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Objective: Currently, there is no individualized prediction model for joint function 
recovery after ankle fracture surgery. This study aims to develop a prediction 
model for poor recovery following ankle fracture surgery using various machine 
learning algorithms to facilitate early identification of high-risk patients.

Methods: A total of 750 patients who underwent ankle fracture surgery at 
Lu’an Hospital Affiliated to Anhui Medical University between January 2018 and 
December 2023 were followed up. The collected data were chronologically 
divided into a training set (599 cases) and a test set (151 cases). Feature variables 
were selected using the Boruta algorithm, and five machine learning algorithms 
(logistic regression, random forest, extreme gradient boosting, support vector 
machine, and lasso-stacking) were employed to construct models. The 
performance of these models was compared on both the training and test sets 
to select the best-performing model. The decision basis of the optimal model 
was further analyzed using Shapley Additive Explanation (SHAP) and Local 
Interpretable Model-Agnostic Explanations (LIME).

Results: In total, 12 characteristic variables were identified using the Boruta 
algorithm. Among the five machine learning models, random forest model: AUC 
(training set: 0.840, test set: 0.779), accuracy (training set: 0.781, test set: 0.742); 
SVM: AUC (training set: 0.809, test set: 0.768), accuracy (training set: 0.751, test 
set: 0.728); XGBoost: AUC (training set: 0.734, test set: 0.748), accuracy (training 
set: 0.668, test set: 0.722); logistic regression: AUC (training set: 0.672, test set: 
0.691), accuracy (training set: 0.651, test set: 0.656); lasso-stacking model: AUC 
(training set: 0.877, test set: 0.791), accuracy (training set: 0.796, test set: 0.762). 
The PR curve and decision curve of the lasso-stacking model were better than 
those of other models. The lasso-stacking model had the best performance. 
SHAP analysis showed that functional exercise compliance, combined ligament 
injury, and open fracture accounted for the largest proportion of SHAP values 
and were the most important influencing factors.

Conclusion: Through evaluation and comparison of the developed models, 
the lasso-stacking model demonstrated the best performance and is more 
suitable for predicting joint function recovery after ankle surgery. This model 
can be further validated externally and applied in clinical practice.
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1 Introduction

Ankle fractures, often resulting from external violent factors such 
as falls, sports injuries, and traffic accidents, are prevalent among 
middle-aged populations (1–3) and currently rank as the third most 
common fracture type in orthopedic practice (4, 5). Recent studies 
have revealed a trend of increasing incidence rates (6–8), accompanied 
by high treatment costs. In the United  States, the average cost of 
outpatient treatment for ankle fractures is $9,821, while the average 
cost of inpatient treatment exceeds $62,000 (9, 10), posing a significant 
economic burden on patients. Surgery remains the primary treatment 
modality for ankle fractures (9, 11). However, due to various factors 
such as patient-specific differences, fracture severity, surgical 
complications, and postoperative rehabilitation, patients with ankle 
fractures face risks of joint weakness, stiffness, and residual pain, 
which can negatively impact joint function recovery, postoperative 
quality of life, increase the risk of reoperation, and even lead to 
disability (12–16). Currently, most clinicians focus on surgical 
technique improvements, postoperative complication prevention, and 
early postoperative rehabilitation (17–19), while epidemiological 
aspects of postoperative joint recovery and factors influencing 
individualized recovery receive less attention. Understanding these 
influencing factors, early identification of high-risk populations, and 
timely intervention are crucial for ensuring normal postoperative joint 
function recovery in patients with ankle fractures. However, there is 
currently no research on the individualized prediction of postoperative 
joint function recovery in patients with ankle fractures.

As a pivotal branch of artificial intelligence, machine learning (ML) 
has gained increasing traction in medical research due to its strengths 
in non-linear modeling and high-dimensional data processing, 
particularly in surgical outcome prediction (20, 21). Unlike 
conventional statistical methods—such as logistic regression and Cox 
proportional hazards models, which rely on linear assumptions and 
manual variable selection—ML algorithms autonomously identify 
latent non-linear relationships and interaction effects within complex 
datasets, thereby enhancing predictive accuracy and robustness (22). 
These advantages have translated into notable successes in orthopedic 
surgical outcome prediction. For instance, Lex et al. (23) conducted a 
systematic review of predictive models for hip fracture outcomes, 
demonstrating that ML algorithms achieved superior discriminative 
performance for 1-year postoperative mortality prediction (mean area 
under the receiver operating characteristic curve [AUC]: 0.84) 
compared to traditional models (AUC: 0.79). Similarly, Cai et  al. 
developed a stacked ensemble-based ML classifier to predict the 
Japanese Orthopedic Association recovery rate for patients with 
degenerative cervical myelopathy, reporting exceptional performance 
(AUC: 0.92, accuracy: 90.2%, sensitivity: 90.1%) that significantly 
outperformed conventional approaches (AUC: 0.78, accuracy: 79.3%, 
sensitivity: 65.0%) (24). Despite these advancements, the application of 
ML in predicting outcomes following ankle fracture surgery remains 
scarcely investigated. Therefore, in this study, we employ several classic 
machine learning algorithms to construct prediction models for poor 
postoperative recovery after ankle fractures. By comparing the 
performance of these models, we select the optimal one and conduct an 
interpretability analysis to determine the significant influencing factors.

This study aims to provide clinical guidance for early identification 
of high-risk populations, timely implementation of preventive 
measures, facilitation of rapid postoperative recovery, reduction of 

hospitalization costs, and optimization of healthcare resource 
allocation for ankle fracture patients. By bridging this research gap, 
we  seek to empower clinicians with data-driven tools to improve 
patient outcomes and quality of life.

2 Methods

2.1 Study designs

This single-center, prospective observational study was conducted 
with the approval of the Ethics Committee of Lu′an Hospital of Anhui 
Medical University (2024LLKS-KY-044). All participants provided 
written informed consent. Data were collected in January 2018 using 
a structured questionnaire and a clinical electronic inpatient record 
system. Participants completed the questionnaire online through 
Questionnaire Star, and hematological indicators were obtained 
through the clinical electronic inpatient medical record system. The 
study was conducted in accordance with the ethical standards of the 
local IRB and the 1975 Declaration of Helsinki.

