GSE169454 contains samples from
three normal cartilage samples and four OA cartilage samples.
To avoid introducing additional feature filtering processes and
to ensure sufficient cell numbers for subsequent analyses, we
downloaded the filtered data from the dataset. We created Seurat
objects using the “CreateSeuratObject” function from the Seurat
package (version 4.9.1) (26). Harmony (27), an algorithm for fast
and accurate integration of scRNA-seq data, was used to remove
batch effects among samples. The “PercentageFeatureSet” function
and the “pattern” parameter (mitochondrial: “ˆMT−”; rRNA:
“ˆRPL| ˆRPS”) was employed to assess rRNA and mitochondrial
content. In the first dimensional reduction step, the number of PCA
was set to 30. In the second dimensional reduction step, the “dims”
parameter was set to 1:30, and the “resolution” parameter was set
to 0.1. In addition, Marker genes for each cluster were screened
by the “FindAllMarkers” function with default settings, and the cell
types were annotated with reference to the Ji et al. (11) study. Based
on the top 200 marker genes for each cell cluster, GO and KEGG
enrichment analyses were performed using the clusterProfiler R
package (28). The scGSVA package (version 0.0.11) (21) was used
to calculate the normalized enrichment score (NES) of metabolism-
related pathways for each cell cluster.

Analysis of intercellular communication

Exploring interactions and communication among cell
types through ligand-receptor pairs helped us to better
understand complex systems biology networks. Therefore,
we used the CellChat (v1.1.3) (29) package to infer cell-
cell interactions and communication according to the
expression of known ligand-receptor pairs. We used the
“netVisual_circle” and “netVisual_heatmap” functions in the
CellChat package to visualize the communication among cell
types and used the “netAnalysis_signalingRole_scatter” and
“netAnalysis_signalingChanges_scatter” functions to identify
significant ligand-receptor pairs in each cluster.
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Cartilage samples collection

The experiments involving human samples in this study
were approved by the Ethics Committee of the Third Affiliated
Hospital of Southern Medical University. The cartilage samples
for both the osteoarthritis (OA) group and the normal group
were obtained from OA patients. In the OA group, the
cartilage was collected from the diseased knee joint cartilage,
while the cartilage distant from the lesion area, which was
macroscopically intact, was taken as the normal group. A total
of six cartilage samples were obtained from three patients
who underwent total knee arthroplasty (TKA), with one
normal cartilage sample and one diseased cartilage sample
isolated from each patient (Supplementary Table 2). Right after
excision, the samples were fixed in 4% paraformaldehyde for
subsequent processing.

Histological and immunohistochemistry
(IHC) assay

All of the samples were fixed in 4% paraformaldehyde
for 24 h immediately after isolation. After being decalcified
with 10% EDTA for 4 weeks, these samples were embedded
in paraffin and serially sectioned (thickness = 2 µm) in
the sagittal plane. Sections were stained using hematoxylin
and eosin (H&E staining) or Safranin-O and Fast
Green staining kit.

For immunochemistry staining, the sections were dewaxed,
hydrated, and then immersed in 3% hydrogen peroxide for 10 min
to block endogenous peroxidase. Antigen retrieval was performed
using citrate buffer at 60◦C for 3 min. Next, the sections were
divided into two subsets. Each subset was blocked in 5% goat serum
for 30 min. Then, one subset was incubated with the primary
antibody anti-PLA2G4A (1:500, MK62414, Abmart, China) and
the other with anti-phospho-ERK1/2 (1:500, T40072, Abmart,
China) at 37◦C for 1 h. After being washed five times with PBS,
the sections were incubated with a secondary antibody at 37◦C
for 30 min. Then the sections were incubated for 2 min using
the DAB detection system (Gene Tech, Shanghai, China) and
the signals were observed under a microscope. Finally, we used
ImageJ software to calculate the percentage of positively-stained
cells.

Cell culture and treatment

The immortalized human chondrocyte cell line (IM-H488)
was provided by Immocell Biotechnology Co., Ltd. (Xiamen,
Fujian, China) and maintained in DMEM/F12 with 10% FBS
(v/v) and 1% penicillin/streptomycin (v/v) as supplements.
MIF Protein (Human, HY-P7387) was purchased from MCE
(Shanghai, China). According to the experimental protocol,
protein and total RNA were extracted after stimulating human
immortalized cells with MIF for 24 h at a concentration of
50 ng/ml (30).

