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Background:Mechanical power (MP) and ventilatory ratio (VR) are crucialmetrics

in the management of acute respiratory distress syndrome (ARDS). This study

aimed to evaluate the impact of these factors on ICU mortality in patients with

ARDS undergoing pressure-controlled ventilation.

Methods: In this retrospective study, we included 600 adult patients with

ARDS who required mechanical ventilation for > 48h between March 2018 and

February 2021 in a tertiary referral hospital in Korea. The MP was calculated

using Becher’s simplified equation, and the VR was determined using standard

formulas. The ventilatory parameters were measured hourly during the first 12h

of ventilation. Clinical characteristics, ventilator settings, and outcomes were

compared between the survivors and non-survivors. Multiple logistic regression

models were used to assess the predictive performance of the respiratory and

mechanical ventilation parameters for ICU mortality.

Results: Of the 600 patients, 61.5% (n= 369) survived to hospital discharge. Non-

survivors had higher rates of chronic liver disease, hematologic malignancies,

and solid tumors. The survivors demonstrated lower respiratory rates (21 vs.

22 breaths/min, p < 0.001), tidal volumes (491 vs. 445mL, p = 0.048), and

peak pressures (22.0 vs. 24.3 cm H2O, p < 0.001). Significant di�erences were

observed in driving pressure (15.0 vs. 16.0 cm H2O, p = 0.001), MP (18.8 vs.

21.8 J/min, p < 0.001), LTCdyn-MP (7,371 vs. 8,780 cm H2O/min, p < 0.001),

and power index (5,429 vs. 6,386 cm H2O/min, p = 0.005) between survivors

and non-survivors. In adjusted models, MP (OR 1.03, 95% CI 1.01–1.05, p =

0.006), VR (OR 1.39, 95% CI 1.02–1.92, p = 0.040), and PBW-adjusted MP (OR

1.02, 95% CI 1.00–1.03, p = 0.009) were significant predictors of ICU mortality.
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Conclusion: Our findings indicate that MP and VR were independently

associated with ICU mortality in patients with ARDS undergoing pressure-

controlled ventilation.

KEYWORDS

acute respiratory distress syndrome, mechanical power, mechanical ventilation,

ventilatory ratio, acute respiratory

1 Introduction

Mechanical ventilation is essential for managing acute

respiratory distress syndrome (ARDS), particularly to alleviate

severe hypoxemia and reduce respiratory effort (1). However,

ARDS is associated with a 40% mortality rate (2). In patients with

ARDS, ventilator-induced lung injury is a major concern during

mechanical ventilation (3). This results from mechanical forces,

such as pressure, volume, and flow, generated by the interaction

between the ventilator and the patient’s respiratory system.

Understanding mechanical power (MP) is crucial to

understand ventilator-induced lung injury (4). Gattinoni et al.

developed a method to calculate MP in volume-controlled

ventilation (5). Van der Meijen et al. extended this method

to pressure-controlled ventilation (6). Recently, Becher et al.

introduced a simplified equation for pressure-controlled

ventilation (7) that demonstrated a significant association

between MP and mortality in patients with ARDS, independent of

the use of neuromuscular blocking agents (8).

Ventilatory ratio (VR) is an important metric for managing

ARDS; it is defined as the ratio of the observed to predicted

minute ventilation, and has demonstrates a strong correlation with

mortality in patients with ARDS (9, 10). Its simplicity and strong

prognostic value make it a useful tool for assessing the severity of

respiratory failure and guiding therapeutic interventions.

Despite the importance of MP and VR individually,

comparative studies evaluating their relative efficacy in predicting

mortality in patients with ARDS are scarce. Therefore, in this

study, we aimed to evaluate the impact of MP on ICU mortality

in patients with ARDS and to compare it with the VR and other

respiratory indices.