2.2 Patients and data collection

2.2.1 Study population
The study population consisted of 750 patients who underwent 

ankle surgery at the orthopedic department of a tertiary hospital in 
Lu′an City, Anhui Province, between January 2018 and December 2023.

The inclusion criteria were as follows: (1) age ≥ 18 years; (2) 
radiographic evidence of ankle fracture requiring surgery; (3) no 
previous ankle surgery; (4) voluntary participation in the study with 
signed informed consent.

The exclusion criteria were as follows: (1) patients choosing 
conservative treatment; (2) missing data; (3) presence of functional or 
organic mental disorders with language communication barriers.

2.2.2 Data collection
Based on literature review and expert consultation, researchers 

identified 31 potential factors influencing poor prognosis after ankle 
fracture surgery, including 23 categorical and 8 continuous variables. 
The operational definitions of the candidate predictors are as follows:

 1. Age (years): Refers to patients over the age of 18 undergoing 
ankle fracture surgery. This is a continuous variable.

 2. Gender: Male or female. This is a categorical variable.
 3. Education level: Describes the educational background of 

patients undergoing ankle fracture surgery, including primary 
school or below, junior high to high school, and university or 
above. This is a categorical variable.

 4. Varicose veins: Indicates whether patients undergoing ankle 
fracture surgery have concomitant varicose veins. This is a 
categorical variable.

 5. Heart disease: Denotes whether patients undergoing ankle 
fracture surgery have comorbid heart disease. This is a 
categorical variable.

 6. Cerebrovascular disease: Represents whether patients 
undergoing ankle fracture surgery have comorbid 
cerebrovascular disease. This is a categorical variable.
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 7. Diabetes: Signifies whether patients undergoing ankle fracture 
surgery have comorbid diabetes. This is a categorical variable.

 8. Hypertension: Indicates whether patients undergoing ankle 
fracture surgery have comorbid hypertension. This is a 
categorical variable.

 9. Smoking: Refers to whether there is a history of smoking 
recorded in the electronic nursing records of patients 
undergoing ankle fracture surgery. This is a categorical variable.

 10. Alcohol consumption: Pertains to whether there is a history of 
alcohol consumption recorded in the electronic nursing 
records of patients undergoing ankle fracture surgery. This is a 
categorical variable.

 11. Injury mechanism: Describes how the ankle fracture occurred, 
including car accidents, falls, and other mechanisms. This is a 
categorical variable.

 12. Injury site: Denotes the surgical site of patients undergoing 
ankle fracture surgery, including left, right, or bilateral. This is 
a categorical variable.

 13. Body mass index (kg/m2): Represents the body mass index of 
patients at the time of admission for ankle fracture surgery. 
This is a continuous variable.

 14. Combined ligament injury: Indicates whether patients with 
ankle fractures have concomitant ligament injuries. This is a 
categorical variable.

 15. Nerve injury: Signifies whether patients with ankle fractures 
have concomitant nerve injuries. This is a categorical variable.

 16. Combined joint dislocation: Represents whether patients with 
ankle fractures have concomitant joint dislocation. This is a 
categorical variable.

 17. Open fracture: Denotes whether the ankle fracture is an open 
fracture. This is a categorical variable.

 18. Fracture type: Describes the severity of the ankle fracture, 
including single ankle fracture, double ankle fracture, and 
triple ankle fracture. This is a categorical variable.

 19. Surgical waiting time (days): Represents the time from injury 
to surgery for patients with ankle fractures. This is a 
continuous variable.

 20. Perioperative use of blood-activating and stasis-removing 
drugs: Indicates whether patients with ankle fractures take 
blood-activating and stasis-removing drugs during the 
perioperative period. This is a categorical variable.

 21. Postoperative hemoglobin (g/L): Signifies the hemoglobin 
value from the first hematological examination after ankle 
fracture surgery. This is a continuous variable.

 22. Postoperative albumin (g/L): Represents the albumin value 
from the first hematological examination after ankle fracture 
surgery. This is a continuous variable.

 23. Postoperative red blood cell count (×1012/L): Denotes the red 
blood cell count from the first hematological examination after 
ankle fracture surgery. This is a continuous variable.

 24. Postoperative drainage tube: Indicates whether patients 
undergoing ankle fracture surgery have a postoperative 
incision drainage tube. This is a categorical variable.

 25. Operation time (minutes): Represents the difference between 
the start and end times recorded in the electronic 
anesthesia record for ankle fracture surgery. This is a 
continuous variable.

 26. Length of hospital stay (days): Describes the duration of the 
hospital stay for patients undergoing ankle fracture surgery. 
This is a continuous variable.

 27. Venous thrombosis: Indicates whether venous thrombosis 
occurs during hospitalization for ankle fracture patients, as 
detected by ultrasound examination (25, 26). This is a 
categorical variable.

 28. Surgical site infection: Represents whether a surgical site 
infection occurs after ankle fracture surgery. Surgical site 
infection is diagnosed based on the Guidelines for the 
Prevention of Surgical Site Infection from the Centers for 
Disease Control and Prevention and the Healthcare Infection 
Control Practices Advisory Committee (27, 28). This is a 
categorical variable.

 29. The American Society of Anesthesiologists (ASA) 
Classification: Describes the ASA classification recorded in 
the electronic anesthesia record for ankle fracture surgery. 
ASA assesses patients’ physical status and surgical risk 
before anesthesia, ranging from Class 1 to Class 6, for 
evaluating surgical risk (29, 30). This is a 
continuous variable.

 30. Postoperative pain level after functional exercise: Represents 
the average pain score recorded using The Numeric Rating 
Scale (NRS) in the electronic nursing records after each 
rehabilitation exercise guided by a therapist following ankle 
fracture surgery. Scores 1–3 indicate mild pain, 4–6 moderate 
pain, and 7–9 severe pain. This is a continuous variable.

 31. Postoperative functional exercise compliance (PFEC): This 
refers to the compliance of patients with ankle fractures in 
performing rehabilitation exercises after being instructed by a 
rehabilitation therapist following surgery. Assessment is 
conducted on the day of the patient’s discharge using the 
Orthopedic Rehabilitation Exercise Compliance Scale. 
Developed by Chinese scholars Tan et al., the scale consists of 
three dimensions: compliance related to psychological 
persistence in exercise, compliance related to active learning 
and persistence in exercise, and compliance related to physical 
persistence in exercise. It includes 15 items rated on a 1–5 
Likert scale, with a total score of 75 points; a higher score 
indicates better patient compliance with functional exercises. 
Scores ≤20 indicate low compliance, scores between 20 and 55 
points indicate partial compliance, and scores ≥50 indicate 
high compliance. The total Cronbach’s α coefficient for this 
scale is 0.930, with coefficients of 0.920, 0.842, and 0.851 for 
each respective dimension (31). This is a continuous variable.

