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Accurate classification of carotid plaques is critical to assessing the risk of

cardiovascular disease. However, this task remains challenging due to several

factors: temporal discontinuity caused by probemotion, the small size of plaques

combined with interference from surrounding tissue, and the limited availability

of annotated data, which often leads to overfitting in deep learning models.

To address these challenges, this study introduces a structured self-distillation

framework, named DualDistill, designed to improve classification accuracy and

generalization performance in analyzing ultrasound videos of carotid plaques.

DualDistill incorporates two novel strategies to address the identified challenges.

First, an intra-frame relationship-guided strategy is proposed to capture long-

term temporal dependencies, e�ectively addressing temporal discontinuity.

Second, a spatial-temporal attention-guided strategy is developed to reduce the

impact of irrelevant features and noise by emphasizing relevant regions within

both spatial and temporal dimensions. These strategies jointly act as supervisory

signals within the self-distillation process, guiding the student layers to better

align with the critical features identified by the teacher layers. Besides, the self-

distillation process acts as an implicit regularizationmechanism,which decreases

overfitting in limited datasets. DualDistill is designed as a plug-and-play

framework, enabling seamless integrationwith various existingmodels. Extensive

experiments were conducted on 317 carotid plaque ultrasound videos collected

from a collaborating hospital. The proposed framework demonstrated its

versatility and e�ectiveness. It achieved consistent improvements in classification

accuracy across 13 representative models. Specifically, the average accuracy

improvement is 2.97%, with the maximum improvement reaching 4.74% on

3D ResNet50. These results highlight the robustness and generalizability of

DualDistill. It shows strong potential for reliable cardiovascular risk assessment

through automated carotid plaque classification.

KEYWORDS

ultrasound video classification, carotid plaque recognition, self-distillation, spatial-

temporal attention, intra-frame relationship, deep learning

1 Introduction

Cardiovascular and cerebrovascular diseases are important public health concerns

that can lead to serious events such as stroke and heart attack. The accumulation

of plaques atherosclerotic in the arteries is an important cause of these diseases

(1). Therefore, early detection of carotid plaques is essential for timely intervention

and prevention. Imaging modalities, such as magnetic resonance angiography (MRA),

computed tomography angiography (CTA), and ultrasound (US), play a crucial role in

guiding clinical decision-making. Among these, ultrasound (US) is widely utilized in
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medical imaging due to its non-invasive and real-time capabilities.

To provide essential insights for risk assessment, carotid plaques are

commonly classified as hyperechoic, mixed-echoic, or hypoechoic

based on echogenicity (2). However, diagnostic accuracy among

sonographers can be influenced by variations in experience

and subjective interpretation. Therefore, incorporating artificial

intelligence for diagnostic assistance is essential to enhance

consistency and reliability in medical imaging.

With rapid advancements in deep learning, significant progress

has been made in medical imaging tasks. As a result, research has

increasingly focused on improving plaque recognition techniques

through deep learning models. In 2017, a convolutional neural

network (CNN) was proposed to automatically characterize carotid

plaque composition in ultrasound images, demonstrating the

feasibility of deep learning in this domain (3). To enhance feature

extraction, a multi-path architecture was later introduced to detect

plaques in OCT images using transfer learning and specialized

data augmentation (4). Following this, a ResNet-based method for

plaque classification was developed, utilizing a segmented region

of interest (ROI) and transfer learning to improve performance

(5). In 2022, a multi-feature fusion approach combined global

ultrasound features, ROI echogenicity, and expert knowledge to

improve high-risk plaque identification (6).

Deep learning in medical imaging, including carotid plaque

analysis, is constrained by the need for large annotated datasets.

Self-distillation has emerged as a promising solution, improving

feature learning by using the model’s own outputs. Self-distillation

has been applied to 3D image segmentation tasks, enabling the

model to learn both global semantic information and local spatial

details simultaneously (7). In surgical instrument segmentation,

self-distillation has also been used to extract knowledge from class

probability maps. This helps reduce interference from unrelated

information and improves segmentation accuracy (8). For thyroid

nodule identification, a joint optimization strategy based on self-

distillation was introduced. It combines high-level abstract features

with multi-scale information, enhancing diagnostic precision (9).

Additionally, an efficient self-distillation method was developed for

early neoplasia detection. This approach uses high-level and low-

level feature representations to address the challenges of limited

training data (10). However, the aforementioned methods have

not focused on carotid plaque identification using ultrasound

imaging. For carotid plaque analysis, challenges arise due to

indistinct boundaries and interference with blood flow, making

feature extraction difficult. Additionally, ultrasound imaging itself

has limitations, including lower resolution and higher susceptibility

to noise compared to high-resolution modalities like MRI and

CT. To the best of our knowledge, self-distillation has not yet

been applied in the domain of ultrasound video analysis. However,

compared to static ultrasound images, ultrasound videos contain

richer spatial-temporal details (11, 12).