2 Materials and methods

2.1 Study population

We included individuals aged 18 years and older who were

diagnosed with ARDS according to the Berlin definition (11). These

Abbreviations: AIC, Akaike Information Criterion; ALT, alanine

aminotransferase; ARDS, acute respiratory distress syndrome; AST, aspartate

aminotransferase; CI, confidence interval; FDR, false discovery rate; FiO2,

fraction of inspired oxygen; ICU, intensive care unit; IQR, interquartile range;

LTCdyn, dynamic lung-thorax compliance; MP, mechanical power; OR,

odds ratio; PaCO2 , partial pressure of arterial carbon dioxide; PaO2, partial

pressure of arterial oxygen; PBW, predicted body weight; PEEP, positive

end-expiratory pressure; RR, respiratory rate; SpO2, oxygen saturation; VIF,

Variance Inflation Factor; VR, ventilatory ratio; Vt, tidal volume.

patients required sustained mechanical ventilation support for over

48 h between March 1, 2018, and February 28, 2021. This study

was conducted in two intensive care units (ICUs) of a tertiary

referral hospital in Seoul, South Korea. Patients who were initiated

on mechanical ventilation for over 48 h after ICU admission, those

undergoing extracorporeal membrane oxygenation, and those with

incomplete data necessary for calculating MP were excluded.

This study adhered to the ethical standards of the Declaration

of Helsinki and was approved by the Institutional Review Board of

the Samsung Medical Center (IRB No. 2022-12-146). Due to the

observational nature of the study, the Institutional Review Board

waived the requirement for informed consent.

2.2 Lung protective mechanical ventilation
management

In the Samsung Medical Center ICU, patient care and

mechanical strategies are strictly governed by established ICU

protocols (12). This protocol mandates lung-protective ventilation

in all patients, necessitating mechanical ventilation. Central to

this approach are the objectives of maintaining target oxygen

levels, specifically a partial pressure of arterial oxygen (PaO2)

between 55 and 80mm Hg or an oxygen saturation (SpO2) range

of 88–95%. An initial minimum positive end-expiratory pressure

(PEEP) of 5 cm H2O was applied and adjustments to PEEP were

made according to the lower PEEP-FiO2 tables derived from the

ARDSnet protocols (12). In our ICU, a PEEP trial was conducted

for patients requiring higher levels of support. Beginning from

a baseline PEEP (e.g., 5 cm H2O), we incrementally increased

PEEP by 5 cm H2O while assessing changes in oxygenation

(PaO2/FiO2) and monitoring for any signs of hemodynamic

instability (≥20% drop in mean arterial pressure or cardiac output

when available). If oxygenation improved without significant

compromise of hemodynamics, PEEP was further adjusted

according to the ARDSNet lower PEEP-FiO2 table (12). Within

these ICUs, pressure-controlled ventilation relative is preferred

over volume-controlled ventilation. The protocol stipulates a

tidal volume of 6 mL/kg of predicted body weight, with efforts

to maintain a driving pressure below 15 cm H2O and a plateau

pressure under 30 cm H2O. The fraction of inspired oxygen (FiO2)

was set to the minimum level necessary to maintain PaO2 within

the defined range. Furthermore, the ventilation protocol integrates

sedation management strategies, advocating light sedation with

routine daily interruptions and assessment of spontaneous

breathing trials (13). In scenarios of refractory hypoxemia,

alternative therapeutic measures such as prone positioning,

neuromuscular blocking agents, extracorporeal membrane
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oxygenation, or nitric oxide inhalation, adhere to rigorous protocol

guidelines (14).

2.3 Data collection

This retrospective review involved extracting clinical

characteristics from patient records and the Clinical Data

Warehouse of Samsung Medical Center (DARWIN-C). Variables

such as underlying comorbidities, ICU treatment, and detailed

specifications of mechanical ventilation were included. During

the first 12 h of mechanical ventilation, when ventilator settings

were recorded, all patients received a deep sedation protocol

(target Richmond Agitation-Sedation Scale of ∼-2 to −3) to

minimize active inspiratory efforts. Neuromuscular blocking

agents were administered at the discretion of the treating physician

based on the severity of hypoxemia or ventilator dyssynchrony,

but were not mandatory. This approach aimed to maintain a

controlled ventilation state, thereby reducing the potential impact

of spontaneous breathing on mechanical power calculations. The

subsequent analysis focused on determining the median values

of these parameters, which were utilized for further calculations.