2.2.3 Criteria for diagnosing poor recovery
The American Orthopaedic Foot and Ankle Society Ankle-

Hindfoot Scale (AOFAS) was used to evaluate the functional recovery 
of patients’ ankles 3 months after surgery. This scale, proposed by 
KITAOKA et  al. in 1994 (32), has been widely applied in many 
countries (33, 34). It is primarily designed to assess ankle function. 
The scale ranges from 0 to 100 points, with excellent (90–100 points), 
good (75–89 points), moderate (50–74 points), and poor (<50 points) 
categories. A higher score indicates better ankle function. In this 
study, patients with an AOFAS score below 75 at 3 months post-ankle 
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surgery were diagnosed as having a poor prognosis (poor prognosis 
label = 1, non-poor prognosis = 0).

2.3 Feature selection and model 
construction

The flowchart of this study is shown in Figure 1. The included 
patients were divided into two groups chronologically (80% 
training set, 20% test set). The training set data was used to build 
the model, while the test set was used to evaluate the performance 
of the model.

In this study, the Boruta algorithm was employed for feature 
variable selection. The core steps of this method are divided into 
constructing shadow features and random forest voting. Shadow 
features are copies of the original features, where the values are 
randomly rearranged to eliminate their correlation with the outcome 
variable. The Boruta algorithm combines shadow features and original 
features to construct a new dataset, utilizing a random forest model to 
determine the importance of each feature in the new dataset (35). 
Random permutation of attribute values among objects leads to a 
decrease in classification accuracy, and the Z-score, which is the 
average accuracy loss divided by its standard deviation, serves as an 
indicator to measure feature importance for variable selection.

In this study, five machine learning algorithms were employed to 
construct prediction models, namely: random forest (RF), support 
vector machine (SVM), eXtreme gradient boosting (XGBoost), 
logistic regression (LR), and least absolute shrinkage and selection 
operator stacking (lasso-stacking). Among these, lasso-stacking is a 
stacking ensemble model based on the first four models, with lasso 

serving as the meta-model. The first four models underwent five-fold 
cross-validation, while the lasso-stacking model adopted Bootstrap 
resampling for cross-validation to ensure the stability and accuracy of 
the models.

The hyperparameter optimization methods for the random forest, 
SVM, XGBoost, and lasso-stacking algorithms were implemented 
as follows:

 1. Random forest: Within the tidymodels framework, 
hyperparameter tuning was performed using the randomForest 
engine through a 5-fold cross-validation grid search. The key 
hyperparameters optimized included: mtry (number of features 
considered at each split): Initially set as sqrt(p), with optimal 
values selected between 2 and 10; min_n (minimum node 
size): Optimized within the range of 20 to 50; trees (number of 
trees in the forest): Evaluated across 200–500 candidate values. 
The grid search for all hyperparameters was executed using the 
tidymodels framework, with AUC (area under the ROC curve) 
as the evaluation metric. The optimal parameter combination 
was identified as mtry = 33, min_n = 39, and trees = 235, 
achieving an ROC_AUC of 0.692.

 2. XGBoost: Hyperparameter optimization was performed using 
the xgboost engine within the tidymodels framework, 
employing a 5-fold cross-validated grid search. This approach 
enabled systematic evaluation of model performance across 
diverse hyperparameter combinations to identify optimal 
settings. The following hyperparameters were prioritized for 
tuning: mtry (number of features evaluated at each node split), 
trees (total number of decision trees in the ensemble), min_n 
(minimum sample size required for terminal leaf nodes), 

FIGURE 1

Study flow chart. LR: RF, random forest; logistic regression; SVM, support vector machine; XGBoost, eXtreme gradient boosting; L-S, Lasso-Stacking; 
AUC, area under the receiver operating characteristic curve; DCA, decision curve analysis; SHAP, Shapley additive explanations; LIME, Local 
Interpretable Model-Agnostic Explanations.
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tree_depth (maximum permissible depth of individual trees), 
learn_rate (learning rate governing stepwise contributions of 
trees to final predictions), loss_reduction (minimum loss 
reduction required for node splitting), sample_size (proportion 
of training samples utilized per iteration), and stop_iter 
(number of iterations without improvement for early stopping). 
All grid search procedures were executed under the tidymodels 
framework, with AUC (area under the ROC curve) serving as 
the primary evaluation metric. With trees fixed at 1,000 and 
stop_iter set to 25, the optimal parameter combination was 
identified as mtry = 3, min_n = 9, tree_depth = 2, learn_
rate = 0.00564, loss_reduction = 0.0351, and sample_
size = 0.871, achieving an ROC_AUC of 0.639.

 3. SVM: The model was implemented using the svm_rbf() 
function from the tidymodels framework with the kernlab 
engine. A radial basis function (RBF) kernel was employed, 
with two critical hyperparameters—cost (C) and rbf_sigma 
(γ)—optimized via a 5-fold cross-validated grid search over 
predefined parameter spaces. The cost parameter governed the 
penalty for misclassifications, while rbf_sigma determined the 
width of the RBF kernel, thereby influencing model flexibility. 
Hyperparameter tuning was guided by maximization of the 
area under the ROC curve (AUC) to ensure an optimal balance 
between model complexity and generalization capability. The 
optimal parameter combination was identified as cost 
(C) = 5.15 and rbf_sigma (γ) = 0.00905.

 4. Lasso-stacking: A stacked ensemble model was constructed 
within the tidymodels framework, incorporating random forest, 
support vector machine, XGBoost, and logistic regression as base 
learners, with a lasso-regularized logistic regression model 
serving as the meta-learner. Model validation was conducted 
using bootstrap resampling-based cross-validation, with ROC_
AUC adopted as the performance metric. Hyperparameter 
tuning focused on the lasso penalty parameter (λ), which governs 
feature sparsity in the meta-learner. The final model selected 
λ = 0.03316, yielding a sparse ensemble where only a subset of 
base learners contributed to predictions. The stacked ensemble 
demonstrated a mean cross-validated ROC AUC of 0.703.