Deep learning has made great strides in video classification

by extracting spatial-temporal features from video data. 2D

Convolutional Neural Networks (2D CNNs) are commonly used

for this task, where spatial features are extracted from individual

frames and combined with temporal modeling techniques (13–

15). However, separating the handling of temporal features limits

the dynamic representation of video data. To overcome this, 3D

Convolutional Neural Networks (3D CNNs) were introduced.

These networks extract both spatial and temporal features

directly from video sequences using 3D convolutions (16–18).

More recently, transformer-based models have improved video

classification by capturing complex spatial-temporal dependencies

through self-attention mechanisms (19–23). Although these

advances have proven to be effective for natural videos, the

identification of carotid plaque in ultrasound videos presents

unique challenges that differ significantly from typical video

classification tasks.

The characteristics of carotid plaques introduce additional

complexity and pose additional challenges to plaque classification,

as shown in Figure 1. (i) The 6th frame of the video demonstrates

greater similarity to the 27th frame than to the nearer 3rd

frame, due to the movement and adjustments of the probe

during ultrasound examination. This phenomenon demonstrates

challenges for continuity and consistency analysis in ultrasound

videos, increasing the complexity of accurately detecting targets. (ii)

Plaques are often small, morphologically irregular, and dynamically

change over time. Combined with the inherent noise and low

resolution of ultrasound, these factors require detection models

capable of robust spatial-temporal feature learning and strong

generalization under noisy conditions.

To tackle these challenges, researchers have started exploring

various strategies to enhance the analysis of carotid plaque

in ultrasound videos. Currently, the primary focus is on two

main aspects: combining plaque tracking with classification or

segmentation tasks and utilizing video-level annotations for plaque

analysis. One line of research combines plaque tracking with

classification or segmentation to improve overall accuracy. For

example, Siamatsn improves both tracking and segmentation by

performing these tasks simultaneously in the analysis of carotid

plaques (24). Similarly, CPTV applied a tracking-based method to

extract plaque features, while simultaneously leveraging ultrasound

video characteristics to classify plaque echo types (12). Another

direction of research addresses the burden of annotation by using

only video-level annotations for plaque analysis. For example,

RMFG_Net improved plaque area accuracy by fine-tuning target

region features using a spatial-temporal attention block and

integrating complementary features through a gated fusion model

(25). Similarly, MA-Net aggregated three-dimensional temporal-

channel-spatial features. It selectively focused on relevant frames,

minimizing the influence of irrelevant information (26). Given

the labor-intensive nature of annotating medical videos, this study

focuses on video-level analysis. In this task, some research has

already been conducted.

However, existing studies have two main limitations. First,

temporal relationships between frames ofen are overlooked, which

is crucial for resolving issues such as irregular plaque shapes.

By learning the relationships between consecutive frames, models

can better understand the progression and context of plaque

formation, leading to more accurate detection despite shape

inconsistencies. Second, there is an over-reliance on attention

modules. While attention mechanisms can highlight important

features, they may hinder generalization by making the model

overly dependent on specific patterns in the training data.

This reduces the model’s robustness and limits its ability to

perform well on unseen data due to dependency on specific

data patterns.
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FIGURE 1

Temporal variation in plaque morphology observed through ultrasound video frames.

This study proposes a dual-guided self-distillation approach

called DualDistill to improve plaque classification performance

using ultrasound videos. To the best of our knowledge, this is

the first study to employ self-distillation in ultrasound video data.

This approach incorporates two core strategies: relationship-guided

self-distillation (RGSD) and attention-guided self-distillation

(AGSD). From a local perspective, AGSD is employed to

extract important information from ultrasound videos, effectively

reducing interference and noise. Rather than directly adding

attention modules, self-distillation distills attention information.

This process improves model robustness, reduces computational

complexity, and improves generalization. By allowing the model

to iteratively refine its focus on key features, it better captures

relevant patterns. From a global perspective, RGSD captures and

incorporates temporal relationships across frames, allowing the

model to learn long-term dependencies. These two components

work in a complementary manner, ultimately contributing to

the overall robustness and accuracy of plaque classification. The

contributions of this study are mainly threefold:

• Relationship-guided self-distillation is developed to capture

temporal dependencies, helping the model identify

key patterns across frames and reduce the impact of

inconsistencies.

• Attention-guided self-distillation is designed to focus on the

most crucial regions across thereby minimizing the impact of

redundant or irrelevant information.

• DualDistill is proposed to integrate these two strategies

effectively mitigates temporal inconsistencies while enhancing

feature focus, leading to improved classification performance.

