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Background: Gastrointestinal bleeding (GIB) is a common complication

following Type A aortic dissection (TAAD) surgery, significantly impacting

prognosis and increasing mortality risk. This study developed and validated a

predictive model based on machine learning (ML) algorithms to enable early and

precise assessment of postoperative GIB risk in TAAD patients.

Methods: Medical records of patients who underwent TAAD surgery at Shanxi

Bethune Hospital from January 2019 to September 2024 were retrospectively

collected. Predictors were screened using LASSO regression, and four ML

algorithms—Random Forest (RF), K-nearest neighbor (KNN), Support Vector

Machines (SVM), and Decision Tree (DT)—were employed to construct models

for predicting postoperative GIB risk. The dataset was divided into training

and validation sets in a 7:3 ratio. Predictive performance was evaluated and

compared using Receiver Operating Characteristic (ROC) curves and DeLong

tests. Calibration curves and decision curve analysis (DCA) were used to

assess model calibration and clinical utility. The SHapley Additive exPlanation

(SHAP) algorithm was applied for interpretability analysis. This study adhered

to the “Transparent Reporting of a Multivariable Prediction Model for Individual

Prognosis or Diagnosis + Artificial Intelligence (TRIPOD+AI) guidelines.”

Results: A total of 525 TAAD patients were included, with 63 (12%) developing

GIB. Nine predictors were selected via LASSO regression for model construction.

The RF model outperformed the SVM, KNN, and DT models in predicting

postoperative GIB, with areas under the ROC curve (AUC) of 0.933, 0.892, 0.902,

and 0.768, respectively, showing statistically significant differences (DeLong

test, P < 0.05). Calibration curves and DCA further confirmed the RF model’s

excellent calibration and clinical utility. SHAP analysis identified the three most

influential clinical features on the RF model’s output: duration of mechanical

ventilation (MV), Time to aortic occlusion, and red blood cell (RBC) transfusion.

Conclusion: The machine learning-based predictive model effectively

assesses postoperative GIB risk in TAAD patients, aiding healthcare providers
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in early identification of risk factors and implementation of targeted

preventive strategies.

KEYWORDS

Type A aortic dissection, gastrointestinal bleeding, machine learning, prediction model,
the SHapley Additive exPlanation

1 Introduction

Type A aortic dissection is a severe cardiovascular emergency
with a mortality rate as high as 58% (1). Surgical intervention
under cardiopulmonary bypass (CPB) is the primary treatment
method (2). CPB is a critical life-support technology commonly
used in cardiovascular surgeries (3). However, TAAD surgery under
CPB often leads to various complications, such as respiratory
failure, sepsis, dialysis-dependent renal failure, and gastrointestinal
injury (4). Epidemiological studies have shown that the incidence
of gastrointestinal injury in TAAD patients after surgery can
reach up to 50%, with GIB occurring in 35.0%–64.7% of cases,
higher than other gastrointestinal complications (approximately
14.0%) and with the highest mortality rate among them (5–
7). The mechanism of postoperative GIB in these patients is
complex, involving factors such as hypothermic circulatory arrest,
coagulation disorders, and inflammatory responses. Additionally,
GIB often has an insidious onset and can easily be mistaken
for other abdominal complications in clinical practice (8). This
not only increases patients’ postoperative risk and mortality but
also poses significant challenges for diagnosis and care after
surgery. Therefore, accurately predicting the risk of postoperative
GIB in TAAD patients is crucial for optimizing treatment plans
and informing clinical decision-making. Although studies have
explored the risk factors for postoperative GIB in TAAD patients,
there is no current consensus (9–11). Furthermore, existing
predictive models have primarily relied on single algorithms, and
the accuracy and reliability of their predictions remain to be further
validated.