Laboratory assessments, including arterial blood gas analysis,

were performed based on the values closest to the initiation of

mechanical ventilation, with further results considered for up to 2

days post-initiation.

2.4 Mechanical power calculation

MP was calculated using Becher’s simplified equation: MPPCV
= 0.098 · RR · Vt · (1Pinsp + PEEP) (7). We chose this formula

over the van der Meijden equation primarily because it requires

fewer parameters that are already displayed on standard ICU

ventilator monitors, thus enabling rapid bedside calculation. In

addition, our institution routinely employs PCV, and the Becher

formula has shown good applicability in PCV-based protocols in

prior studies. In this formula, 0.098 represents the conversion

factor, converting the resultant value to J/min. Here, RR is the

respiratory rate expressed in breaths per minute, Vt is the tidal

volume measured in liters, and 1Pinsp reflects the change in

airway pressure during inspiration. Driving pressure, which is

crucial for evaluating lung stress, was determined by subtracting

PEEP from the peak inspiratory pressure. Additionally, dynamic

lung-thorax compliance (LTCdyn) is the ratio of tidal volumes to

driving pressure (mL/cm H2O), providing an index of lung and

thorax elasticity (15). MP was initially calculated using Becher’s

equation, which incorporates tidal volume set to each patient’s

predicted body weight (PBW). We then further normalized

the resulting MP values to PBW (PBW-MP) to account for

potential variations in functional lung size among ARDS patients,

recognizing that an identical total MP may impose different

levels of stress on smaller vs. larger lungs (5, 16, 17). MP was

also normalized to lung-thorax compliance (LTC), yielding the

LTC-MP (J/min · cmH2O/mL) (12). The ventilation ratio (VR)

was calculated using the following equation: [minute ventilation

(mL/min) × PaCO2 (mmHg)]/[predicted body weight (kg) × 100

× 37.5] (18). Furthermore, the Power Index (cm H2O/min) was

derived using the following formula: Power Indexrs = LTCdyn

– MP × (PaCO2-actual/PaCO2-target), where the PaCO2-target

was established at 45.0 mmHg (6.0 kPa), corresponding to the

hypercapnic threshold for all patients (19).

2.5 Clinical outcomes

The primary outcome evaluated was ICU mortality. Secondary

outcomes included hospital mortality, length of stay in the ICU,

length of hospital stay, number of ventilator-free days on day 28,

success rate of weaning frommechanical ventilation, and incidence

of tracheostomy.

2.6 Statistical analysis

Descriptive statistics were used to assess the differences in

clinical characteristics and outcomes between ICU survivors and

non-survivors. Normality of continuous variables was assessed

using the Shapiro–Wilk test. We applied the Student’s t-test for

normally distributed data and the Wilcoxon rank-sum test for

non-normally distributed data. Results are presented as mean

± standard deviation or median [interquartile range (IQR)], as

appropriate. Categorical variables were reported as counts and

percentages and evaluated using chi-square or Fisher’s exact tests,

as necessary. A multiple logistic regression model subsequently

included variables that achieved statistical significance in the

univariate analyses (p < 0.05) and those that were deemed

clinically relevant. This model reported odds ratios (ORs) and

95% confidence intervals (CIs) for each variable. We used the

Benjamini-Hochberg method to control for multiple comparisons

and applied the False Discovery Rate (FDR) correction. A corrected

p-value of < 0.05 was considered statistically significant. We

assessed the goodness-of-fit of our final multivariable logistic

regression model using the Akaike Information Criterion (AIC).

An AIC value of 593.53 suggested an acceptable model fit.

Furthermore, covariates were chosen based on clinical importance

and prior evidence to minimize overfitting risks. We assessed

multicollinearity among model variables using the Variance

Inflation Factor (VIF). All variables exhibited VIF values below

10, suggesting no significant multicollinearity. Statistical analyses

were performed using the R Statistical Software (version 3.2.5;

R Foundation for Statistical Computing, Vienna, Austria).