2.4 Model assessment

In this study, the performance of the models was evaluated 
separately on the training and test sets to determine the best model. 
Initially, the receiver operating characteristic (ROC) curve was 
plotted, and the area under the ROC curve (AUC) was calculated to 
quantify its discriminatory performance. The calibration of the model 
was assessed by plotting a calibration curve and computing the Brier 
score. Subsequently, the precision–recall (P–R) curve was utilized to 
further evaluate the model’s discriminatory ability by plotting the 
relationship between positive predictive value (PPV) and true positive 
rate (TPR) for all thresholds. Additionally, the clinical decision curve 
(DCA) was employed to assess the clinical net benefit of each model. 
The DeLong test was used to evaluate the robustness of the model. 
Finally, additional metrics such as accuracy, Kappa, precision, 
specificity, sensitivity, and F1 score were used to evaluate the predictive 
capabilities of the models (36).

2.5 Model interpretability analysis

In the optimal model, the contribution and significance of each 
feature variable to the outcome were determined based on the Shapley 
Additive Explanation (SHAP) values. Furthermore, Local Interpretable 
Model-Agnostic Explanations (LIME) were used to provide further 
interpretation of the model (37–40).

2.6 Quality control

To reduce bias in the data collection process, which may affect 
the research results, all objective data were obtained from electronic 
medical records and electronic nursing records and entered into the 
database through a double-check process. Unified training was 
conducted before the questionnaire survey, standardized sentences 
were used during the survey, and questionnaire scores were also 
entered into the database using a double cross-check. The database 
is maintained by a designated person, and once data are cross-
checked and entered, they cannot be changed. In the process of 
model construction, to reduce the bias caused by time division, 
we tested the robustness of the model using random stratification 
of the data.

2.7 Statistical analysis

Descriptive and differential statistical analyses were conducted 
using SPSS 26.0 software, while model construction was performed 
using R 4.3.2 software. Measurement data conforming to a normal 
distribution were described using mean ± standard deviation, and 
comparisons between groups were made using the t-test. Count data 
were described using frequencies and rates, and comparisons between 
groups were performed using the chi-square test or Fisher’s exact 
probability method. The R package “Boruta” was used for Boruta 
analysis, while “tidymodels” and “stacks” were employed for model 
training. Stacking utilized bootstrap resampling for hyperparameter 
tuning, while grid search methods were used for hyperparameter tuning 
in the remaining models. The “fastshap,” “shapviz,” and “lime” packages 
were utilized to complete the interpretability analysis of SHAP and 
LIME. A p-value less than 0.05 was considered statistically significant.

3 Results

3.1 Baseline characteristics

In this study, a total of 750 patients undergoing ankle surgery were 
included, with a mean age of (49.93 ± 15.84) years. Among them, 414 
were men and 336 were women. Poor postoperative recovery occurred 
in 248 patients, with an incidence rate of 33.1%. The data were divided 
into the training set and the testing set in chronological order at a ratio 
of 8:2. A comparison of differences between the two datasets revealed 
no significant differences among the variables, indicating 
comparability between the two datasets. Detailed baseline patient 
characteristics and the results of the difference comparison are 
presented in Table 1.

https://doi.org/10.3389/fmed.2025.1553274
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 10.3389/fmed.2025.1553274

Frontiers in Medicine 06 frontiersin.org

TABLE 1 Comparative analysis of data variability between the train set and the test set.

Clinical 
characteristics

Total (n = 750) Training set 
(n = 599)

Testing set 
(n = 151)

χ2/t/Fisher p

Age (years) 49.93 ± 15.84 49.78 ± 15.67 50.54 ± 16.54 −0.53 0.60

Gender (%) 2.34 0.13

  Male 414 (55.2) 339 (56.6) 75 (49.7)

  Female 336 (44.8) 260 (43.4) 76 (50.3)

Education Level (%) 4.45 0.11

  Primary school and below 279 (37.2) 217 (36.2) 62 (41.1)

  Middle school to high 

school

356 (47.5) 282 (47.1) 74 (49.0)

  University and above 115 (15.3) 100 (16.7) 15 (9.9)

VV (%) 0.65 0.42

  Yes 78 (10.4) 65 (10.9) 13 (8.6)

  No 672(89.6) 534 (89.1) 138 (91.4)

HD (%) 0.17 0.68

  Yes 116 (15.5) 91 (15.2) 25 (16.6)

  No 634 (84.5) 508 (84.8) 126 (83.4)

CD (%) 0.17 0.68

  Yes 184 (24.5) 145 (24.2) 39 (25.8)

  No 566 (75.5) 454 (75.8) 112 (74.2)

Diabetes (%) 0.73 0.39

  Yes 174 (23.2) 135 (22.5) 39 (25.8)

  No 576 (76.8) 464 (77.5) 112 (74.2)

Hypertension (%) 5.27 0.02

  Yes 237 (31.6) 201 (33.6) 36 (23.8)

  No 513 (68.4) 398 (66.4) 115 (76.2)

IM (%) 1.73 0.42

  Fall 474 (63.2) 376 (62.8) 98 (64.9)

  Traffic accident injury 141 (18.8) 118 (19.7) 23 (15.2)

  Others 135(18.0) 105(17.5) 30(19.9)

Smoking (%) 0.27 0.61

  Yes 186 (24.8) 151 (25.2) 35 (23.2)

  No 564 (75.2) 448 (74.8) 116 (76.8)

Alcohol consumption (%) 0.03 0.86

  Yes 203 (27.1) 163 (27.2) 40 (26.5)

  No 547 (72.9) 436 (72.8) 111 (73.5)

IS (%) 0.46 0.79

  Left 386 (51.5) 312 (52.1) 74 (49.0)

  Right 335 (44.7) 264 (44.1) 71 (47.0)

  Both 29 (3.9) 23 (3.8) 6 (4.0)

BMI (kg/m2) 24.18 ± 3.39 24.20 ± 3.38 24.11 ± 3.42 0.29 0.78

CLI (%) 1.03 0.31

  Yes 275 (36.7) 225 (37.6) 50 (33.1)

  No 475 (63.3) 374 (62.4) 101 (66.9)