And DualDistill exhibits strong generalization capabilities,

delivering consistent performance improvements across

diverse model architectures.

2 Methodology

In this section, DualDistill is proposed to achieve accurate

plaque echo classification in carotid ultrasound videos as

shown in Figure 2. The approach comprises two strategies:

RGSD and AGSD. In RGSD, Temporal Relationship Module

(TRM) is employed to capture the relational information

from different frames. During training, the deepest layer’s

output acts as the teacher, guiding shallower layers to learn

effective feature representations. In AGSD, spatial and temporal

attentions are generated simultaneously by the Attention Module

(AM). This module utilizes average-pooling and max-pooling

operations to generate two attention maps, which are then

combined through concatenation and processed by a convolutional

layer. Subsequently, the self-distillation mechanism transfers

the knowledge of spatial-temporal attention from the deepest

layer to the shallower layers. In addition, a fundamental self-

distillation method is employed, which extracts knowledge from

soft labels and intermediate features to enhance robustness and

generalizability.

2.1 Self-distillation

Given a training set of X = {x1, x2, ..., xn} and the

corresponding set of labels Y = {y1, y2, ..., yn}, each sample xi ∈

R
T×C×W×H is a ultrasound video of carotid plaque. Then, the

carotid plaque aims to find a classifier c that maps the ultrasound

to its corresponding label. Specifically, assuming c = g ◦ f where g

is the classification head and f is the neural network backbone for

feature encoding, then we can formulate f = fK ◦fK−1◦. . . f1, where

K denotes the number of convolutional stages in f and fi denotes the

convolutional stage ith. In each convolution stage, self-distillation

attaches an auxiliary classifier gi. Thus, there areK classifiers, which

can be written as

c1(x) = g1 ◦ f1(x),

c2(x) = g2 ◦ f2 ◦ f1(x),

. . .

cK(x) = gK ◦ fK ◦ fK−1 ◦ · · · ◦ f1(x)

(1)

By denoting the well-known cross-entropy loss and

Kullback-Leibler divergence as LCE and LKL, respectively,
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FIGURE 2

Overview of the proposed DualDistill framework, detailing the Relationship-Guided Self-Distillation and Attention-Guided Self-Distillation processes

for ultrasound video analysis. AM represents the Attention Module, and TRM refers to the Temporal Relationship Module.

the training loss of the original self-distillation (27) can be

formulated as

LSD =

i=1
∑

K

LCE

(

ci
(

X ),Y
))

+ α ·

i=1
∑

K−1

LKL(ci(X ), cK(X ))

(2)

where the first item is the original training loss of each classifier

and the second item is the self-distillation loss. α is a hyper-

parameter to balance them. In this mechanism, the output of

the deepest layer serves as the teacher, while the outputs of the

shallower layers act as students, guiding the latter to learn more

efficient feature representations.

2.2 Relationship-guided self-distillation

While self-distillation lays the foundation for enhancing model

robustness, the relationship-guided self-distillation introduces a

more specific approach by capturing temporal dependencies

across frames. In the task of plaque classification, the temporal

relationships between different frames in a video contains valuable

semantic information. And the variability in probe positioning

and adjustments during ultrasound examinations poses significant

challenges in maintaining continuity and consistency in ultrasound

video analysis. Therefore, RGSD is designed to address the

shortcomings in capturing long-term temporal dependencies. It

also helps mitigate the challenges posed by irregular plaque

morphology. In each selected convolutional stage, TRM is

employed to generate efficient representations for temporal

relationships. For simplicity, we denote the feature at the ith stage as

Fi = fi ◦ fi−1 ◦ · · · ◦ f1 ∈ R
T×C×W×H where T,C,W,H denotes the

number of frames, the number of channels, the width and height

of each video, respectively. The proposed relationship-guided self-

distillation firstly flattens the features across the spatial dimensions,

resulting in G ∈ R
B×T×(W·H·C). The flattening process retains

contextual information across frames, thereby ensuring that the

relationships are preserved. Then, the temporal relationships can

be formulated as

R =
G · Gt

‖G‖‖Gt‖
(3)

where the script t indicates the operation of matrix transpose,

R ∈ R
T×T is the matrix of temporal relationships, and Gt is the

transpose of the matrix G. Additionally, ‖G‖ denotes the Frobenius

norm of matrix G, which is defined as:

‖G‖ =

√

∑

i,j

G2
ij

By distinguishing the temporal relationships of features at different

convolutional stage with the script i, then the loss function of the

proposed temporal relationships can be formulated as

LRGSD =

K−1
∑

i

‖Ri − RK‖2 (4)

where Ri ∈ R
T×T denotes the temporal relationship features

from the i-th intermediate stage, RK corresponds to the final-stage
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TABLE 1 Ablation study of the three modules in DualDistill: SD, RGSD, and AGSD.