Significance was determined using a two-tailed P-value of <0.05.

3 Results

3.1 Clinical characteristics

Among the 600 patients with ARDS included in the analysis,

61.5% (n = 369) survived until ICU discharge (Figure 1). Table 1

shows the comparative analysis of ICU survivors and non-

survivors. We observed no significant differences in age, sex, or

body mass index between the groups. However, non-survivors

had higher rates of chronic liver disease (18.2 vs. 10.6%, p =
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FIGURE 1

Flow chart detailing patient selection and group distribution.

0.011), hematologic malignancies (25.5 vs. 14.9%, p = 0.002),

solid malignant tumors (32.9 vs. 23.0%, p = 0.010), and history

of steroid use (30.7 vs. 19.8%, p = 0.003). The reasons for

ICU admission also varied, with respiratory and neurological

causes being more prevalent among survivors. At the initiation

of mechanical ventilation, the survivors had significantly lower

initial Sequential Organ Failure Assessment scores (median 9.0 vs.

12.0; p < 0.001) and lactate levels (median 3.4 vs. 9.0; p < 0.001).

Additionally, non-survivors had a higher incidence of severe ARDS

than survivors (20.8 vs. 11.4%, p= 0.003). Other notable differences

included lower platelet counts; higher bilirubin, AST, and ALT

levels; and slightly elevated creatinine levels in non-survivors, all

of which were statistically significant (p < 0.05).

3.2 Mechanical ventilator settings and
outcomes

Mechanical ventilator settings differed significantly between

non-survivors and survivors (Table 2). Non-survivors had

significantly higher absolute tidal volumes than survivors [445mL

(IQR 372–536) vs. 419mL (IQR 357–515); p = 0.048]. When

adjusted for PBW, however, this difference was not statistically

significant [7.8 (IQR 6.6–9.2) vs. 7.4 (IQR 6.2–8.8) mL/kg PBW;

p = 0.055]. Survivors also had a lower respiratory rate (21 vs.

22 breaths/min; p < 0.001) and a lower peak pressure (22.0 vs.

24.3 cm H2O; p < 0.001). Regarding respiratory indices, survivors

had significantly lower driving pressure (15.0 cm H2O, IQR

12.0–18.0 vs. 16.0 cm H2O, IQR 13.5–20.0; p = 0.001), mechanical

power (18.8 J/min, IQR 14.8–25.0 vs. 21.8 J/min, IQR 17.5–30.4;

p < 0.001), LTCdyn-MP (7,371 cm H2O/min, IQR 5,000–10,296

vs. 8,780 cm H2O/min, IQR 5,786–12,880; p < 0.001), and

power index (5,429 cm H2O/min, IQR 3,604–8,149 vs. 6,386 cm

H2O/min, IQR 4,164–10,209; p = 0.005). There was no significant

difference in LTCdyn levels between the groups (p= 0.372).

TABLE 1 Comparative analysis of demographic, clinical, and laboratory

characteristics of non-survivors and survivors of acute respiratory failure.

Variables Non-survivors
(n = 231)

Survivors
(n = 369)

p-
value

Age, years 66.0 (59.0–74.5) 69.0 (59.0–76.0) 0.106

Sex, female 84 (36.4) 122 (33.1) 0.459

Body mass

index, kg/m2

22.8 (20.4–24.8) 22.2 (19.6–24.9) 0.155

Comorbidities

Diabetes

mellitus

60 (26.0) 105 (28.5) 0.570

Cardiovascular

disease

26 (11.3) 50 (13.6) 0.486

Chronic lung

disease

57 (24.7) 103 (27.9) 0.437

Chronic liver

disease

42 (18.2) 39 (10.6) 0.011

Chronic

kidney disease

31 (13.4) 60 (16.3) 0.304

Hematological

malignancies

59 (25.5) 55 (14.9) 0.002

Solid

malignant

tumor

76 (32.9) 85 (23.0) 0.010

History of

steroid use

71 (30.7) 73 (19.8) 0.003

Reason for ICU admission 0.007

Respiratory 135 (58.4) 252 (68.3)