In recent years, with the widespread application of technologies
like big data and artificial intelligence in the medical field, ML
models have demonstrated superior performance over traditional
methods in health assessments of patients with severe conditions
and extensive, complex clinical data (12). With their ability to
efficiently process large datasets and fast computational speed,
ML models have been widely used in disease diagnosis and
prognosis evaluation (13–15). However, while ML models can
provide accurate predictions, their lack of intuitive interpretability
poses challenges and difficulties in practical applications. In 2020,
Lundberg et al. (16) developed the SHAP algorithm to explain
the outputs of ML models. This algorithm not only reflects the
impact of variables on the model based on the positive or negative
nature of SHAP values but also quantifies the contribution of each
variable in the model through SHAP values, thus addressing the
interpretability challenges of ML models.

Therefore, this study comprehensively explores the factors
influencing postoperative GIB in TAAD patients from various
perspectives, including patient demographics, preoperative

medication and blood test indicators, Intraoperative manipulation-
related factors, postoperative conditions, and outcome indicators.
Additionally, four ML models were developed to predict
postoperative GIB in TAAD patients. After screening, the
SHAP algorithm was applied to interpret the optimal model.
This approach aims to help medical professionals identify
the potential risks of postoperative GIB in these patients
at an early stage, enabling the implementation of precise
preventive strategies. It holds significant value in improving
patient outcomes and enhancing healthcare providers’ ability to
manage potential risk events.

2 Materials and methods

2.1 Study population

This study retrospectively collected and analyzed the medical
records of all patients who underwent TAAD surgery from January
2019 to September 2024 at Shanxi Bethune Hospital. Inclusion
criteria: (1) Age ≥ 18 years; (2) Diagnosis of TAAD confirmed by
computed tomography aortography; (3) Surgical treatment under
CPB. Exclusion criteria: (1) intra-operative or postoperative death
within 24 h; (2) history of gastrointestinal disorders and presence of
severely impaired function of other vital organs; and (3) a positive
fecal occult blood test caused by drugs, food-based black stools,
or hemorrhoids. Based on the inclusion and exclusion criteria, 525
patients were finally identified for model development. The patients
were categorized into GIB and non-GIB groups according to the
presence or absence of GIB after surgery. The retrospective study
was approved by the Ethics Committee of Shanxi Bethune Hospital
(Approval No. YXLL-2023-283) and was managed in accordance
with the Declaration of Helsinki. As this is a retrospective study,
it was not registered as a clinical trial. However, patient data
underwent compliant de-identification procedures, utilizing only
anonymized information to fully safeguard patient privacy. The
flow chart of the specific study population enrollment is shown in
Figure 1.

2.2 Definition

Gastrointestinal bleeding includes upper and lower GIB, with
upper GIB occurring in the esophagus, stomach, or duodenum and
lower GIB occurring in the small intestine, colon, rectum, or anus,
and its clinical manifestations vary depending on the severity and
location of the bleeding (17). GIB was defined as meeting all the
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FIGURE 1

Chart of the specific study population enrollment.

following criteria: (1) positive fecal occult blood test; (2) clinical
manifestations accompanied by hemorrhage (e.g., dizziness, panic
attacks, cold sweats, malaise, dry mouth, etc., and, in severe cases,
fainting, cold extremities, low urine output, restlessness, shock,
etc.); and (3) unexplained progressive decrease in hemoglobin.

2.3 Data collection

This study strictly followed the (Collection Form for Influencing
Factors of Postoperative GIB in TAAD Patients), which was
developed by the research team based on previous literature
analysis and expert consultation to collect patient case data.
The content includes five sections: basic patient information
[age, gender, smoking history, drinking history, body surface
area (BSA), body mass index (BMI), Coronary artery disease,
hypertension, Cerebrovascular disease, and diabetes]; preoperative
medication and blood test indicators [left ventricular ejection
fraction (LVEF), glomerular filtration rate (GFR), use of vasoactive
drugs, and anticoagulants]; intraoperative factors [Time to CPB,
Time to aortic occlusion, deep hypothermic cardiopulmonary
arrest (DHCA), Hemorrhage, RBC transfusion, plasma transfusion
volume, platelet transfusion volume, Cold precipitation infusion
volume]; postoperative conditions [3 days average blood pressure,
international normalized ratio (INR), intra-aortic balloon
pump (IABP), external temporary pacemaker, continuous renal
replacement therapy (CRRT), MV duration, sedative and analgesic
drugs, Time of first meal, Time to first ambulation, left ventricular
ejection fraction, Low Cardiac Output Syndrome (LCOS), Length