Western blot analysis

Proteins were extracted using pre-cooled RIPA buffer (E121-
01, GenStar, Shanghai, China) and quantified using the BCA
Protein Assay Kit (PC0020, Solarbio, Beijing, China). Following
separation via polyacrylamide gel, the proteins were transferred
onto polyvinylidene difluoride (PVDF) membranes and then
subjected to blocking with 5% bovine serum albumin (BSA, Sigma,
USA). The anti-phospho-ERK1/2 (T40072), anti-ERK1/2 (T40071)
and anti-PLA2G4A (MK62414) antibodies were obtained from
Abmart (Shanghai, China). The primary antibodies were applied at
a dilution of 1:2000 and incubated with the membranes overnight
at 4◦C. Following an overnight incubation, the membranes
were then probed with the corresponding secondary antibody
(1:5000 ratio) for at least 60 min at ambient temperature.
Subsequently, visualization was accomplished by employing the
ECL luminescence reagent (BL520A, Biosharp, Hefei, China).
Quantification was done with Image Lab 6.0.

Quantitative real-time PCR (qRT-PCR)

The human chondrocyte underwent lysis using of pre-cooled
Trizol on ice for a duration of 5 min, followed by the extraction of
their total RNA with chloroform. The RNA were then precipitated
with isopropanol and resuspended in 75% pre-cooled ethanol. After
dissolution in diethyl pyrocarbonate (DEPC)-treated water, RNA
concentration was assessed using a NanoDrop Microvolume UV-
Vis spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA). Reverse transcription was performed using the ReverTra
ACE qRT-PCR RT Kit (TOYOBO, FSQ-101, Tokyo, Japan), and
the resulting cDNA was quantified using Power Green qRT-PCR
Mix (Dongsheng Biotech, P2102, Guangzhou, China) by 2−11Ct

method. The primer sequences are given in Supplementary Table 3.
Ultimately, 18S was selected as the internal control.

Enzyme-linked immunosorbent assay
(ELISA)

Cells were cultured in 6-well plates to approximately 80%
confluence, and MIF was added at a final concentration of
50 ng/mL. After a 24-h incubation, supernatants were collected.
The level of AA in the supernatants was immediately measured
using the Human Arachidonic Acid (AA) ELISA Kit (CSB-
E09040h, Cusabio Biotech, Wuhan, China).

Statistical analysis

The experimental data are expressed as means± standard error
of the mean (SEM) from at least three independent experiments,
and statistical analyses were performed using SPSS Statistics
version 23. Differences between groups were assessed using one-
way ANOVA, two-way ANOVA, and t-test, with a significance
threshold set at p < 0.05.
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Results

Chondrocyte gene expression reveals OA
features

We first integrated and normalized the count data matrices
from the GSE114007, GSE168505, and E-MTAB-7313 datasets.
Then, we found significant batch effects among the data from
different platforms, and the group differences between the
OA and normal groups were not significant. We used the
removeBatchEffect function in the limma R package to effectively
correct the batch effects. Meanwhile, significant group differences
emerged between the OA and normal groups (Figures 1A–D). Next,
we performed differential expression analysis on the corrected
data using the limma R package. By setting the thresholds as
| log2FC| > 1 and p < 0.05, we obtained 1,844 differentially
expressed genes (DEGs), including 1,132 upregulated genes and
712 downregulated genes (Figure 1E). Then, we used a heatmap
to show the expression of the top 40 DEGs. We found that the
expression clustering was effective except for two OA samples and
one Normal sample (Figure 1F).

To clarify the biological changes occurring in osteoarthritic
chondrocytes, we conducted GO and KEGG analyses on all 1,844
DEGs. The results showed that ossification, leukocyte migration,
extracellular matrix organization, positive regulation of cell-cell
adhesion, staphylococcus aureus infection, rheumatoid arthritis,
and osteoclast differentiation were enriched in osteoarthritic
chondrocytes (Figures 1G, H), suggesting that chondrocytes may
be involved in immune-regulatory activities and participate in
extracellular matrix disintegration during OA. Moreover, we
plotted boxplots using the data from the gene expression matrix
after batch effects removal to observe the expression of classical
genes in osteoarthritic chondrocytes (Figure 1I). The expression of
IL1B, MMP3, MMP9, MMP13, ADAMTS5, and POSTN, associated
with matrix catabolism, were elevated in OA. In genes associated
with the promotion of synthetic metabolism, the expression of
SOX9 is decreased in OA, while the expressions of TGFB1 and
COL1A1 are increased in OA. These results were consistent with
previous reports.