FT (%) 3.10 0.21

  Unilateral ankle fracture 597(79.6) 473 (79.0) 124 (82.1)

  Bilateral ankle fracture 38(5.1) 28 (4.7) 10 (6.6)

  Trimalleolar ankle fracture 115 (15.3) 98 (16.3) 17 (11.3)

(Continued)
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TABLE 1 (Continued)

Clinical 
characteristics

Total (n = 750) Training set 
(n = 599)

Testing set 
(n = 151)

χ2/t/Fisher p

NI (%) 1.23 0.27

  Yes 145 (19.3) 111 (18.5) 34 (22.5)

  No 605 (80.7) 488 (81.5) 117 (77.5)

OF (%) 1.12 0.29

  Yes 146 (19.5) 112 (18.7) 34 (22.5)

  No 604 (80.5) 487 (81.3) 117 (77.5)

CJD (%) 0.26 0.61

  Yes 140 (18.7) 114 (19.0) 26 (17.2)

  No 610 (81.3) 485 (81.0) 125 (82.8)

SWT (days) 7.24 ± 3.40 7.26 ± 3.38 7.17 ± 3.50 0.30 0.76

PUBSD (%) 0.44 0.51

  Yes 634 (84.5) 509 (85.0) 125 (82.8)

  No 116 (15.5) 90 (15.0) 26 (17.2)

PHb (g/L) 118.46 ± 17.71 118.33 ± 17.40 119.01 ± 18.92 −0.42 0.76

PAlb (g/L) 41.39 ± 4.64 41.38 ± 4.63 41.41 ± 4.66 −0.07 0.95

PRBC (×1012/L) 4.03 ± 0.61 4.03 ± 0.60 4.03 ± 0.63 0.10 0.92

OT (min) 108.51 ± 45.31 108.99 ± 46.12 106.63 ± 42.03 0.57 0.57

PDT (%) 0.003 0.96

  Yes 242 (32.2) 193 (32.2) 49 (32.4)

  No 508 (67.7) 406 (67.8) 102 (67.6)

ASA (%) 0.41

  1 671 (89.5) 538 (89.8) 133 (88.1)

  2 71 (9.5) 56 (9.3) 15 (9.9)

  3 8 (1.1) 5 (0.9) 3 (2.0)

LHS (days) 15.10 ± 6.30 15.12 ± 6.27 15.06 ± 6.44 0.10 0.92

VT(%) 2.115 0.15

  Yes 54 (7.2) 39 (6.5) 15 (9.9)

  No 696 (92.8) 560 (93.5) 136 (90.1)

SSI (%) 1.63 0.20

  Yes 35 (4.7) 25 (4.2) 10 (6.6)

  No 715 (95.3) 574 (95.8) 141 (93.4)

PPLAFE (%) 0.63 0.74

Low 367 (48.9) 294 (49.1) 73 (48.3)

Medium 325 (43.3) 261 (43.6) 64 (42.4)

High 58 (7.7) 44 (7.3) 14 (9.3)

PFEC (%) 1.58 0.46

  Low 234 (31.2) 183 (20.6) 51 (33.8)

  Medium 327 (43.6) 268 (44.7) 59 (39.1)

  High 189 (25.2) 148 (24.7) 41 (27.1)

PR (%) <0.001 0.99

  Yes 248 (33.1) 198 (33.1) 50 (33.1)

  No 502 (66.9) 401 (66.9) 101 (66.9)

VV, Varicose Veins; HD, Heart Disease; CD, Cerebrovascular Disease; IM, Injury Mechanism; IS, Injury Site; BMI, Body Mass Index; CLI, Combined Ligament Injury; NI, Nerve Injury; CJD, 
Combined Joint Dislocation; OF, Open Fracture; FT, Fracture Type; SWT, Surgical Waiting Time; PUBSD, Perioperative Use of Blood-activating and Stasis-removing Drugs; PHb, 
Postoperative Hemoglobin; PAlb, Postoperative Albumin; PRBC, Postoperative Red Blood Cell Count; PDT, Postoperative Drainage Tube; OT, Operation Time; LHS, Length of Hospital Stay; 
VT, Venous Thrombosis; SSI, Surgical Site Infection; ASA, The American Society of Anesthesiologists; PPLAFE, Postoperative Pain Level After Functional Exercise; PFEC, Postoperative 
Functional Exercise Compliance.
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3.2 Feature selection

As shown in Figure 2, using the Boruta algorithm, 12 potential 
predictors were selected based on the importance of their Z-scores. 
The selected predictors are as follows: postoperative albumin, 
operation time, injury mechanism, injury site, combined ligament 
injury, fracture severity, combined nerve injury, open fracture, 
combined joint dislocation, postoperative infection, pain level after 
postoperative rehabilitation exercise, and compliance with 
functional exercise.

3.3 Model construction, evaluation, and 
comparison

In both the training and testing sets, all models achieved 
accuracy and AUC values above 0.60, with Brier scores less than 
0.25. The DeLong test p-values for AUC between the training and 
testing sets were all greater than 0.05 (Tables 2–4). Calibration 
curves indicated that all models demonstrated good calibration 
(Figure 3). The ROC curves for the training and testing sets are 
shown in Figure 4. Among the models, the L-S model exhibited the 

FIGURE 2

The Boruta algorithm feature screening graph comprises two sections; (A) the Boruta algorithm feature screening importance ranking of each variable 
and screening results; (B) the Z-score score change of each feature variable. IM, Injury Mechanism; LHS, Length of Hospital Stay; PDT, Postoperative 
Drainage Tube; HD, Heart Disease; VV, Varicose Veins; PUBSD, Perioperative Use of Blood-activating and Stasis-removing Drugs; VT, Venous 
Thrombosis; CD, Cerebrovascular Disease; PRBC, Postoperative Red Blood Cell Count; PAlb, Postoperative Albumin; Education Level_Low: Education 
Level_Primary school and below; Education Level_Medium: Education Level_Middle school to high school; Education Level_High: University and 
above; PPLAFE, Postoperative Pain Level After Functional Exercise; IS, Injury Site; BMI, Body Mass Index; CLI, Combined Ligament Injury; NI, Nerve 
Injury; CJD, Combined Joint Dislocation; OF, Open Fracture; FT, Fracture Type; SWT, Surgical Waiting Time; PHb, Postoperative Hemoglobin; OT, 
Operation Time; SSI, Surgical Site Infection; ASA, The American Society of Anesthesiologists; PFEC, Postoperative Functional Exercise Compliance.
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highest AUC (training set: 0.877, testing set: 0.791) and accuracy 
(training set: 0.796, testing set: 0.762), indicating strong and robust 
discriminatory ability. The LR model is often used as a traditional 
baseline model; therefore, the DeLong test was employed to 
compare the AUC of other models with both the L-S model and the 
LR model. In the training set, the Delong test p-values (both vs. the 
LR model and vs. the lasso-stacking model) were below 0.05. In the 
testing set, the DeLong test p-values compared to the LR model 
were less than 0.05 except for the SVM model, while p-values 
compared to the lasso-stacking model were greater than 0.05 except 
for the LR model. The Lasso-Stacking model also performed better 
or comparably to other models in terms of accuracy, Kappa, 
precision, specificity, sensitivity, and F1 score in both the training 
and testing sets. Additionally, the L-S model achieved the highest 
area under the PR curve among the five models (training set: 0.808, 