of ICU stay, and hospital days]; and outcome indicators (GIB).
The data used in this study were retrospectively obtained from
the electronic medical record system of this hospital. Sample size
calculation adhered to the events per variable (EPV) rule.

2.4 Data processing

Variables with missing data exceeding 30% were excluded. For
the remaining missing variables, imputation was performed using
the MissForest package in R 4.3.3 to ensure the completeness and
accuracy of the dataset.

2.5 Quality control

This study adopted a staged operational workflow to ensure the
independence of data processing, with data entry, de-identification,
and analysis performed by separate researchers. The specific
implementation steps were as follows: (1) Data collection was
independently conducted by two researchers who underwent
standardized training and passed competency assessments, using
a unified electronic form for dual-track recording; (2) After data
collection, dual verification was performed by two individuals to
minimize entry errors; (3) Following data entry, 20% of the data
were randomly selected for re-verification to ensure accuracy and
validity; (4) After anonymization by another researcher, the dataset
was transferred to an independent data analyst for processing.
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Also the TRIPOD checklist was used in this study to assess model
transparency (see Supplementary Table 1).

2.6 Data analysis and model
development

This study utilized SPSS 25.0 for data processing and R
4.3.3 for predictor screening, model construction, and model
evaluation. Continuous variables were assessed for normality using
the Shapiro-Wilk test. As the continuous variables did not follow a
normal distribution, they were expressed as medians and compared
between groups using the Mann-Whitney U test. Categorical
variables were presented as frequencies or percentages (%) and
evaluated for intergroup differences using Pearson’s chi-square
test. LASSO regression was applied to further screen potential
predictors, and four risk prediction models—RF, SVM, KNN, and
DT—were constructed based on machine learning. To address class
imbalance in the dependent variable, an undersampling method
was employed to resample the data for balance. During model
construction, 70% of the sample data were allocated as the training
set, with the remaining 30% serving as an independent validation
set. A total of 5-fold cross-validation was used for model training,
and hyperparameters were tuned via grid search. The predictive
performance of the models was evaluated using the area under
the ROC curve (AUC), and differences in predictive performance
among the four models were compared using the DeLong test,
with P < 0.05 considered statistically significant. Calibration
curves and DCA were analyzed to assess model calibration and
clinical utility.

2.7 Interpretability analysis

The SHAP algorithm is a versatile ML interpretability method.
To further explain the impact and contribution of each feature
variable on the final model, the SHAP algorithm provides an
explanation value for each feature, representing the extent of its
influence on the model’s prediction results. Computed results not
only explain the importance of features for individual predictions
but can also be used to interpret the feature importance distribution
across the entire dataset. Additionally, this method can visually
display the influence of each feature on individual data points as
well as the importance distribution for the entire dataset. As such,
it has become one of the most important interpretability methods
in the field of ML and is widely applied across various domains.
In this study, R 4.3.3 was used to construct the model, and the
SHAP algorithm was employed to generate summary plots and
dependency plots to interpret the model.

3 Results

3.1 Patient characteristics

A total of 525 patients were included in this study for model
development, with 63 patients (12%) developing GIB. Grouped

analysis was performed based on the occurrence of GIB. Table 1
presents the baseline characteristics of all patients in the GIB and
non-GIB groups. Compared to the non-GIB group, the GIB group
showed significant differences in age, gender, history of stroke,
GFR, Time to aortic occlusion, blood loss, RBC transfusion, plasma
transfusion volume, IABP, external temporary pacemaker, CRRT,
MV duration, the number of sedative and analgesic drugs used,
time to first oral intake, Time to first ambulation, LVEF, LCOS, and
ICU length of stay.