Altered metabolism of chondrocyte in
OA

To reveal the KEGG pathway differences between OA and
normal chondrocytes, we performed GSVA analysis on all samples
(Figure 2A). We found that eight of the twenty pathways with
the most significant differences were related to metabolism.
This suggests that metabolism plays an important role in the
progression of OA. Therefore, to investigate the metabolic types
affecting OA, we retrieved all the metabolic-related pathways for
11 metabolic types, including “Carbohydrate metabolism,” “Energy
metabolism,” “Lipid metabolism,” “Nucleotide metabolism,”
“Amino acid metabolism,” “Metabolism of other amino acids,”
“Glycan biosynthesis and metabolism,” “Metabolism of cofactors
and vitamins,” “Metabolism of terpenoids and polyketides,”
“Biosynthesis of other secondary metabolites,” and “Xenobiotics
biodegradation and metabolism,” from the KEGG pathway

database (Supplementary File 1). Subsequently, we collected 83
metabolic pathways from the human KEGG signaling pathway
using the KEGGREST package and identified 1,667 genes associated
with these pathways (Supplementary File 2). Based on the value of
log2FC between OA and normal groups calculated previously, we
plotted boxplots for the log2FC of genes related to the 11 metabolic
types. The results indicated that the “biosynthetic process of other
secondary metabolites” showed the most significant difference,
but only 7 genes were enriched in this process. In addition, “lipid
metabolism” showed the most significant difference between OA
and normal groups, followed by “Energy metabolism,” “Amino
acid metabolism” and so on (Figure 2B). A Venn diagram was
then constructed using DEGs and metabolism-related genes,
resulting in 105 differentially expressed metabolic genes (DEMGs)
(Figure 2C and Supplementary Table 4). The heatmap was
used to visualize the expression of these genes (Supplementary
Figure 1A) and the PPI network was constructed to show the
interaction of these genes (Supplementary Figure 1B). Functional
analysis of DEMGs conducted by Cytoscape plug-in ClueGo
showed that nine cellular functions were enriched, including AA
metabolism, ether lipid metabolism, glycine, serine and threonine
metabolism, fructose and mannose metabolism, response to
vitamin B6, nicotinate and nicotinamide metabolism, cGMP-
mediated signaling, glycosphingolipid biosynthesis, and alanine,
aspartate and glutamate metabolism (Figure 2D). Subsequently,
we used boxplots to visualize the GSVA results of the four
metabolic pathways and found that AA metabolism and ether
lipid metabolism were activated in osteoarthritic chondrocytes,
whereas glycine, serine and threonine metabolism and fructose and
mannose metabolism were inhibited in osteoarthritic chondrocytes
(Figures 2E–H). Furthermore, in OA, cGMP-mediated signaling
and glycosphingolipid biosynthesis were activated, alanine,
aspartate and glutamate metabolism was inhibited, and nicotinate
and nicotinamide metabolism was not significantly changed
(Supplementary Figures 1C–F). These results suggested that lipid
metabolism, especially AA metabolism, plays an important role in
OA.

Metabolic pathways were enriched in
OA-related gene module

To identify gene modules highly correlated with OA, we
performed WGCNA to calculate the correlation between gene
expression modules and sample traits. We found that the purple
and the midnightblue modules were strongly positively correlated
with OA, but not with age or sex (Figure 3A). Based on
GS > 0.4 and MM > 0.8, we obtained 88 genes for the
purple module and 23 genes for the midnightblue module
as representative genes of respective modules (Supplementary
Figures 2A, B). Subsequently, these representative genes were
analyzed using STRING and ClueGO to investigate module-
associated PPI network and functional enrichment. The results
showed that the midnightblue module was mainly related to the
process of cellular mitosis (Supplementary Figure 2C), whereas
the purple module was associated with the cellular multi-
biological processes, including metabolic processes (Figure 3B).
According to previous findings that metabolic pathways were
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FIGURE 1

Integration of RNA-seq data and identification of DEGs. Scatter plots of the clustering of samples between different sequencing platforms before (A)
and after (B) removing batch effects; Scatter plots of the sample clustering between OA and Normal groups before (C) and after (D) removing batch
effects; (E) Volcano map showing differential expression of all genes; (F) Heatmap showing the expression of the 40 most significantly upregulated
and downregulated genes in the OA samples; (G) GO enrichment analysis of DEGs demonstrating the results of BP/CC/MF analysis; (H) KEGG
enrichment analysis of DEGs; (I) Box plots show the expression of important genes in OA cartilage. *p < 0.05; ***p < 0.001; ****p < 0.0001; NS, no
significance; DEGs, differentially expressed genes; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, Biological Process;
CC, Cell Component; MF, Molecular Function.

enriched in OA (Figure 2A), we chose the purple module to
further investigate the relationship between metabolism and OA.
We intersected the DEMGs with the purple module genes to
obtain 25 OA-related metabolic genes (Figure 3C). Among these
25 genes, except for HS3ST3A1, the expression of the other
genes was upregulated in OA cartilage (Supplementary Table 5).