SD RGSD AGSD Accuracy Sensitivity Specificity Precision F1-Score Time (hours)

84.75±0.72 84.97±0.68 84.64±0.77 84.84±0.63 85.94±0.58 1.03

X 86.65±0.71 87.32±0.64 85.97±0.74 86.81±0.59 87.54±0.54 1.13

X 86.34±0.63 86.59±0.58 86.22±0.68 86.71±0.54 87.73±0.49 1.08

X 87.00±0.59 87.42±0.54 86.79±0.64 87.23±0.49 89.27±0.44 1.10

X X 87.61±0.54 88.22±0.49 87.00±0.58 87.79±0.44 88.91±0.39 1.16

X X 87.35±0.69 87.71±0.44 87.17±0.74 88.30±0.49 88.52±0.44 1.17

X X 87.52±0.64 87.84±0.39 87.36±0.48 87.79±0.34 88.30±0.28 1.15

X X X 89.50±0.38 89.73±0.33 89.39±0.43 89.64±0.27 90.57±0.23 1.22

Time refers only to the training time. Bold values denote the highest performance scores for each metric (e.g., accuracy, F1-score).

relationship feature, and ‖·‖2 computes the element-wise Euclidean

distance between Ri and RK .

2.3 Attention-guided self-distillation

While RGSD captures temporal relationships between frames,

attention-guided self-distillation (AGSD) refines the model’s

focus on critical features. In carotid ultrasound videos, accurate

feature extraction is challenged by noise. Therefore, dynamically

modulating attention across both temporal and spatial dimensions

not only improves the extraction of key features but also reduces

the model’s sensitivity to noise. Thus, the AGSD mechanism is

designed to emphasize the relevant information in both spatial

and temporal dimensions. The simultaneous extraction of temporal

and spatial attention enables the model to capture both dynamic

changes and static features. This enhances the model’s ability to

understand the full context of the data. Additionally, this approach

helps mitigate the challenges posed by low-quality images, as it

allows the model to focus on the more relevant information despite

noise or interference.

As depicted in Figure 2, AM was designed to generate spatial-

temporal attention maps. Given an input F, two feature maps are

generated by two pooling operations, average pooling and max

pooling: FSTavg ∈ R
1×T×H×W and FSTmax ∈ R

1×T×H×W . Max-pooling

emphasizes the most salient local regions within the feature map,

while average pooling provides global contextual information. To

effectively preserve both local and global contextual information,

these two feature maps are concatenated directly. Then the

concatenated features are subjected to additional processing via a

convolutional layer, leading to the generation of the final output. In

short, the spatial-temporal attention is computed as:

M = f 7×7([AvgPool(F);MaxPool(F)])

= f ([FSTavg; F
ST
max])

(5)

where f 7×7 represents a convolution operation with the filter size

of 7× 7. Then the loss function of the proposed spatial temporal

attention can be formulated as

LAGSD =

K−1
∑

i

‖Mi −MK‖2 (6)

where Mi ∈ M
T×H×W denotes the spatitial-temporal attention

map from the i-th intermediate convolutional stage,MK represents

the final-stage attention map, and ‖ · ‖2 calculates the Euclidean

distance between them.

2.4 Overall loss function

In summary, the proposed dual-guided self-distillation

(DualDistill) framework enhances the traditional self-distillation

(SD) approach by integrating both temporal dependencies and

attention-based mechanisms. The general loss function effectively

combines these components, thus optimizing model performance

in ultrasound video analysis. To sum up, the overall loss function

can be formulated as

Loverall = LSD + β · LRGSD + γ · LAGSD (7)

where β and γ are hyper-parameters to balance the three loss

functions. The experiments for sensitivity and ablation study are

shown in Figure 4, Table 1. Moreover, the proposed approach

primarily functions during training and do not engage in the

inference stage, thus preventing the addition of extra parameters.

3 Experiments and results

3.1 Dataset

A total of 317 carotid plaque ultrasound videos are obtained

from a collaborating hospital. This study was carried out in

close collaboration with medical experts from our collaborating

hospitals, with senior clinicians guiding the data annotation process

to ensure the study aligns with real-world diagnostic practices.

Each video comprises 120 frames, with a resolution of 740 × 540

pixels. The dataset includes patients aged 57-85 years (mean 68.2

± 10.5 years), with a balanced gender ratio (1.1:1 male-to-female).