3.2 Feature variable selection

This study incorporated 18 variables showing significant
differences in baseline analysis into the LASSO regression model to
further screen relevant feature variables. In the LASSO regression
model, the lambda value corresponding to the minimum standard
error was 0.03, which resulted in nine non-zero coefficient feature
variables (Figures 2A, B). These variables were MV duration, Time
to aortic occlusion, RBC transfusion, sedative and analgesic drugs,
IABP, external temporary pacemaker, CRRT, LCOS, and Length
of ICU stay. These variables were included as predictors in the
prediction model.

3.3 Comparative multi-model analysis

Among the 525 patients, 367 were allocated to the training
set and 158 to the testing set. Baseline characteristics between
the training and testing sets showed no statistically significant
differences (P > 0.05) except for postoperative 3 days average blood
pressure (see Supplementary Table 2). Models were constructed
using 5-fold cross-validation and grid search for hyperparameter
tuning (specific parameters are detailed in Supplementary Table 3).
Comprehensive evaluation of the four machine learning models
(RF, SVM, KNN, and DT) demonstrated that the RF model
exhibited the best performance, with DeLong test P < 0.05
(see Table 2).

Receiver Operating Characteristic curves were plotted using
the ggplot2 package in R software (Figure 3A). Compared to the
other three models, the RF model (AUC: 0.933, 95% CI: 0.840–
0.997) demonstrated significantly higher predictive performance
for gastrointestinal bleeding following aortic dissection surgery
than the KNN model (0.901, 95% CI: 0.802–0.993), SVM model
(0.891, 95% CI: 0.754–0.983), and DT model (0.768, 95% CI:
0.648–0.888). To further evaluate the strengths, limitations, and
clinical utility of the models, calibration curves (Figure 3B) and
decision curve analysis (Figure 3C) were generated using the rms
and rmda packages in R software, respectively, for comprehensive
model assessment. The calibration curve revealed that the RF
model exhibited lower calibration deviation (0.151) compared to
the SVM (0.257), KNN (0.172), and DT (0.153) models, indicating
superior predictive accuracy. Decision curve analysis demonstrated
favorable clinical applicability of the RF model. In summary, the
results of this study indicate that the RF model exhibits robust
stability and is the optimal predictive model. Consequently, the
RF model was selected for further predictive analysis. All R
packages utilized in this study are freely available through the
Comprehensive R Archive Network (CRAN).
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TABLE 1 Comparison of baseline characteristics between the gastrointestinal bleeding (GIB) and non-gastrointestinal bleeding (GIB) groups.

Characteristics Non-GIB group (n = 462) GIB group (n = 63) χ2/Z value P-value

Age (years) 50 (43–59.75) 55 (45–60.5) 1.99 0.046*

Gender [n (%)]

Female 135 (29 22) 27 (42.86) 4.21 0.040*

Male 327 (70.78) 36 (57.14)

Smoking history [n (%)]

No 232 (50.22) 30 (47.62) 0.064 0.801

Yes 230 (49.78) 33 (52.38)

Drinking history [n (%)]

No 230 (49.78) 33 (52.38) 0.064 0.801

Yes 232 (50.22) 30 (47.62)

BSA (m2) 1.81 (1.69–1.958) 1.84 (1.7–1.98) 0.52 0.605

BMI [kg/m2, n (%)]

≤ 18.5 35 (7.58%) 3 (4.76%) 4.805 0.307

18.5 < BMI ≤ 24 160 (34.63%) 24 (38.1%)

24 < BMI ≤ 28 174 (37.66%) 18 (28.57%)

28 < BMI ≤ 32 66 (14.29%) 11 (17.46%)

> 32 27 (5.84%) 7 (11.11%)

Coronary artery disease [n (%)]