We performed a metabolic pathway enrichment analysis using
the 25 genes and found that nine metabolic pathways were
significantly enriched, including the AA metabolism pathway,
other types of O-glycan biosynthesis, glutathione metabolism,
fructose and mannose metabolism, glycolysis gluconeogenesis,
inositol phosphate metabolism, glycerophospholipid metabolism,
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FIGURE 2

Differential expression of metabolism-related pathways. (A) Heatmap shows the 20 GSVA terms with the most pronounced up-regulation and
down-regulation in OA; (B) Boxplot illustrates the differential expression of 11 human metabolism-related pathways downloaded from the KEGG
database, with each point representing a gene in the pathway and the vertical coordinate representing the absolute value of the log2FC of the
genes; (C) The Venn diagram shows the DEMGs obtained by taking the intersection of the DEGs and the metabolism-related genes; (D) Nine
metabolic pathways were enriched for DEMGs in Cytoscape using ClueGO software; (E–H) The box plots show the enrichment scores of the four
most significantly enriched metabolic pathways out of the nine major ones. **p < 0.01; ***p < 0.001; ****p < 0.0001. GSVA, gene set variation
analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes; DEMGs, differentially expressed metabolic genes.
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FIGURE 3

WGCNA analysis indicates enrichment of AA metabolism in OA cartilage. (A) Weighted gene co-expression network analysis. Rows represent gene
modules. Columns represent sample traits. Each cell contains two values: a correlation coefficient between the module and sample trait and the
associated p-value in parentheses. Significant correlations are color-coded according to the correlation coefficient, varying from high values in
yellow to low values in blue; (B) PPI network of genes with log2FC greater than 1 in the purple module and functional visualization using ClueGO
plugin; (C) The Venn plot shows 25 genes at the intersection of purple module genes and DEMGs; (D) KEGG analysis of the above 25 genes;
(E) Network diagram of genes in the nine aforementioned pathways, in which the genes from the 105 DEMGs with log2FC greater than 1 are
marked. The size of the circles is drawn from small to large according to their | log2FC| values, and the color ranges from blue (low value) to red
(high value) based on the log2FC. PPI, protein-protein interaction; DEMGs, differentially expressed metabolic genes; KEGG, Kyoto Encyclopedia of
Genes and Genomes.
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thiamine metabolism, and nitrogen metabolism (Figure 3D). Since
AA metabolism is the most significant pathway among the nine
enriched metabolic pathways related to the 25 genes, and consistent
with previous studies (31), AA metabolism is closely associated
with chondrocyte lesions in OA, the 25 genes may be closely
associated with AA metabolism in OA cartilage. In addition,
we extracted all the genes of these nine metabolic pathways
and visualized their expression fold changes, and found that the
expression of 37 genes was significantly altered, with more than
78% of them being upregulated in OA (Figure 3E). To further
investigate the regulatory status of these pathways, we performed
GSEA analysis. The results revealed that, except for Fructose
and mannose metabolism, Glycolysis/gluconeogenesis, and Inositol
phosphate metabolism, all other pathways were activated in OA
(Supplementary Figure 2D).

ProCs were the major cluster with
enhanced AA metabolism

Having assessed the metabolic processes and associated genes
in osteoarthritic chondrocytes, we used single-cell data to further
investigate the changes in metabolism at the cellular resolution.
We integrated scRNA-seq data using Harmony and showed that
all samples were efficiently mapped (Supplementary Figure 3C).
Through unsupervised clustering analysis, we presented a total of
six cell subclusters numbered from 0 to 5 in the Uniform Manifold
Approximation and Projection (UMAP) plot (Supplementary
Figure 3A). Then, we used the FindAllMarkers function to
obtain the characteristic genes of each cluster and the complete
expression profiles of the marker genes (Supplementary File
3). We named these cell clusters with reference to the marker
genes from multiple research findings (Figure 4A). Specifically,
subcluster 1 was defined as ProCs and exhibits high expression
of CLCF1, ASNS, and ARHGAP21 (11). Subcluster 2 was
defined as HomCs, with high expression of FOSB, SNHG12,
and DNAJB4 (11). Subcluster 5 was defined as CPCs, with
high expression of CENPU, BIRC5, and STMN1 (11). Subcluster
3 was defined as preHTCs, which show high expression of
MMP3 (32), COL2A1 (33), and ABI3BP (34). Subcluster 4
has high expression of HBB, HBA1, and HBA1. We defined
it as HBB+ cells with reference to the study by Zhang et al.
(35). Additionally, subcluster 0 (SQSTM1, PNO1, and RSL1D1)
showed characteristics of highly metabolic cells (Supplementary
Table 7), which is consistent with the function of ECs as
defined by previous studies, thus we defined subcluster 0 as
ECs (11, 36). We used a dot plot to concurrently show the
cluster numbers before the definition, the assigned names post-
definition, and the expression profiles of the corresponding
markers (Supplementary Figure 3B). In addition, UMAPs of
relevant markers have been utilized to support the demonstration
(Supplementary Figure 4). The top 15 differentially expressed
genes for each subcluster, including the marker genes, are listed
in Supplementary Table 6. By comparing the changes in the
proportions of each cell cluster in normal and osteoarthritic
chondrocytes, we found that the proportions of the HBB+ cells,
preHTCs, and ProCs cell clusters obviously increased in the OA
group, whereas the proportions of HomCs and ECs decreased