testing set: 0.634; Figure 5). Decision curve analysis revealed that 
the SVM model and the lasso-stacking model provided the highest 
clinical net benefit (Figure 6). In addition, the data were randomly 
grouped according to the ratio of 3:7 (dataset 1 and dataset 2), and 
the performance of the model in the two datasets was consistent 
with that observed in the training set and test set. Detailed results 
are presented in Supplementary Table S1S1 and S2 in the Appendix. 
DeLong test p-values > 0.05 indicate that each model demonstrated 
more robustness. Furthermore, the data were stratified based on 
demographic characteristics and fracture types. The performance 
of each model across different demographic characteristics is 
detailed in Supplementary Table S4 in the Appendix, and the 
performance of each model across different fracture types is 
detailed in Supplementary Table S5 in the Appendix. Accuracy and 
ROC curves of each model across different demographic 

TABLE 2 Performance of five machine learning-based models for predicting poor joint recovery after ankle fracture in the training set.

Model Delong 
test 

p-value 
(vs. LR 
model)

DeLong 
test p-
value 

(vs. L-S 
model)

AUC(95%CI) Accuracy Kappa Precision Specificity Sensitivity F1 
score

Brier 
score

RF <0.001 <0.001 0.840(0.807 ~ 0.874) 0.781 0.521 0.650 0.805 0.732 0.689 0.169

LR - <0.001 0.672(0.626 ~ 0.719) 0.651 0.282 0.480 0.643 0.667 0.558 0.203

SVM <0.001 <0.001 0.809(0.770 ~ 0.848) 0.751 0.481 0.593 0.733 0.788 0.677 0.169

XGBoost <0.001 <0.001 0.734(0.692 ~ 0.776) 0.668 0.326 0.498 0.641 0.722 0.590 0.198

Lasso-

stacking

<0.001 - 0.877(0.847 ~ 0.906) 0.796 0.566 0.654 0.788 0.813 0.725 0.18

AUC, area under the curve; 95%CI, confidence interval.

TABLE 3 Performance of five machine learning-based models for predicting poor joint recovery after ankle fracture in the testing set.

Model DeLong 
test p-
value 
(vs. LR 
model)

DeLong 
test p-
value 

(vs. L-S 
model)

AUC(95%CI) Accuracy Kappa Precision Specificity Sensitivity F1 
score

Brier 
score

RF 0.005 0.257 0.779(0.698 ~ 0.860) 0.742 0.448 0.590 0.752 0.720 0.649 0.190

LR - 0.003 0.691(0.603 ~ 0.779) 0.656 0.307 0.486 0.624 0.720 0.581 0.199

SVM 0.053 0.314 0.768(0.686 ~ 0.851) 0.728 0.446 0.563 0.693 0.800 0.661 0.183

XGBoost 0.031 0.153 0.748(0.663 ~ 0.832) 0.722 0.430 0.557 0.693 0.780 0.650 0.198

Lasso-

stacking

0.003 - 0.791(0.711 ~ 0.871) 0.762 0.502 0.606 0.743 0.800 0.690 0.193

AUC, area under the curve; 95%CI, confidence interval.

TABLE 4 Results of AUC DeLong test between training set and testing set of five machine learning.

Model Training set Testing set z p

AUC 95%CI AUC 95%CI

RF 0.840 0.807 ~ 0.874 0.779 0.698 ~ 0.860 1.373 0.171

LR 0.672 0.626 ~ 0.719 0.691 0.603 ~ 0.779 −0.377 0.707

SVM 0.809 0.770 ~ 0.848 0.768 0.686 ~ 0.851 0.881 0.379

XGBoost 0.734 0.692 ~ 0.776 0.748 0.663 ~ 0.832 −0.287 0.775

Lasso-stacking 0.877 0.847 ~ 0.906 0.791 0.711 ~ 0.871 1.968 0.051

AUC, area under the curve; 95%CI, confidence interval.
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characteristics and across different fracture types are compared in 
Appendix Supplementary Figures S1–S4. The comparison showed 
that the lasso-stacking model consistently exhibited the best 
performance. In conclusion, the lasso-stacking model emerged as 
the optimal model and appears most suitable for predicting poor 
recovery after ankle fracture surgery.

3.4 Model interpretation

Through SHAP analysis, clinical practitioners can gain insights 
into the decision-making basis of the lasso-stacking model. 
Figure 7A presents a SHAP summary plot where feature variables 
are sorted based on SHAP importance, from highest to lowest. 

FIGURE 4

Model ROC curve; (A) ROC curve of the model in the training set; (B): ROC curve of the model in the testing set; ROC, receiver operating 
characteristic.

FIGURE 3

Model calibration curve: (A) Model calibration curves in the training set: (B) Model calibration curves in the testing set.
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Figure  7B is a bar chart where feature variables are arranged 
according to the mean absolute SHAP value, also in descending 
order. The SHAP analysis reveals that the variables, in terms of 
importance from greatest to least, are as follows: functional exercise 
compliance, concomitant ligament injury, open fracture, nerve 
injury, fracture severity, injury mechanism, concomitant joint 
dislocation, postoperative albumin level, pain level after 
postoperative rehabilitation exercise, operation duration, injury site, 

and postoperative infection. Figure 7C illustrates the SHAP plots for 
categorical variables, while Figure 7D showcases the SHAP plots for 
continuous variables. Figure 7E demonstrates the contribution of 
various features to the model’s prediction for a single sample of an 
ankle fracture patient who did not experience poor recovery after 
surgery. Meanwhile, Figure 8 utilizes the LIME algorithm to provide 
additional explanations for individual prediction results, 
complementing the interpretability analysis offered by SHAP.