No 438 (94.81) 57 (90.48) 1.21 0.272

Yes 24 (5.19) 6 (9.52)

Hypertension [n (%)]

No 242 (52.38) 33 (52.38) 0.00 1.000

Yes 220 (47.62) 30 (47.62)

Cerebrovascular disease [n (%)]

No 437 (94.59) 53 (84.13) 8.14 0.004*

Yes 25 (5.41) 10 (15.87)

Diabetes [n (%)]

No 427 (92.42) 57 (90.48) 0.08 0.772

Yes 35 (7.58) 6 (9.52)

Preoperative LVEF (%) 56 (49–60) 58 (53–61) 1.02 0.306

GFR [ml/(min·1.73 m2)] 71.23 (56.52–86.84) 53.57 (35.945–81.15) 3.43 0.001*

Vasoactive drug [n (%)]

No 443 (95.89) 57 (90.48) 2.49 0.115

Yes 19 (4.11) 6 (9.52)

Anticoagulant [n (%)]

No 347 (75.11) 54 (85.71) 2.89 0.089

Yes 115 (24.89) 9 (14.29)

Time to CPB (min) 204.5 (171–229.75) 208 (191.5–236) 1.89 0.060

Time to aortic occlusion (min) 124 (106–138) 139 (119–154.5) 5.04 < 0.01*

DHCA [n (%)]

No 98 (21.21) 7 (11.11) 2.93 0.087

Yes 364 (78.79) 56 (88.89)

Hemorrhage (ml) 800 (500–1,200) 1,200 (849.5–1,500) 4.43 < 0.01*

(Continued)
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TABLE 1 (Continued)

Characteristics Non-GIB group (n = 462) GIB group (n = 63) χ2/Z value P-value

RBC transfusion (U) 4 (2–6) 8 (5.5–9) 5.62 < 0.01*

Plasma transfusion volume (ml) 600 (400–1,000) 1,000 (794–1143.5) 5.63 <0.01*

Platelet transfusion volume (U) 1 (0–2) 1 (0–2) 0.67 0.502

Cold precipitation infusion volume (U) 10 (0–10) 9 (2.5–10) 1.69 0.092

3 days average blood pressure [n (%)]

Abnormality 351 (75.97) 45 (71.43) 0.40 0.529

Normality 111 (24.03) 18 (28.57)

INR 1.21 (1.15–1.3) 1.21 (1.16–1.295) 0.215 0.830

IABP [n (%)]

No 461 (99.78) 56 (88.89) 36.89 < 0.01*

Yes 1 (0.22) 7 (11.11)

External temporary pacemaker [n (%)]

No 456 (98.7) 55 (87.3) 23.54 < 0.01*

Yes 6 (1.3) 8 (12.7)

CRRT [n (%)]

No 446 (96.54) 44 (69.84) 59.28 < 0.01*

Yes 16 (3.46) 19 (30.16)

MV duration (h) 24 (17–70.75) 100 (38–172.5) 6.30 < 0.01*

Sedative and analgesic drugs (Number)

≤ 3 349 (75.54) 56 (88.89) 4.87 0.027*

> 3 113 (24.46) 7 (11.11)

Time to first oral intake (d) 3 (2–6) 8 (5–12.5) 6.68 < 0.01*

Time to first ambulation (d) 9 (7–12) 13 (10–15) 4.87 < 0.01*

Postoperative LVEF (%) 61 (58–66) 64 (61–66) 2.27 0.023*

LCOS [n (%)]

No 430 (93.07) 37 (58.73) 63.09 < 0.01*

Yes 32 (6.93) 26 (41.27)

Length of ICU stay (d) 8 (5–11) 12 (9–14) 5.80 < 0.01*

Hospital days (d) 21 (13.25–30) 20 (16–22.5) 1.55 0.121

Z, Mann–Whitney test; χ2 , Chi-square test; *P < 0.05.