(Figure 4B). Furthermore, we performed GO and KEGG analysis
based on the marker genes in each cell cluster of osteoarthritic
chondrocytes to investigate the function of each cluster (Figures 4C,
D). We found that the CPCs were associated with chromosome
segregation, mitotic nuclear division, and nuclear chromosome
segregation, indicating a differentiation potential. ECs and HomCs
were involved in the regulation of the translation processes, such
as ribosome assembly, ribonucleoprotein complex biogenesis, and
ribosome biogenesis. ProCs and preHTCs were associated with
the extracellular matrix (ECM) receptor interaction, whereas the
hydrogen peroxide catabolism process was enriched in HBB+
cells.

In addition, we performed scGSVA analysis of metabolic
pathways to characterize the regulation of metabolism in
cell clusters and found that most metabolic processes were
significantly enhanced in ProCs, including “AA metabolism,”
“Vitamin B6 metabolism,” “Sulfur metabolism,” “Alanine,
aspartate and glutamate metabolism,” “Riboflavin metabolism,”
“Starch and sucrose metabolism,” and “Glycine, serine and
threonine metabolism” (Figure 4E). To further investigate the
expression patterns of the 105 DEMGs and 25 OA-related
metabolic genes across different cell clusters, we utilized the
addModuleScore function to integrate them into separate gene sets
and visualized their distribution using UMAP plots. Specifically,
the addModuleScore function calculates the average expression
level of a given gene set at the single-cell level across different
clusters, thereby reflecting the overall expression pattern of these
genes. The results showed that the 25 OA-related metabolic
genes are primarily expressed in ProCs of OA chondrocytes
(Figures 4F, G and Supplementary Figure 3F). Similarly, the 105
DEMGs exhibit the same expression pattern (Supplementary
Figures 3D, E, G). These findings suggest that metabolic
regulation predominantly occurs in the ProCs. The mountain
range plot showed that AA metabolism was activated in ProCs
compared to the other clusters and the violin plot confirmed the
significant differences in the AA metabolism pathway between
normal and OA groups (Figures 4H, I), suggesting that the
enhanced AA metabolism in OA group was associated with
ProCs.

Activation of the MIF pathway and
increased expression of ERK and
PLA2G4A were observed in ProCs

We investigated the changes in cellular communication
among clusters of osteoarticular chondrocytes and their effect on
metabolism using CellChat analysis. We calculated and visualized
the cellular communication networks of the OA and normal
groups, respectively, to investigate the strength and number of
interactions between cells. The results of the circle plot showed
that the interactions between clusters increased in the OA group,
and the number of interactions in all clusters increased except
ECs (Figures 5A, B). Therefore, we used a heatmap to show the
changes of interaction in detail and found that ECs, as signaling
senders, had diminished interactions with HomCs and ProCs,
and HBB+ cells had almost no cellular communication with
other clusters (Figure 5C). Furthermore, a scatter plot was used
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FIGURE 4

Single-cell analysis to clarify the metabolic characteristics of AA in different cell clusters. (A) Six cell clusters were annotated based on the UMAP
algorithm and marker genes; (B) The bar plot shows the changes in the percentage of cell clusters in OA and Normal, with the y-axis representing
percentages; (C,D) Bubble plots show the GO (C) and KEGG (D) analyses of DEGs in the clusters; (E) Heatmap showing differences in the expression
of metabolic pathways in cell clusters analyzed by GSVA; (F,G) UMAP plot of the 25 genes in Normal and OA group; (H) The mountain range plot of
differential expression of the 25 AA metabolism-related genes in cell clusters; (I) Differences in enrichment scores for AA metabolism in the Normal
and OA groups in scRNA-seq data. ****p < 0.0001. OA, osteoarthritis; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes;
GSVA, gene set variation analysis; DEGs, differentially expressed genes; AA, arachidonic acid.
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FIGURE 5