As shown in Figure 3, the dataset consists of 317 ultrasound videos

categorized into three classes: 113 videos of mixed-echoic plaques,

124 hyperechoic plaques, and 80 hypoechoic plaques. To ensure the

robustness of the evaluation, a 5-fold cross-validation technique is

employed. The dataset was divided into training and testing sets

in an 8:2 ratio. The labels were annotated by a senior sonographer
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FIGURE 3

Distribution of plaque types across training and test sets in the

ultrasound video dataset.

with over 10 years of clinical experience, incorporating evaluations

of echogenicity (hyperechoic, hypoechoic, mixed-echoic). All

ultrasound data is acquired in B-mode using aMyLab Twice system

equipped with a 7-13 MHz transducer.

3.2 Implementation details

In the experimental implementation, two data augmentation

techniques were applied: random resized cropping to increase

dataset variability and horizontal flipping with a 50% probability to

improve the model’s adaptability to different orientations. During

the training phase, the input video data is pre-processed by resizing

each frame to 224×224 pixels and normalizing the pixel values

using the mean and variance of the Kinetics400 dataset. The

learning rate is initially set to 0.001 and subsequently adjusted using

a step decay schedule, with a tenfold reduction applied at specified

epochs. Moreover, a linear warm-up strategy is employed during

the first 10 epochs to gradually increase the learning rate to 0.001.

Optimization is performed using Stochastic Gradient Descent

(SGD), configured with a momentum of 0.9 and a weight decay of

0.0001. In addition, gradient clipping is applied to enhance training

stability. To assess the performance of each model, accuracy,

precision, sensitivity, specificity, and F1-score were computed. The

average results across the five folds are reported to provide a

comprehensive evaluation of model generalization capabilities.

3.3 Model evaluation techniques

Evaluation metrics are crucial to assess model performance

in video classification tasks. Accuracy measures the proportion

of correctly classified instances, providing an overall effectiveness

measure. Sensitivity evaluates the model’s ability to identify positive

instances, vital in minimizing false negatives, such as in medical

diagnostics. Precision calculates the proportion of true positives

among predicted positives, which is critical in reducing false

positives in applications such as fraud detection. Specificity, on

the other hand, measures the proportion of true negatives among

the predicted negatives, which is important in minimizing false

positives and is crucial in scenarios like disease screening. To

balance precision and sensitivity, the F1-score, their harmonic

mean, is especially useful for imbalanced datasets. Furthermore,

the AUC-ROC curve, which plots the true positive rate against

the false positive rate, provides an aggregate measure of a model’s

ability to distinguish between classes across various thresholds.

Together, these metrics provide a comprehensive understanding of

the strengths and limitations of the model. These four metrics are

defined as follows:

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(8)

Sensitivity =
TP

TP+ FN
(9)

Specificity =
TN

TN+ FP
(10)

Precision =
TP

TP+ FP
(11)

F1-score = 2 ·
Precision · Sensitivity

Precision+ Sensitivity
(12)

True Positive Rate =
TP

TP+ FN
(13)

False Positive Rate = Sensitivity (14)

where True Positives (TP) are correctly classified positives, True

Negatives (TN) are correctly classified negatives, False Positives

(FP) are negatives misclassified as positives, and False Negatives

(FN) are positives misclassified as negatives.

3.4 Ablation study

To evaluate the contribution of the RGSD and AGSD

modules to the model’s performance, a comprehensive

ablation study was conducted. RGSD and AGSD are the two

core strategies in the proposed DualDistill, which aims to

enhance plaque classification performance using ultrasound

videos. AGSD, from a local perspective, is employed to

extract important features from the ultrasound videos,

effectively reducing noise and interference. RGSD, from

a global perspective, captures and incorporates temporal

relationships across frames, allowing the model to learn long-term

dependencies.

In the ablation study, the independent application of RGSD

and AGSD led to accuracy improvements of 1.59% and 2.25%,
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FIGURE 4

Sensitivity analysis of hyperparameters for 3D ResNet-50.

respectively, highlighting their individual contributions to

model performance. AGSD demonstrated more consistent

improvements, reflected by its lower standard deviation

(0.59%) compared to RGSD (0.63%). When combined with

self-distillation, RGSD and AGSD improved accuracy by

1.01% and 0.75%, respectively, compared to self-distillation

alone. Additionally, when applied together without self-

distillation, RGSD and AGSD achieved a 2.87% accuracy

improvement, surpassing the individual performance of

RGSD and AGSD by 1.18% and 0.52%, respectively. This

suggests that their complementary application results in more

effective performance enhancement.Finally, integrating all

three components–RGSD, AGSD, and SD (self-distillation)

resulted in significant improvements across all metrics:

accuracy increased by 4.74%, sensitivity by 4.76%, precision

by 4.80%, and F1-score by 4.63%. These results show that

combining RGSD and AGSD with self-distillation significantly

enhances the model’s overall performance. Each distillation loss

independently improves the model by focusing on different

aspects: RGSD enhances sensitivity by targeting the positive

class, while AGSD improves specificity by reducing false

positives. Together, they complement each other, leading to

better performance.