3.4 Model explanation

Using the SHAP algorithm, an interpretability analysis was
performed to identify the key risk factors influencing postoperative
GIB in TAAD patients, providing a visual representation of the
proportional differences among variables. The results indicated
that the top three most important clinical features influencing
the output of the optimal model ranked by importance were
MV duration, Time to aortic occlusion, and RBC transfusion
(Figure 4).

Based on the SHAP summary plot, SHAP Dependency Plots
were further generated for the top three clinical features to explain
their impact on GIB in patients. In the dependency plots, the
vertical axis represents the SHAP value of the clinical feature, while
the horizontal axis represents the range of variation for that feature.
A SHAP value greater than zero indicates an increased risk of
postoperative GIB for these patients (Figure 5).

4 Discussion

4.1 ML predictive model construction
and evaluation

Machine learning algorithms enable deep exploration of data
to analyze intrinsic relationships within datasets, demonstrating
distinct advantages in big data processing (18, 19). However,
although deep learning and more advanced ensemble learning
methods may optimize model performance when handling
complex data, we prioritized classical ML models due to the
limitations of our dataset characteristics and the high demands of
clinical real-time decision-making. Consequently, we successfully
trained and validated four ML algorithm-based models—RF, SVM,
KNN, and DT—to assess the risk of postoperative GIB in TAAD
patients. Furthermore, the practicality and accuracy of the four
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FIGURE 2

Lasso regression-based variable screening. (A) Variation characteristics of variable coefficients. (B) The process of selecting the optimal value of the
parameter λ in the lasso regression model is carried out by the cross-validation method.

TABLE 2 Performance comparison of four machine learning models in predicting postoperative gastrointestinal bleeding (GIB) risk in Type A aortic
dissection (TAAD) patients.

Model AUC (95%
CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy
(95% CI)

Precision
(95% CI)

F1-score
(95% CI)

PDeLong test

RF 0.933
(0.840–0.997)

0.789
(0.597–0.967)

0.971
(0.944–0.998)

0.950
(0.915–0.983)

0.789
(0.595–0.972)

0.790
(0.631–0.926)

–

SVM 0.892
(0.754–0.983)

0.684
(0.457–0.903)

0.978
(0.954–0.993)

0.943
(0.907–0.979)

0.812
(0.599–0.897)

0.743
(0.552–0.913)

0.011*

KNN 0.902
(0.802–0.993)

0.789
(0.59–0.975)

0.964
(0.933–0.996)

0.943
(0.907–0.979)

0.750
(0.547–0.952)

0.769
(0.602–0.919)

0.023*

DT 0.768
(0.648–0.888)

0.526
(0.296–0.753)

0.992
(0.978–0.998)

0.937
(0.899–0.975)

0.909
(0.726–0.987)

0.667
(0.455–0.860)

0.004*

*P < 0.05.

FIGURE 3

The comprehensive analysis of four ML models. (A) The Receiver Operating Characteristic (ROC) curve and area under the curve of the validation
set. (B) The calibration curve plot of the models. In the calibration curve, the x-axis represents the average predicted probability, and the y-axis
represents the actual probability of a positive event occurring. The diagonal line represents the perfectly calibrated reference line. The solid lines of
different colors correspond to the fitting lines of the respective models. (C) The decision curve analysis (DCA) of the validation set.

models were evaluated using ROC curves, calibration curves, DCA,
and metrics such as sensitivity, specificity, and F1 scores. Results
revealed that the RF model exhibited strong clinical utility, high
predictive accuracy, and optimal comprehensive performance.

Random Forest is an ensemble learning algorithm based on
decision trees, which constructs models by training multiple

decision trees and employs voting mechanisms or averaging
methods to derive final predictions. Due to its outstanding
performance in feature extraction, overfitting resistance, and
data noise reduction (20), the RF algorithm is characterized
by strong practicality and high accuracy. Wallace et al. (21)
utilized the RF algorithm, integrating 500 decision trees and
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FIGURE 4

Explaining the model using the SHapley Additive exPlanation (SHAP) analysis. (A) The scatter plot of feature distributions using the SHAP analysis.
(B) Ranking feature importance based on the absolute mean values of SHAP values. [SHAP values represent the predictive features of individual
patients and the contribution of each feature to predicting gastrointestinal bleeding (GIB)].