Intercellular communication reveals regulatory pathways of AA in ProCs in the OA group. (A,B) Interaction of communication between six cell
clusters in the OA and Normal groups, the width of the line represents the strength of the interaction, and thicker lines indicate stronger signals.
(C) Heatmap showing the number and weight of afferent and efferent signals for the six cellular subclusters, and the bar at the top and the side
indicate the number and weight of the cells in the cluster as a receptor and a ligand in total. (D–G) Detailed information on the receptor and ligand
pathways for each cluster. (H,I) Differential expression of PLA2G4A and ERK2 in Normal and OA in bulk RNA-seq data. (J,K) Expression of PLA2G4A
and ERK2 in different cell clusters. (L) Correlation analysis of PLA2G4A and ERK2 expression in single-cell data. *p < 0.05; ****p < 0.0001. RNA-seq,
RNA sequencing.
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to visualize the dominant senders and receivers. We found that
outgoing and incoming interaction strength of ProCs and HomCs
were significantly increased in the OA group (Supplementary
Figures 5A, B). Therefore, we further analyzed the changes of
outgoing and incoming signals in all clusters for both the OA
and normal groups, and found that the signaling between the OA
and normal groups was significantly different in ECs, HomCs,
preHTCs and ProCs, but not in CPCs, and HBB+ cells (Figures 5D–
G). A previous study suggested that SPP1 signaling was one
of the key factors in exacerbating the progression of OA (37).
Consistent with this, the results showed that SPP1 signaling was
detected in the four clusters in the OA group (Figures 5D–
G). preHTCs, as a specific group that is in the late stage of
OA, exacerbate the progression of OA, only expressed the OA-
specific intercellular signals in our results (Figure 5F). In the
OA group, we detected the secretion signals of angiopoietin-
like protein (ANGPTL) ligands only in ECs and preHTCs,
and the ANGPTL receptor signals were detected in preHTCs
(Figures 5D, F). This indicates that both preHTCs and ECs
are involved in the regulatory processes of lipid metabolism,
extracellular matrix catabolism, and angiogenesis. Furthermore, we
found that vascular endothelial growth factor (VEGF) signaling,
bone morphogenetic protein (BMP) signaling, midkine (MK)
signaling, and tumor necrosis factor–like weak inducer of apoptosis
(TWEAK) signaling were significantly activated in ECs, ProCs, and
HomCs of the normal group (Figures 5D–G). The coexistence of
inhibitory and facilitative signals during the progression of OA
suggests the presence of a dynamic equilibrium mechanism within
osteoarthritic chondrocytes and indicates that there are extensive
and complex interactions between the different chondrocyte
clusters in OA patients.

Notably, we found that incoming MIF signaling was detected
in HomCs and ProCs of the OA group (Figures 5E, G),
suggesting that cells in this group received exogenous MIF stimuli
and elicited relevant responses to a greater extent than other
clusters. A previous study indicated that MIF activates the ERK
signaling pathway to upregulate the expression of PLA2G4A,
thereby catalyzing AA synthesis (10). Therefore, to investigate
the relationship between MIF signaling and AA metabolism, we
examined the expression of ERK2 and PLA2G4A in the bulk RNA-
seq data. We found that the expression of ERK2 and PLA2G4A
was higher in the OA group than in the normal group, and in
ProCs than in other clusters, indicating that the involvement of
MIF signaling in the regulation of AA metabolism may occur
specifically in ProCs rather than in HomCs (Figures 5H–K).
To determine whether ERK signaling pathway in ProCs was
activated, we conducted a functional analysis using all the marker
genes of ProCs. We selected the 10 terms with the highest
number of enriched genes, and the results showed enrichment of
“ERK1 and ERK2 cascade” and “regulation of ERK1 and ERK2
cascade” (Supplementary Figure 5C). This indicates that the ERK
signaling pathway in ProCs is likely to be in an activated state.
In addition, we used bulk RNA-seq data and scRNA-seq data to
clarify the correlation between ERK2 and PLA2G4A, and found
that they were highly correlated (Figure 5L and Supplementary
Figure 5D). The results suggest that the MIF signaling-mediated
ERK pathway may be involved in the increased metabolism of AA
in ProCs.

MIF activates the ERK/PLA2G4A pathway
in chondrocytes and increases AA
production

To validate our analytical results, we treated human
immortalized chondrocytes with MIF protein and detected the
changes in the mRNA levels of PLA2G4A and ERK2. The results
showed that MIF stimulation led to an up-regulation of PLA2G4A
expression in chondrocytes, while the expression level of ERK2 did
not increase (Figure 6A). Since phosphorylated ERK2 represents its
activated state, we next verified whether the phosphorylation level
of ERK2 had changed. We detected the protein levels of PLA2G4A,
ERK2, and p-ERK2 after MIF stimulation of chondrocytes. The
results showed that the protein levels of PLA2G4A and p-ERK2
increased, while the protein level of ERK2 remained unchanged
(Figures 6B, C). These results indicate that MIF activates the ERK
signaling pathway by mediating the phosphorylation of ERK2.
Next, to investigate whether MIF promotes the production of
AA in chondrocytes, we evaluated the changes in AA content in
human immortalized chondrocytes after MIF stimulation. The
results showed that the production of AA increased significantly in
MIF-stimulated chondrocytes (Figure 6D). In addition, we found
that MIF treatment led to an increase in the expression of IL1B
and MMP13 genes (Figure 6A), suggesting that MIF may play a
promoting role in the progression of OA.