FIGURE 5

Model PR curve; (A) PR curve of the model in the training set; (B) PR curve of the model in the testing set; PR, precision-Recall.

FIGURE 6

Model DCA curve; (A) DCA curves of the model in the training set; (B) DCA curves of the model in the testing set; DCA, decision curve analysis.
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4 Discussion

In this study, the ankle function of patients 3 months after ankle 
fracture surgery was evaluated using the AOFAS scale. It was found 

that 33.1% of patients scored less than 75 on the AOFAS, indicating 
poor joint function recovery after surgery. Despite continuous 
improvements in surgical techniques and rehabilitation exercises for 
ankle fractures in recent years, the incidence of poor joint recovery 

FIGURE 7

SHAP plots. (A) SHAP summary plot shows feature importance for each predictor of the Lasso-Stacking model in descending order. The upper 
predictors are more important to the model’s predictive outcome. For each patient’s Lasso-Stacking model, a point should be created for each feature 
attribute value. The distance of a point from the baseline SHAP value of zero indicates the strength of its effect on the model output. The points are 
coloured according to the value of the feature, with yellow representing high feature values and red representing low feature values. (B) Bar chart of 
mean absolute SHAP for each predictor of the Lasso-Stacking model in descending order (C) SHAP chart for each categorical variable. For each 
patient’s Lasso-Stacking model, a point should be created for each feature attribute value. The distance of a point from the baseline SHAP value of zero 
indicates the strength of its effect on the model output. Yellow for positive results, purple for negative results (D) SHAP chart for each continuous 
variable. For each patient’s Lasso-Stacking model, a point should be created for each feature attribute value. The distance of a point from the baseline 
SHAP value of zero indicates the strength of its effect on the model output. Yellow for positive results, purple for negative results (E) The force plots 
provide personalized feature attributions using one examples. IM, Injury Mechanism; IS, Injury Site; CLI, Combined Ligament Injury; NI, Nerve Injury; 
CJD, Combined Joint Dislocation; OF, Open Fracture: FT, Fracture Type; PHb, Postoperative Hemoglobin; OT, Operation Time; SSI, Surgical Site 
Infection; PPLAFE, Postoperative Pain Level After Functional Exercise; PFEC, Postoperative Functional Exercise Compliance; TAI, Traffic accident injury, 
UAF, Unilateral ankle fracture; BAF, Bilateral ankle fracture; TAF, Trimalleolar ankle fracture.
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after surgery remains high. Therefore, early identification of high-risk 
groups and prompt implementation of relevant intervention measures 
for these groups are key to promoting good joint function recovery.

In this study, we  constructed risk prediction models for poor 
functional recovery after ankle fracture surgery using five common 
machine learning algorithms: random forest, XGBoost, SVM, logistic 
regression, and lasso-stacking. After evaluating each model using metrics 
such as AUC, we found that all models were capable of predicting the 
occurrence of poor joint recovery after ankle fracture surgery to some 
extent, but there were significant differences in their predictive 
performance. The choice of machine learning algorithm mainly depends 
on the distribution of feature variables and model fitness (41). Logistic 
regression, as the simplest and most basic machine learning algorithm, 
performs well in predicting linear relationships between its characteristic 
variables and outcomes but is less effective for predicting non-linear 

relationships. In this study, it demonstrated the worst predictive 
performance. Random forest, a type of bagging integration algorithm, 
combines multiple decision trees. It constructs a random forest by 
integrating multiple decision trees and makes predictions based on the 
voting results of the random forest (42). In this study, the performance 
of the random forest is relatively stable. Compared to other models, the 
random forest model excels particularly when analyzing higher-
dimensional data (43), which was well demonstrated in this study. Its 
overall predictive performance ranked second only to the lasso-stacking 
model. XGBoost may have advantages in predicting higher-dimensional 
data, but it may perform poorly in lower-dimensional datasets, with only 
12 feature variables in this case (40). This limitation likely prevented it 
from fully leveraging its algorithmic strengths in this study. SVM 
operates by solving a hyperplane that can correctly classify the training 
data and maximize the geometric margin, making it effective in handling 
binary classification problems (44). This is well reflected in our study, 
where its overall predictive performance is slightly inferior to the lasso-
stacking and random forest algorithms. Finally, the lasso-stacking model 
exhibited the best predictive performance in this study. The stacking 
model used in this study integrates the four different types of base 
models mentioned above, resulting in improved performance of the 
fused model. Under the fusion framework, the previously output results 
are input into a second-layer learner to obtain a better-performing 
prediction model. The lasso-stacking model in this study effectively 
learns from the advantages of the first four models and performs better 
in predictive performance than the first four models. Therefore, it is more 
suitable for predicting the recovery of patients’ joints after ankle fracture 
surgery. Current evaluation of post-ankle fracture joint function 
predominantly relies on the American Orthopaedic Foot & Ankle 
Society (AOFAS) score. While this instrument effectively assesses 
postoperative functional recovery, it lacks prospective predictive 
capability. To address this limitation, our study developed and compared 
five machine learning models, ultimately selecting the lasso-stacking 
ensemble as the optimal solution. This model leverages preoperative and 
perioperative clinical indicators from hospitalized patients to predict 
3-month postoperative functional outcomes, providing actionable 
insights for clinicians to tailor individualized rehabilitation protocols. 
The lasso-stacking algorithm demonstrated superior discriminative 
performance, achieving area under the ROC curve (AUC) values of 
0.877 (training set) and 0.791 (test set). Model robustness was rigorously 
validated through stratified analyses incorporating random data 
partitioning, demographic stratification, and fracture-type subgrouping, 
confirming consistent predictive stability across heterogeneous 
patient cohorts.