Cardiovascular 53 (22.9) 58 (15.7)

Septic shock 32 (13.9) 31 (8.4)

Neurologic 1 (0.4) 8 (2.2)

Gastrointestinal 5 (2.2) 4 (1.1)

Others∗ 5 (2.2) 16 (4.3)

Initial SOFA

score

12 (9–16) 9 (6–12) <0.001

Laboratory test

White blood

cell count,

103/µL

10.8 (2.1–18.2) 11.1 (7.0–15.7) 0.144

ANC,

×103/µL

7.9 (1.7–15.2) 9.3 (5.8–13.3) 0.050

Hemoglobin,

g/dL

9.1 (7.9–11.0) 9.6 (8.5–11.2) 0.003

Platelet,

×103/µL

83 (30–195) 155 (77–249) <0.001

Total bilirubin,

mg/dL

1.1 (0.6–2.8) 0.7 (0.4–1.3) <0.001

AST 51.0 (27.0–153.5) 37.0 (23.0–71.0) <0.001

ALT 31.0 (18.0–83.5) 26.0 (14.0–49.5) <0.001

Blood urea

nitrogen

28.1 (18.4–43.2) 25.1 (16.8–39.0) 0.149

Creatinine,

mg/dL

1.1 (0.7–1.7) 0.9 (0.6–1.6) 0.031

(Continued)
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TABLE 1 (Continued)

Variables Non-survivors
(n = 231)

Survivors
(n = 369)

p-
value

ARDS category∗∗ 0.003

Mild 62 (26.8) 132 (35.8)

Moderate 121 (52.4) 195 (52.8)

Severe 48 (20.8) 42 (11.4)

Values are expressed as median (interquartile range) or n (%).

ALT, alanine aminotransferase; ANC, absolute neutrophil count; ARDS, acute respiratory

distress syndrome; AST, aspartate aminotransferase; ICU, intensive care unit; SOFA,

Sequential Organ Failure Assessment.
∗Others included hepatic, renal, and metabolic disorders.
∗∗Mild = 200 mmHg< partial pressure of oxygen in arterial blood (PaO2)/fractional

concentration of inspired oxygen (FiO2)≤ 300 mmHg, moderate= 100 mmHg< PaO2/FiO2

≤ 200 mmHg, severe= PaO2/FiO2 ≤ 100 mmHg.

Survivors also had lower rates of vasopressor (68.3 vs. 93.5%;

p < 0.001), systemic glucocorticoid (59.6 vs. 74.5%; p < 0.001),

and neuromuscular-blocking drug use (13.8 vs. 23.4%; p = 0.004).

The clinical outcomes indicated that survivors had longer ICU stays

(8 days, IQR 5–13 vs. 6 days, IQR 2–12; p < 0.001) and higher

weaning success rates (79.9 vs. 14.3%; p < 0.001). There was no

significant difference in the number of ventilator-free days on day

28 (p= 0.109).

3.3 Respiratory and mechanical ventilation
parameter variables

The predictive performance of the respiratory and mechanical

ventilation parameters for ICU mortality was assessed (Table 3 and

Figure 2). Significant predictors included respiratory rate (OR 1.07,

95%CI 1.03–1.12, p< 0.001), peak pressure (OR 1.06, 95%CI 1.02–

1.09, p < 0.001), driving pressure (OR 1.06, 95% CI 1.02–1.10, p =

0.002), FiO2 (OR 1.02, 95% CI 1.01–1.03, p < 0.001), PaO2/FiO2 ≤

200 (OR 1.52, 95% CI 1.06–2.19, p = 0.023), MP (OR 1.04, 95% CI

1.03–1.06, p < 0.001), VR (OR 1.49, 95% CI 1.15–1.96, p = 0.003),

PBW-adjustedMP (OR 1.02, 95%CI 1.01–1.03, p< 0.001), LTCdyn-

MP (OR 1.07, 95% CI 1.04–1.11, p < 0.001), and power index (OR

1.04, 95% CI 1.01–1.07, p = 0.013). In adjusted models (Table 4),

significant predictors of ICU mortality included mechanical power

(adjusted OR 1.03, 95% CI 1.01–1.05, p = 0.006), VR (adjusted

OR 1.39, 95% CI 1.02–1.92, p = 0.040), and PBW-adjusted MP

(adjusted OR 1.02, 95% CI 1.00–1.03, p = 0.009). Other indices,

such as the driving pressure, LTCdyn, LTCdyn-MP, and power index,

did not reach statistical significance in the adjusted models.