FIGURE 5

SHapley Additive exPlanation (SHAP) dependency plot for the top six clinical features contributing to GBDT model. (A) Mechanical ventilation (MV)
duration; (B) Time to aortic occlusion; (C) Red blood cell (RBC) transfusion. SHAP values for specific features exceed zero, representing an increased
risk of gastrointestinal bleeding (GIB).

evaluating the importance of 157 features during training, to
comprehensively predict risk factors for stroke events during
nocturnal sleep, significantly enhancing the model’s clinical
applicability. Additionally, multiple studies in postoperative
cardiac prediction (22–24) have demonstrated that prediction
models constructed using the RF algorithm achieve significantly
higher accuracy compared to other ML algorithms such as logistic
regression, SVM, and KNN. Therefore, the advantages of the RF
algorithm in data processing and feature selection fully satisfy the
requirements for practicality and accuracy in predicting GIB risk
in TAAD patients.

However, although the RF model demonstrated high predictive
performance (AUC = 0.933) and clinical utility in this study, its
clinical application remains constrained by the inherent limitations
of retrospective research, such as selection bias and the absence
of critical dynamic physiological parameters (e.g., real-time blood
pressure, dynamic coagulation function changes) (25). Prospective
studies, leveraging rigorous enrollment design, real-time data
acquisition, and dynamic monitoring, can not only effectively
control confounding factors but also enable continuous iterative
optimization of the model based on newly acquired continuous
clinical data. This approach would validate its robustness in
dynamic clinical environments (e.g., variations in surgical practices,
adjustments in treatment strategies) and assess its generalizability
across diverse medical centers and patient populations. Therefore,
further validation of this model through prospective studies
remains necessary.

4.2 Interpretability of ML models

Chinese TAAD patients exhibit an average onset age 10–
20 years younger than their Western counterparts, predominantly
affecting young and middle-aged adults (26), resulting in longer
life expectancy. During initial surgical interventions, particular
emphasis must be placed on long-term outcomes to minimize or
avoid secondary reinterventions. This distinctiveness is reflected
not only in the younger age of onset but also in the critical impact of
postoperative complications—particularly GIB—on patients’ long-
term quality of life and survival. To effectively evaluate patient
prognosis and optimize treatment strategies, innovation in clinical
decision-making tools is imperative. However, while ML predictive
models serve as effective tools for clinical disease diagnosis
and prognostic assessment, their inherent “black box” nature
complicates clinicians’ understanding of model mechanisms,
thereby limiting clinical adoption. To address this, we employed
the SHAP algorithm to analyze the interpretability of the RF
model for predicting postoperative GIB risk in TAAD patients.
Results identified three clinically influential features: MV duration,
Time to aortic occlusion, and volume of RBC transfusion, which
serve as critical indicators for predicting postoperative GIB in this
population. This approach not only enhanced model transparency
but also provided more precise and reliable evidence to inform
clinical decision-making.

Postoperative TAAD patients require MV to ensure respiratory
function and improve oxygenation due to surgical trauma,
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residual anesthetic effects, pain, and unstable vital signs. This
study demonstrated that TAAD patients with MV duration
exceeding 24 h postoperatively face a significantly higher risk
of GIB (Figure 5A), a finding consistent with multiple studies
(27, 28). However, a meta-analysis (29) reported no conclusive
evidence linking MV to GIB risk in critically ill patients. This
discrepancy may arise from differences in study populations,
as the meta-analysis focused on ICU patients, whereas our
cohort comprised post-cardiac surgery patients. Additionally,
population heterogeneity likely contributes to variations in
outcomes regarding MV’s impact on GIB. Thus, the relationship
between MV duration and GIB risk warrants further investigation.
Nevertheless, for patients requiring MV beyond 24 h, optimized
ventilator management strategies—including precise ventilator
weaning assessment, early respiratory muscle training, and
concurrent monitoring of gastric mucosal pH during MV—
should be implemented to mitigate risks. These measures
aim to balance respiratory support with minimizing potential
adverse outcomes.