We next attempted to clarify whether the ERK/PLA2G4A
signaling pathway is activated in OA cartilage through IHC. We
obtained knee joint cartilage samples from OA patients who
underwent total knee arthroplasty and divided them into two
groups: the OA group and the Normal group, with three samples
in each group. For each observation index, we randomly selected
three high-power fields (magnification × 20) from each sample,
and a total of 9 high-power fields were used for observation
and statistical analysis (Supplementary Figure 6). H&E staining
revealed that, compared to the normal group, the OA group
exhibited a decreased total number of chondrocytes, reduced
cartilage thickness, a significantly increased number of cells in
the fibrous and proliferative layers, a disordered cartilage matrix
network, and damaged cartilage structure. Meanwhile, Safranin-
O and Fast Green staining showed that the content of sulfated
proteins and dextran decreased in the OA group, and cartilage
ossification was present (Figure 6E). These results indicate that
cartilage degeneration is severe in the OA group. The results of
immunohistochemical staining showed that the protein levels of
PLA2G4A and p-ERK2 in the OA group were significantly higher
than those in the Normal group (Figures 6E, F). This indicates that
the ERK/PLA2G4A signaling pathway is significantly activated in
OA cartilage.

Discussion

Previous studies have shown that metabolites of AA, such
as prostaglandin E2 (PGE2) and leukotrienes, play a pro-
inflammatory role in the progression of OA. Almost all joint
tissues such as synovium, cartilage, meniscus, and subchondral
bone are involved in the release of these inflammatory mediators
(8, 38). Furthermore, osteoarthritic chondrocytes have been
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FIGURE 6

MIF stimulation activates the ERK/PLA2G4A pathway in chondrocytes, leading to increased AA production. (A) The mRNA levels of PLA2G4A, ERK2,
IL1B, MMP3, MMP13, and ADAMTS5 in chondrocytes after 24 h of MIF treatment compared to control cells; (B,C) The relative protein expression
levels of ERK2, p-ERK2 and PLA2G4A in cells after MIF stimulation were quantified by Western blotting; (D) AA level in the supernatant of
chondrocytes treated with MIF compared to the control group; (E) H&E staining, Safranin-O and Fast Green staining and Immunohistochemical
results in cartilages of p-ERK2 and PLA2G4A in Normal and OA groups. The direction of the joint cavity is at the top of the picture. Scale bars:
200 µm for the whole image and 25 µm for the enlarged area; (F) Bar chart presenting a comparative quantitative analysis of IHC-positively stained
cells between OA group and Normal group. NA, no significance; *p < 0.05; **p < 0.01; ****p < 0.0001. AA, arachidonic acid.

classified into several groups by single-cell analysis studies (11).
However, the metabolism of AA and its interaction mechanism in
different clusters of osteoarthritic chondrocytes have never been
reported. In our study, we found that MIF-mediated activation
of ERK/PLA2G4A could cause an increase in AA production in
chondrocytes through our analysis and experimental validation.
This may be an important factor in the transformation of ProCs
into unfavorable cells while also driving the progression of OA. In
addition, MIF induced increased expression of IL1B and MMP13,
which can induce inflammatory responses and degradation of
cartilage matrix. Our results suggest that MIF may drive OA
progression and may be a therapeutic or preventive target for OA.

AA is the primary n-6 PUFA found in inflammatory cells,
leading to the production of inflammatory eicosanoids (6).
Attur et al. (39) in their metabolite analysis of supernatants
from normal and osteoarthritic chondrocytes concluded that

increased levels of PGE2 and LTB4 are produced in OA cartilage
compared to normal cartilage. Here, we integrated and analyzed
bulk RNA-seq data and scRNA-seq data to show that AA
metabolism is more significantly enriched in metabolism-related
pathways in chondrocytes compared to other pathways. This
confirms the important role of increased AA metabolism in OA
chondrocyte metabolism. PLA2G4A is an upstream regulator of
the eicosanoid pathway that can release free AA from the sn-2
position of membrane phospholipids (40). Numerous studies have
confirmed that MIF can activate the ERK/PLA2G4A pathway to
induce increased AA production. In rheumatoid arthritis (RA)
fibroblastic-like synoviocytes (FLS), MIF upregulates PLA2G4A
activity and PLA2G4A mRNA expression (41). In the NIH/3T3
fibroblast cell line, MIF promotes the sustained activation of ERK
pathway, which is associated with the activation of PLA2G4A
(30). In our analysis, we identified activation of the MIF pathway

Frontiers in Medicine 13 frontiersin.org

https://doi.org/10.3389/fmed.2025.1552029
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1552029 May 5, 2025 Time: 16:41 # 14