4 Discussion

In this study, we aimed to evaluate the impact of MP

on ICU mortality and to compare MP with other respiratory

indices in patients with ARDS. Our findings suggest that MP is

associated with higher ICUmortality, but not with driving pressure

or LTCdyn-MP. Moreover, the VR was significantly associated

with mortality.

TABLE 2 Comparative analysis of ventilatory variables, respiratory

indices, and clinical outcomes in survivors and non-survivors.

Variables Non-
survivors
(n = 231)

Survivors
(n = 369)

p-
value

Ventilatory variables

Respiratory rate,

breaths/min

22 (20–25) 21 (18–24) <0.001

Tidal volume, mL 445 (372–536) 419 (357–515) 0.048

Tidal

volume/predicted

body weight, mL/kg

7.8 (6.6–9.2) 7.4 (6.2–8.8) 0.055

Peak pressure, cm

H2O

24.3 (20.0–28.0) 22.0 (19.0–25.9) <0.001

PEEP, cm H2O 8.0 (5.0–8.5) 7.0 (5.0–8.0) 0.779

FiO2 50.0 (40.0–60.0) 60.0 (50.0–80.0) <0.001

Respiratory indices

Driving pressure,

cm H2O

16.0 (13.5–20.0) 15.0 (12.0–18.0) 0.001

Mechanical power,

J/min

21.8 (17.5–30.4) 18.8 (14.8–25.0) <0.001

LTCdyn , mL/cm

H2O

27.8 (21.2–35.6) 28.9 (22.1–36.9) 0.372

PBW–MP, J/min/kg 0.394

(0.303–0.527)

0.327

(0.257–0.436)

<0.001

LTCdyn-MP, cm

H2O/min

8,780

(5,786–12,880)

7,371

(5,000–10,296)

<0.001

Power indexrs , cm

H2O/min

6,386

(4,164–10,209)

5,429

(3,604–8,149)

0.005

Ventilatory ratio 1.57 (1.25–1.98) 1.43 (1.12–1.74) <0.001

In-ICU treatment

Vasopressor use 216 (93.5) 252 (68.3) <0.001

Systemic

glucocorticoid

172 (74.5) 220 (59.6) <0.001

Neuromuscular

blocking drug

54 (23.4) 51 (13.8) 0.004

Clinical outcomes

Length of stay in

ICU, days

6.0 (2.0–12.0) 8.0 (5.0–13.0) <0.001

Ventilator-free days

at day 28, days

22.0 (19.0–26.0) 24.0 (21.0–26.0) 0.109

Weaning success 33 (14.3) 295 (79.9) <0.001

Hospital mortality 231 (100.0) 179 (48.5) <0.001

Length of stay in

hospital, days

12.0 (4.0–23.0) 27.0 (15.0–46.5) <0.001

Values are expressed as median (interquartile range) or n (%).

FiO2 , fractional concentration of inspired oxygen; ICU, intensive care unit; LTC, lung-

thorax compliance; MP, mechanical power; PBW, predicted body weight; PEEP, positive

end-expiratory pressure.

In the management of ARDS, lung-protective strategies aim

to optimize gas exchange while minimizing ventilator-induced

lung injury. MP, representing the total energy imparted to the

lung per unit of time, is influenced by ventilator settings such as
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respiratory rate, tidal volume, and inspiratory pressure (5). Several

studies have evaluated the association between MP and mortality

in critically ill patients. Neto et al. conducted a retrospective study

to evaluate the association between MP and clinical outcomes in

8,207 patients receiving invasive ventilation for at least 48 h (20)

and found that patients with higher MP had higher in-hospital

mortality, ICU mortality, and fewer ventilation-free days. Our

study corroborates these findings and demonstrates that increased

MP is a risk factor for ICU mortality in patients with ARDS.