3.5 Trade-o� analysis

Using all three modules–RGSD, AGSD, and SD–presents the

most effective approach when considering both performance

improvements and training time. The combination of these

modules results in the highest accuracy increase of 4.74%,

as each module contributes uniquely to the model’s overall

performance. In terms of training time, while the use of all

three modules adds 0.19 hours to computational cost (from

1.03 to 1.22 hours), this is a modest trade-off considering

the notable performance gain. Moreover, the increased training

time only impacts the training phase and does not affect

inference speed or model size. Therefore, the slight increase

in training time is justified by the substantial improvement in

accuracy. The balance between performance enhancement and

training time makes the use of all three modules the most

suitable and efficient choice for achieving optimal results in

practical applications.

3.6 Sensitivity Study

3.6.1 Sensitivity study on Hyper-parameters
As introduced in Equation 2 and Equation 7, three

hyperparameters α, β and γ are introduced in this paper

to balance the magnitudes of different loss functions. The

3D ResNet-50 backbone was used for this analysis, and

results are shown in Figure 4. It was observed that even with

suboptimal hyperparameter values, the accuracy dropped by

only 0.3% while remaining 4.4% higher than the baseline

model, indicating that our method is robust to the choice

of hyperparameters.

3.6.2 Sensitivity study on which stages
This section focuses on the effect of selecting different

student feature positions in the self-distillation process. In this

setup, feature positions within the 3D ResNet-50 architecture

can be conveniently integrated into 4 convolutional stages by

residual blocks. The output of the deepest residual block acts

as the teacher, while various combinations of earlier stages are

selected as student layers. The choice of these student layers

has an impact on the model’s overall performance, as shown

in Table 2.

This analysis shows that the proposed method achieves

optimal results when stages 1, 2, 3, and 4 are selected as

student layers. Increasing the number of stages involved in

the self-distillation process consistently enhances performance.

Furthermore, among configurations with the same number of

stages, deeper stages (closer to the teacher) outperform those

farther away. This is because features from stages closer to

the teacher align more closely with the teacher’s high-level

representations, allowing the student layers to capture the

teacher’s complex abstractions more effectively. In addition to

improved performance, the model using all stages exhibits

the lowest variance across all metrics. This indicates more

consistent results and fewer fluctuations in performance. On

the other hand, configurations with fewer stages show higher

variability, suggesting that using fewer stages leads to less

stable learning and generalization. Thus, the variance analysis

reinforces the advantage of incorporating more stages in the

self-distillation process for more reliable and robust model

performance.
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TABLE 2 Sensitivity analysis of student feature positions across di�erent stages.

Stages Accuracy Sensitivity Specificity Precision F1-score

1, 4 86.38±0.73 86.65±0.67 86.25±0.76 86.62±0.64 87.01±0.59

2, 4 86.38±0.69 87.00±0.71 85.94±0.81 86.77±0.69 86.93±0.66

3, 4 87.65±0.63 87.49±0.61 87.73±0.56 87.42±0.57 87.97±0.51

1, 2, 4 87.88±0.56 87.78±0.49 87.93±0.61 87.81±0.53 88.66±0.46

1, 3, 4 87.79±0.61 87.47±0.54 87.95±0.64 87.73±0.59 88.44±0.54

2, 3, 4 88.27±0.52 88.27±0.46 88.27±0.51 88.49±0.47 89.21±0.41

1, 2, 3, 4 89.50±0.38 89.73±0.33 89.64±0.43 89.64±0.27 90.57±0.23

Bold values denote the highest performance scores for each metric (e.g., accuracy, F1-score).

FIGURE 5

AUC-ROC curves of 3D ResNet50 with vs. without DualDistill for carotid plaque video classification.

3.7 AUC-ROC curve analysis

As shown in Figure 5, the AUC values for all three categories–

hyperechoic, hypoechoic, and mixed-echoic–are higher when

DualDistill is applied. Specifically, the AUC for hyperechoic

improves from 0.94 to 0.95, hypoechoic from 0.92 to 0.94, and

mixed-echoic from 0.91 to 0.94. Mixed-echoic plaques are difficult

to classify due to their combination of hyperechoic and hypoechoic

features. This overlap makes them harder to distinguish from stable

(hyperechoic) and vulnerable (hypoechoic) plaques. The significant

performance boost for mixed-echoic plaques demonstrates the

robustness of our approach in handling these complex cases

and improving the accuracy of plaque stability classification.

Additionally,the AUC-ROC curves with DualDistill are closer to

the top-left corner, indicating better sensitivity and specificity.

These results demonstrate that DualDistill enhances the model’s

ability to classify carotid plaque conditions more effectively and

consistently across all categories.