Through interpretive analysis of the optimal model, this study 
reveals that postoperative functional exercise compliance is the most 
critical factor influencing joint function recovery for patients after 
ankle fracture surgery. Numerous studies have shown (45–47) that 
early rehabilitation exercise is essential for the recovery of joint 
function after ankle fracture surgery. However, most clinicians 
currently focus on improving rehabilitation methods while paying 
little attention to patient compliance with these exercises. This has led 
to poor joint function recovery in some patients despite receiving 
feasible rehabilitation training guidance. Therefore, in clinical practice, 
besides instructing patients on correct rehabilitation methods, it is 
also crucial to urge them to perform effective exercises, thus reducing 
the risk of poor postoperative joint function recovery.

Additionally, fracture-related factors such as associated ligament 
damage, nerve damage, joint dislocation, injury mechanism, open 

FIGURE 8

LIME algorithm explains individual prediction results plot. Parsed as 
an example of an ankle fracture. The picture shows the predicted 
expected probability of 80% poor postoperative recovery, estimated 
by the Lasso-Stacking model. This probability was determined by the 
predictive model. The length of each feature bar is proportional to 
the weight of that feature in the prediction. Longer bars represent 
features that contribute more to the predicted outcome. IM, Injury 
Mechanism; IS, Injury Site; CLI, Combined Ligament Injury; NI, Nerve 
Injury; CJD, Combined Joint Dislocation; OF, Open Fracture; FT, 
Fracture Type; PHb, Postoperative Hemoglobin; OT, Operation Time; 
SSI, Surgical Site Infection; PPLAFE, Postoperative Pain Level After 
Functional Exercise; PFEC, Postoperative Functional Exercise 
Compliance; TAI, Traffic accident injury; UAF, Unilateral ankle 
fracture; BAF, Bilateral ankle fracture; TAF, Trimalleolar ankle fracture.
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fractures, injury location, and fracture severity also significantly 
impact joint function recovery after ankle fracture surgery. Among 
these, associated ligament damage is the most critical, possibly due to 
the instability it causes in joint function and the increased risk of 
ligament rerupture with early and extensive functional exercises (11, 
48). This can lead to a fear of postoperative exercises among some 
patients, affecting their recovery. Hence, such patients require closer 
follow-up and individualized exercise plans.

Furthermore, postoperative albumin levels and operation time can 
also affect joint function recovery. According to SHAP, low postoperative 
albumin levels and prolonged surgical time increase the risk of poor joint 
function recovery. Patients with low postoperative albumin often have 
poorer nutritional status and may experience weakness, affecting their 
rehabilitation efforts (49, 50). In addition, albumin also plays roles in 
anti-oxidation, inflammation regulation, and immune response 
modulation (51, 52). In the state of hypoalbuminemia, the human body 
is more prone to trigger systemic inflammatory responses and immune 
suppression,resulting in elevated levels of C-reactive protein (CRP) and 
interleukin-6 (IL-6) in the body. This can cause tissue edema and stiffness 
around the joint, increase the risk of incision or joint cavity infections, 
and delay the recovery process. In addition, albumin plays a key role in 
maintaining plasma colloid osmotic pressure (52). A reduction in 
albumin levels can lead to interstitial fluid retention, resulting in 
postoperative limb swelling, stiffness, and pain, which in turn may 
inhibit patients’ willingness to perform functional exercises. Albumin 
deficiency can also affect collagen synthesis, cell proliferation, and matrix 
reconstruction (53), which will lead to the decline of the regeneration 
ability of fibroblasts, muscle cells, and chondrocytes, thus affecting 
wound healing and tissue repair and directly hindering the recovery of 
joint function. Therefore, it is an important factor that should receive 
more attention from clinical workers. Longer surgical procedures can 
lead to increased intraoperative bleeding and a higher risk of 
postoperative malnutrition. In addition, long-term surgery leads to soft 
tissue exposure, stretching, and electric coagulation for a long time, 
which aggravates local inflammation and scar formation, and affects the 
functional recovery of muscles and ligaments. Furthermore, prolonged 
stretch or compression can lead to muscle ischemia–reperfusion injury 
and impair local tissue activity. Prolonged use of anesthetics (especially 
neuromuscular blocking agents) may affect postoperative nerve 
activation and muscle tone recovery and delay the progress of functional 
exercise. Finally, prolonged operation time may increase the risk of 
infection and complications. Excessive pain during postoperative 
rehabilitation exercises can also cause fear among patients, disrupting 
their rehabilitation plans and affecting joint recovery (12, 54).

Finally, while it is widely known that postoperative infection can 
impact recovery and limb function, its influence was found to 
be relatively minor in this study. This may be due to advancing surgical 
techniques in recent years, which have reduced the incidence of 
postoperative infections and subsequent poor recovery, thereby 
diminishing the significance of this factor.

In this study, the development of a risk prediction model for 
postoperative poor joint function recovery in patients with ankle 
fractures is innovative. The constructed model demonstrated strong 
performance and can be preliminarily applied to support early and 
accurate prevention and control in clinical practice. In addition, 
interpretability analysis of the model identified important factors 
influencing poor joint function recovery in patients with ankle fracture 
after surgery, which provides some insights for clinical workers to 

intervene early. Finally, this study may serve as a foundation for future 
research on causal relationships and intervention strategies. However, 
there are certain limitations in this study. First, as a single-center study, 
it only validated internal data without external validation of the model, 
which may have an impact on the generalizability and robustness of the 
findings. Second, some data were incomplete, such as the degree of 
limb swelling and rehabilitation exercise methods, which were not 
included in the analysis. Previous studies have shown (15, 18) that 
rehabilitation exercises involving removable ankle support and 
different exercise duration can influence the recovery of joint function 
after ankle fracture surgery. However, this type of data is not optimized 
at present, and the lack of this metric may have an impact on the 
performance of the model. Finally, this study did not consider the 
changes in patients’ characteristics after discharge. Therefore, in the 
future, it is necessary to strengthen regional cooperation, further 
optimizing data collection and processing, continuously refining the 
model for different population data, and improving its accuracy. After 
multi-dimensional verification of the model, a visual early warning 
platform can be  constructed to enable clinical workers to quickly 
identify high-risk patients and implement accurate prevention and 
control in the early stage.

5 Conclusion

Finally, this study developed five machine learning models and 
found that the lasso-stacking model showed the best performance, 
making it the most suitable for predicting high-risk populations with 
poor joint function recovery after ankle fracture surgery. Explanatory 
analysis of this model helped clarify its decision-making basis. In the 
future, the model should be verified and improved through multi-
center external validation to support its application in clinical practice.
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