Unlike previous studies, we classified patients according to the

severity of ARDS and performed multivariate regression analysis,

TABLE 3 Predictive performance of respiratory and mechanical

ventilation parameters for ICU mortality.

Variables OR (95% CI) p-value

Respiratory rate, breaths/min 1.07 (1.03–1.12) <0.001

Tidal volume/PBW, mL/kg 1.07 (0.99–1.14) 0.076

Peak pressure, cm H2O 1.06 (1.02–1.09) <0.001

Driving pressure, cm H2O 1.06 (1.02–1.10) 0.002

PEEP 0.99 (0.95–1.04) 0.794

FiO2 1.02 (1.01–1.03) <0.001

PaO2/FiO2 ≤ 200 1.52 (1.06–2.19) 0.023

Ventilatory indices

Mechanical power, J/min 1.04 (1.03–1.06) <0.001

Ventilatory ratio 1.49 (1.15–1.96) 0.003

LTCdyn , mL/cm H2O 1.00 (0.99–1.01) 0.676

PBW–MP, per 10−2 J/min/kg 1.02 (1.01–1.03) <0.001

LTCdyn-MP, per 1,000 cm H2O/min 1.07 (1.04–1.11) <0.001

Power indexrs , per 1,000 cm H2O/min 1.04 (1.01–1.07) 0.013

CI, confidence interval; FiO2 , fractional concentration of inspired oxygen; ICU, intensive care

unit; LTC, lung-thorax compliance; MP, mechanical power; OR, odds ratio; PaO2 , partial

pressure of oxygen; PBW, predicted body weight; PEEP, positive end-expiratory pressure.

specifically in patients with moderate and severe ARDS. However,

a recent study by Coppola et al. involving 222 patients with ARDS

found no significant difference in MP between survivors and non-

survivors, and MP did not influence ICU mortality (16). These

discrepancies highlight the need for larger cohort studies with

detailed information to better understand the relationship between

MP and clinical outcomes in patients with ARDS.

VR has been proposed as an alternative surrogate marker for

the dead space fraction. Encompassing both predicted minute

ventilation and predicted PaCO2, VR has been characterized as

a tool for assessing ventilatory efficiency (18). It is an indirect

indicator of dead-space ventilation and has been increasingly

validated for its prognostic value in patients with ARDS (21, 22).

A prospective study by Morales-Quinteros et al. evaluated the

association between VR and 30-day mortality in 940 patients with

early ARDS (23). They found that VR was associated with mortality

on day 2 in ARDS. Our study also found that VR calculated from

TABLE 4 Adjusted odds ratios and statistical significance of respiratory

indices in predicting ICU mortality.

Variables aAdjusted OR (95% CI) p-value

Mechanical power, J/min 1.03 (1.01–1.05) 0.006

Driving pressure, cm H2O 1.02 (0.98–1.07) 0.290

Ventilatory ratio 1.39 (1.02–1.92) 0.040

LTCdyn , mL/cm H2O 1.00 (0.99–1.02) 0.550

LTCdyn-MP, per 1,000 cm

H2O
2/min

1.04 (1.00–1.08) 0.090

PBW–MP, per 10−2 J/min/kg 1.02 (1.00–1.03) 0.009

Power indexrs , cm H2O
2/min 1.02 (1.00–1.06) 0.170

aMultivariable regression models included age, hematologic malignancy, solid tumor,

respiratory cause at ICU admission, initial SOFA score, and ARDS severity (PaO2/FiO2 ;

reference > 200).

CI, confidence interval; FiO2 , fractional concentration of inspired oxygen; ICU, intensive care

unit; LTC, lung-thorax compliance; MP, mechanical power; OR, odds ratio; PBW, predicted

body weight.