Wu et al. 10.3389/fmed.2025.1552029

and increased expression of ERK2 and PLA2G4A, suggesting the
possibility that this pathway may be activated in chondrocytes.
Subsequently, the increased levels of ERK2 phosphorylation
and PLA2G4A expression were confirmed by WB experiments
after MIF stimulation of chondrocytes, and an increase in
AA concentration was determined by Elisa. Taken together, we
can conclude that the MIF-mediated ERK/PLA2G4A pathway
is involved in the increased AA production in osteoarthritic
chondrocytes. Surprisingly, our qPCR results showed that MIF
stimulation did not induce changes in ERK2 expression in
chondrocytes, which is inconsistent with our previous analysis.
We speculate that this might be because the relatively complex
pathophysiological environment in osteoarthritic cartilage leads to
the increased expression of ERK2, while MIF is mainly involved in
regulating its phosphorylation process.

In our scRNA-seq data analysis, we classified chondrocytes into
six clusters, which differ from the findings of Ji et al. (11). First,
we did not separate the mast cell cluster (HTC). Our explanation
is that these two clusters have similar cellular properties enriched
for processes such as lipid metabolism, vascular endothelial
production, and inflammatory cell migration, thus allowing the
two to produce blurred cluster boundaries. In addition, we isolated
the CPCs and, together with the results of our functional analysis,
considered them to be a cell lineage with the potential to divide
and differentiate. This difference in cell clustering illustrates that
there is no unified standard for the classification of chondrocyte
sub-clusters and no classical markers for cell clustering. Even when
other scholars reference the clustering method of Ji et al. (11), it
is difficult to achieve consistent clustering results. Moreover, some
new cell types have been further identified (42, 43). Despite these
uncertainties, in combination with the functional characteristics
of the cell clusters, we can still infer that the three cell clusters,
ProCs, preHTCs, and HBB+ cells, are closely associated with pro-
inflammatory and cartilage matrix catabolism.

CellChat analysis can predict cell-to-cell communication
pathways. It uses a database with info on ligand-receptor complexes
and regulators. By combining math models, gene expression
analysis, and stats, it reveals how cells communicate with the
external microenvironment at the single-cell level. Through
CellChat analysis, we identified incoming MIF signaling in ProCs
from the OA group. This indicates that ProCs are capable of
receiving external MIF signals, thereby triggering changes in certain
intracellular signaling pathways. In our cell experiments, we found
that MIF stimulation could activate the ERK/PLA2G4A pathway in
chondrocytes, leading to an increase in AA production. Therefore,
we speculate that ProCs may be the main chondrocytes that
receive MIF stimulation in OA. Ji et al. (11, 44) found that ProCs
are characterized by being flat and columnar, and are mainly
distributed within the proliferative zone, which is located in the
middle area of the articular cartilage. In OA cartilage, due to joint
wear, ProCs are closer to the joint cavity, which allows MIF in the
synovial fluid to directly act on ProCs through physical infiltration.
This may be one of the key factors in the formation of ProCs during
the progression of OA. In turn, the increased production of AA
in ProCs will also act as a chronic toxin and further promote the
progression of OA. However, this hypothesis needs to be further
validated in future studies.

MIF occupies an apex position in the regulation of the
immune response and is involved in numerous immune-related

processes (45). However, research into the role of MIF in OA has
been inconsistent, with some studies reporting conflicting results.
A study of blood samples from 119 end-stage knee/hip OA patients
found that MIF may play a protective role in OA. In contrast,
Rowe et al. (46, 47) suggested that inhibition of MIF reduces the
severity of age-related OA. In this study, we demonstrate that MIF
can activate the ERK/PLA2G4A pathway to induce increased AA
production. In addition, in our experiments we found that MIF
stimulation of chondrocytes increased the expression of MMP13
and IL1B. IL1B can trigger an inflammatory cascade response
that induces chondrocytes to produce collagen-degrading enzymes
such as MMP3, MMP9, MMP13 and the proteoglycan-degrading
enzyme ADAMTS5 (48, 49). The expression of these genes is
involved in the degradation of the cartilage matrix in OA.

However, our study has several limitations. For example, the
precise cellular clustering of both osteoarthritic cartilage samples
and osteoarthritic chondrocyte models, as well as the precise
identification of ProCs, require further investigation.

Conclusion

In conclusion, we found that MIF can increase the production
of IL1B and MMP13 in chondrocytes, thereby promoting the
progression of OA. Additionally, MIF can also enhance AA
production by activating the ERK/PLA2G4A signaling pathway in
OA, which may be closely associated with ProCs in osteoarthritic
cartilage. Therefore, targeted inhibition of MIF signal transduction
in chondrocytes, especially in ProCs, may represent a novel strategy
for the prevention and treatment of OA.
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