3.8 Visualization

As previously addressed, mixed-echoic plaques pose significant

challenges in identification. DualDistill demonstrates a more

substantial improvement in recognizing mixed-echoic plaques

compared to other types of plaque. To further assess the

effectiveness of the two modules, visualization analysis was

performed on two mixed-echoic plaque samples, evaluating how

DualDistill effectively focuses on key information and learns

temporal relationships between frames.

The Grad-CAM visualization (28) shown in Figure 6 illustrates

that DualDistill effectively alleviates localization ambiguity in

this mixed-echoic plaque sample. This figure presents a direct

comparison betweenmodels with and without DualDistill. It shows

that the model with this method can better localize the critical

plaque regions. This indicates that this approach improves the

model’s ability to capture relevant spatial information during

classification. In contrast, the model without the proposed method

exhibits more diffuse and inconsistent focus, likely contributing to

its reduced classification accuracy.

The frame-to-frame relationship coefficients are normalized

to a range between -1 and 1, where positive values denote

higher similarity between frames, while negative values indicate

a divergence. Figure 7 presents an analysis of frame-to-frame

relationship coefficients for three selected frames (the 4th frame,

the 25th frame, and the 26th frame) from an ultrasound video

sequence. It can be observed that, although there is a substantial

temporal gap between the 4th and 25th frames, their similarity

Frontiers inMedicine 08 frontiersin.org

https://doi.org/10.3389/fmed.2025.1554578
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhang et al. 10.3389/fmed.2025.1554578

FIGURE 6

Grad-CAM attention map visualization on a mixed-echoic sample: comparison between results without DualDistill (left) and with DualDistill (right).

remains high, whereas the 25th and 26th frames, despite being

consecutive, exhibit lower similarity. Following the application

of the proposed approach, the similarity coefficient between the

4th and 25th frames increased significantly, from 0.534 to 0.862.

Conversely, the similarity coefficient between the 25th and 26th

frames decreased, from 0.673 to 0.326. These results highlight the

effectiveness of the proposed method in capturing and refining

the inherent relationships between frames, aligning the coefficients

more closely with the observed temporal and visual dynamics.

3.9 E�ectiveness analysis of DualDistill
across models

The proposed structured self-distillation approach is

implemented on a range of classic models to conduct

comprehensive experimental evaluations. The experimental

results presented in Table 3 illustrate that the proposed approach

leads to significant performance improvements across all tested

models. For the 2D convolutional models, TSM’s accuracy

increased from 82.82% to 86.24%, with similarly substantial

gains observed for TIN, TSN and MA-Net. In the case of 3D

convolutional models, C3D’s accuracy improved from 83.25%

to 87.05%, while SlowFast and C3D both showed marked

enhancements. Furthermore, DualDistill also boosted the

performance of Transformer-based models, such as TimesFormer,

VideoMAE, VideoMAEv2, VideoSwin andCAST, demonstrating its

effectiveness and robustness across different model architectures.

The experimental results demonstrate that DualDistill significantly

improves the model’s performance, leading to an accuracy

increase ranging from a minimum of 1.5% to a maximum of

4.05%. This consistent improvement across various settings

highlights the effectiveness and robustness of the proposed

approach in enhancing plaque classification accuracy. More

importantly, these models trained with DualDistill all have

lower variance across all metrics ranging from a minimum

of 0.25% to a maximum of 0.79%. DualDistill enhances both

the accuracy and stability of models, making it a valuable

approach for improving carotid plaque ultrasound video

classification. The method is architecture-agnostic, allowing for

easy integration into existing clinical decision support systems.

Since DualDistill is applied only during the training phase and

does not alter the model structure or inference complexity, it has

no impact on inference speed or FPS. The consistent performance

improvement, without increasing inference time, ensures good

clinical applicability.
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FIGURE 7

Frame-to-frame relationship coe�cients on a mixed-echoic sample: without DualDistill (green lines) vs. with DualDistill (yellow lines).

TABLE 3 Performance comparison of di�erent models on the carotid plaque ultrasound video dataset with and without DualDistill.