FIGURE 2

Association between ventilator indices and ICU mortality. (a) Mechanical power, (b) ventilatory ratio. The black line represents the estimated odds

ratio, and the gray shaded area indicates the 95% confidence interval.
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early ventilation parameters was significantly associated with ICU

mortality in patients with ARDS.

The findings of the present study have important clinical

implications. First, they highlighted the potential of MP as a

valuable tool for guiding ventilation strategies in patients with

ARDS. The association between a higher MP and increased ICU

mortality suggests that clinicians should consider strategies to

minimize MP while maintaining adequate gas exchange. Secondly,

the persistent prognostic value of VR, even when calculated from

early measurements, emphasizes its utility as an early indicator of

poor outcomes in patients with ARDS. This suggests that VR can

be incorporated into early risk stratification protocols, potentially

allowing for more timely interventions or escalation of care for

high-risk patients. Third, the independent associations of both

MP and VR with ICU mortality suggest that these parameters

provide complementary information regarding patient condition.

The MP primarily reflects the mechanical stress imposed on the

lungs, whereas the VR provides insight into the efficiency of

gas exchange and dead space ventilation. Finally, our findings

emphasize the importance of individualized ventilation strategies in

ARDS management. The complex relationship among mechanical

forces, gas exchange efficiency, and patient outcomes suggests

that a standardized approach to mechanical ventilation may

be suboptimal.

Although our study provides valuable information on the

roles of the MP and VR in the prognosis of ARDS, several

limitations should be acknowledged. First, as a non-randomized,

single-center cohort study, our results may have been influenced

by potential confounding factors and selection biases. Despite

the differences in baseline disease severity, both MP and VR

remained significant independent predictors of ICUmortality after

adjusting for major severity indicators (SOFA score, PaO2/FiO2,

comorbidities) in our multivariate analysis. However, given the

retrospective design, we cannot exclude the possibility of residual

confounding, and this limitation should be considered when

interpreting our results. Second, ventilator settings were collected

exclusively within the first 12 h of mechanical ventilation, a period

during which sedation is generally maintained at a level sufficient to

limit spontaneous breathing in ARDS management. Nonetheless,

we concede that subtle spontaneous efforts may still occur, and the

influence of patient-initiated breaths cannot be entirely excluded.

The MP equation (Becher’s simplified equation) used in this

study was originally derived from research conducted on passively

ventilated patients. Additionally, dynamic changes in MP and

VR during the ventilation period were not analyzed, and the

study does not capture subsequent ventilator adjustments over

time. This limitation may contribute to residual confounding, and

future prospective studies with longitudinal ventilator data are

warranted to address this gap. Third, we did not measure plateau

pressure directly through an inspiratory hold maneuver. Instead,

the inspiratory time was long enough that peak pressure likely

approximated plateau pressure in pressure-controlled ventilation.

Fourth, while our study focused on ICU mortality as the primary

outcome, future research could explore the relationship between

MP, VR, and other important clinical outcomes, such as the

duration of mechanical ventilation, incidence of barotrauma,

or long-term outcomes in survivors of ARDS. Fifth, due to

the retrospective nature of this study, a formal sample size

calculation was not conducted. Rather, we included all eligible

ARDS patients admitted during the study period. Post-hoc power

analysis demonstrated sufficient power for LTCdyn-MP (0.9386)

and the power index (0.9511), but slightly inadequate power

for driving pressure (0.7207). Therefore, the lack of statistical

significance for driving pressure may be due to limited power

rather than a true absence of effect. Finally, given the multiple

comparisons in this study, we recognize the increased risk of Type

I errors. Although FDR correction was applied to mitigate this risk,

no formal correction (e.g., Bonferroni correction) was used, and

findings were interpreted cautiously considering both statistical

and clinical significance; however, the possibility of residual false-

positive results cannot be entirely excluded, which is a limitation of

this study.

5 Conclusions

Our study demonstrates that MP and VR were independently

associated with ICU mortality in patients with ARDS undergoing

pressure-controlled ventilation. These findings emphasize the

importance of individualized ventilation strategies to improve

patient outcomes.
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