Aortic occlusion is a necessary procedure during TAAD
surgery under CPB, and its duration critically influences
surgical outcomes and postoperative recovery. Yang et al.
(30) demonstrated a positive correlation between intraoperative
aortic occlusion time and postoperative GIB risk. The SHAP
dependence plot in this study confirmed that when aortic
occlusion time exceeds 100 min, TAAD patients face a
significantly elevated risk of postoperative GIB (Figure 5B),
further validating the importance of aortic occlusion time
in predicting GIB risk after TAAD surgery. Prolonged aortic
occlusion time reflects extended CPB duration, during
which surgical trauma, intraoperative hypothermia, and
non-pulsatile perfusion contribute substantially to systemic
complications. Therefore, optimizing surgical techniques
to precisely control aortic occlusion time or implementing
specific myocardial protection strategies during the procedure
is crucial to minimizing the adverse effects of CPB.
Additionally, close postoperative monitoring of microcirculatory
status and dynamic adjustment of vasoactive medications
based on intestinal perfusion pressure may help reduce
complication rates.

Type A aortic dissection surgery is often associated
with significant intraoperative blood loss, necessitating RBC
transfusion to maintain hemodynamic stability and adequate
blood volume. However, multiple studies (11, 31) have
shown that excessive RBC transfusion in cardiac surgery
may trigger transfusion-related inflammatory responses
and storage lesions due to prolonged RBC preservation,
both of which increase postoperative GIB risk. This study
further corroborates these findings, demonstrating that a
volume of RBC transfusion exceeding 4 U during surgery
significantly elevates the risk of postoperative GIB in TAAD
patients, highlighting the critical importance of maintaining
appropriate intraoperative RBC transfusion volumes to reduce
GIB incidence (Figure 5C). Therefore, clinicians should adopt
strict transfusion thresholds, closely monitor postoperative
free hemoglobin levels, and implement plasma exchange
when necessary to systematically mitigate transfusion-related
complication risks.

4.3 Study limitations

(1) Clinical feature data were retrospectively collected,
which may introduce information bias. (2) This study included
postoperative TAAD patients but did not perform stratified
analyses based on different surgical techniques, nor did it explore
the specific impact of surgical technique differences on GIB.
Further research is needed to examine the relationship between
different surgical techniques and postoperative GIB in patients.
(3) Shanxi Bethune Hospital, as a national regional medical center
construction Project, has its cardiac surgery department recognized
as a provincial key clinical specialty in Shanxi Province. This
institutional context renders the cohort of TAAD patients treated
at this hospital both typical and representative. However, our study
is currently limited to patients treated at Shanxi Bethune Hospital.
Consequently, the predictive model constructed based on this
specific patient population may demonstrate optimal performance
when applied to Han Chinese in north china regions sharing similar
demographic characteristics and healthcare resource allocation
patterns as Shanxi Province. Future studies will involve multicenter
collaborations to expand the sample size by incorporating
ethnically and geographically diverse patient populations, thereby
validating and enhancing the model’s external validity.

5 Conclusion

The RF model is more advantageous in predicting the risk
of postoperative GIB in patients with TAAD, and the three
clinical characteristics that have a greater impact on the model
are MV duration, the time of aortic occlusion, and the amount
of intraoperative RBC transfusion The results of the above study
help to increase the understanding of the ML model among clinical
healthcare professionals, and promote the clinical application of
the model, so that we can identify the population with a high
risk of postoperative GIB after TAAD in the early stage and
optimize treatment regimens and make clinical decisions in the best
interest of patients.
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