Model Accuracy Sensitivity Specificity Precision F1-score

C3D (17) 83.25±0.83 83.07±0.79 83.34±0.87 82.87±0.77 82.48±0.73

Our C3D 87.05±0.62 83.96±0.67 88.60±0.75 86.24±0.59 87.76±0.55

TSN (15) 80.75±0.81 82.43±0.78 79.91±0.85 81.84±0.74 82.94±0.66

Our TSN 82.25±0.74 83.35±0.65 81.70±0.79 83.64±0.63 84.57±0.58

TIN (13) 83.21±0.68 84.20±0.63 82.72±0.71 83.64±0.57 84.67±0.53

Our TIN 85.35±0.57 86.33±0.55 84.86±0.63 85.87±0.55 86.58±0.49

TSM (14) 82.82±0.71 83.13±0.66 82.67±0.76 82.82±0.61 84.40±0.56

Our TSM 86.24±0.55 85.29±0.59 86.72±0.65 86.32±0.54 87.72±0.50

SlowFast (18) 84.10±0.63 84.40±0.58 83.95±0.67 84.63±0.53 86.41±0.47

Our SlowFast 87.35±0.48 87.33±0.45 87.36±0.54 87.87±0.44 89.58±0.39

X3D (16) 84.45±0.59 84.62±0.55 84.37±0.65 85.45±0.50 85.60±0.45

Our X3D 88.50±0.43 87.73±0.40 88.89±0.49 87.64±0.38 88.57±0.35

TimesFormer(19) 82.13±0.69 82.34±0.64 82.03±0.74 82.86±0.60 83.45±0.54

Our TimesFromer 85.75±0.56 85.69±0.50 85.78±0.59 86.62±0.45 87.70±0.40

VideoMAE (20) 81.26±0.72 81.34±0.68 81.22±0.78 82.87±0.65 82.46±0.59

Our VideoMAE 85.23±0.60 85.93±0.55 84.88±0.66 85.32±0.56 86.65±0.50

VideoSwin (22) 81.96±0.70 81.14±0.66 82.37±0.75 83.35±0.60 82.46±0.55

Our VideoSwin 84.24±0.65 85.49±0.50 83.62±0.60 86.30±0.45 85.23±0.39

VideoMAEv2 (21) 83.32±0.65 82.74±0.60 83.81±0.69 83.36±0.56 83.76±0.50

Our VideoMAEv2 85.76±0.49 86.42±0.45 85.43±0.55 86.13±0.40 87.32±0.36

CAST (23) 82.45±0.59 83.24±0.55 82.06±0.65 83.34±0.50 82.47±0.45

Our CAST 84.24±0.55 86.36±0.49 83.18±0.60 86.76±0.45 85.63±0.39

MA-Net (26) 87.36±0.45 87.58±0.40 87.25±0.49 88.64±0.35 87.84±0.29

Our MA-Net 88.96±0.39 89.32±0.35 88.78±0.45 90.04±0.29 89.42±0.25

Bold values denote the highest performance scores for each metric (e.g., accuracy, F1-score).

4 Conclusions

In this article, a structured self-distillation approach

named DualDistill is proposed to improve the classification

of carotid plaque in ultrasound videos, utilizing two key strategies:

Relationship-guided Self-distillation (RGSD) and Attention-guided

Self-distillation (AGSD). In RGSD, Temporal Relationship Module

(TRM) is introduced to capture temporal relationships between

frames, allowing the model to learn long-term dependencies

by transferring high-level relational knowledge from deeper to

shallower layers. In AGSD, Attention Module (AM) is developed

to generate spatial-temporal attention maps, with attention

knowledge distilled in the same way. This enhances the model’s

ability to focus on crucial regions and minimize irrelevant
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information. To the best of our knowledge, this is the first study to

apply self-distillation to carotid plaque classification in ultrasound

video data. To validate the effectiveness of the AGSD and RGSD,

ablation studies were conducted. The results show that the best

performance is achieved when both approach are applied on

base of the self-distillation method. we performed sensitivity

analysis experiments on both hyperparameters and student feature

positions across different stages. These analyses provided valuable

insights into the optimal configuration of the proposed approach.

To further assess our approach, we evaluated it using AUC-ROC

curve analysis and visualization techniques, including Grad-CAM.

Specifically, these analyses demonstrate that DualDistill achieves

the most significant improvement on the challenging task of

identifying mixed-echoic plaques. The visualization results further

indicate that DualDistill enables better extraction of key local

information and facilitates learning of temporal relationships

between frames. Moreover, DualDistill consistently improved

classification performance across 13 representative models,

underscoring its potential to enhance both accuracy and stability.

DualDistill is architecture-agnostic, enabling easy integration into

clinical decision support systems. Furthermore, it introduces only

a modest increase in training time, with no impact on testing time.

These factors make DualDistill particularly well-suited for clinical

environments, where both high performance and operational

efficiency are essential.

In future work, we plan to further refine the knowledge transfer

process within self-distillation to better leverage the features within

the model and optimize the training process. We also aim to

establish collaborations with more hospitals to collect a broader

set of multi-center data, which will help develop models with

improved generalizability. Additionally, we intend to track patient

information and gathermoremultimodal data, such as pathological

information, to enhance the model’s ability to understand complex

clinical contexts and improve diagnostic accuracy. Moreover, we

are developing related software to assist doctors in making more

accurate diagnoses and plan to further validate and optimize our

work in clinical settings.
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