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Transcriptomic profiling of burn 
patients reveals key 
lactylation-related genes and 
their molecular mechanisms
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Introduction: Burn injury is a global health concern characterized by complex 
pathophysiological changes. Understanding gene expression changes and 
molecular pathways, especially those related to lactylation, is crucial for 
developing effective treatments. This study aimed to analyze the transcriptomic 
profiles of burn patients and identify lactylation-related genes as potential 
biomarkers or therapeutic targets.

Methods: Peripheral blood transcriptome data of burn patients and controls 
were obtained from the GEO database. After preprocessing to remove batch 
effects and normalize the data, differential genes were screened. Functional 
enrichment, lactylation gene analysis, machine learning for key gene selection, 
immune cell infiltration analysis, gene correlation and GSEA analysis, patient 
clustering, and upstream regulatory factor prediction were performed using 
various R packages. Statistical analysis was conducted using R software, with a 
p-value of < 0.05 considered significant.

Results: Pathway enrichment analysis in burn patients showed significant 
alterations in immune-related pathways. Lactylation genes were differentially 
expressed, with changes in RNA processing and cell interactions. Machine 
learning identified four key lactylation-related molecules (RPL14, SET, ENO1, 
and PPP1CC). Immune microenvironment analysis revealed correlations with 
immune cell infiltration. Clustering analysis based on these four molecules 
divided burn patients into two subgroups, each exhibiting distinct gene 
expression patterns and pathway enrichments.

Conclusion: This study provides insights into the molecular alterations in burn 
patients, especially regarding lactylation. The identified key molecules and 
pathways offer potential targets for personalized treatment. Future research 
should validate these findings and explore their clinical applications for 
improving burn patient management and prognosis.
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Introduction

Burn injury is a significant global health issue that often leads to 
complex pathophysiological changes in the body (1). The immune 
system and various molecular regulatory mechanisms play crucial 
roles in the body’s response to burn trauma (2–4). Understanding the 
alterations in gene expression (4) and related molecular pathways (5) 
in burn patients is essential for developing effective treatment 
strategies and improving patient outcomes.

Previous studies have demonstrated that burn injuries can initiate a 
cascade of inflammatory responses (6, 7), disrupting normal 
physiological processes (8). However, the detailed molecular mechanisms 
driving these changes, particularly those involving lactylation (9) and its 
associated regulatory networks, remain poorly understood. Lactylation 
(10, 11), a novel post-translational modification, has been implicated in 
a variety of biological processes (12), and its dysregulation may play a 
critical role in the pathophysiology of burn injuries.

In this study, we aimed to comprehensively analyze the transcriptomic 
profiles of peripheral blood samples from burn patients and normal 
controls. By integrating bioinformatics tools and machine learning 
algorithms, we sought to identify differentially expressed genes, with a 
particular focus on lactylation-related genes. We hypothesized that these 
genes could serve as potential biomarkers or therapeutic targets, providing 
valuable insights into the molecular mechanisms of burn injury and 
guiding the development of personalized treatment approaches.

Methods

Data source and preprocessing

Peripheral blood transcriptome data from burn patients (burn) 
and normal controls (control) were obtained from the public GEO 
database, including datasets GSE19743 (114 burn cases and 63 control 
cases) and GSE37069 (553 burn cases and 37 control cases). After 
merging, 767 samples of 18,884 genes were obtained.

R software (version 4.1.0) was used to analyze the data. Batch 
effects were removed using the R packages “limma (version 3.62.2)” 
and “sva (version 2.0.5),” and data normalization was performed using 
the “preprocessCore (version 1.68.0)” package in R to ensure data 
quality and comparability.

Screening of differential genes

Differential expression analysis was conducted using the R package 
“limma (version 3.62.2),” with differentially expressed genes screened 
based on the criteria of adjusted p-value < 0.05 and|logFC| > 0.5.

Functional enrichment analysis

For the differential genes, Gene Ontology (GO) annotation 
(including biological process, cellular component, and molecular 
function) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis were performed using the R package 
“clusterProfiler (version 4.14.4)” (13) to reveal gene functions and 
changes in related biological pathways.

Analysis of lactylation genes

Lactylation modification gene sets were obtained from the literature 
(14, 15) (Supplementary Table S1), and the intersection with the 
differential genes was taken to obtain 25 upregulated lactylation genes and 
55 downregulated lactylation genes. The GO and KEGG pathway 
enrichment analyses were then performed on these genes.

Screening of key genes by machine 
learning

Three machine learning algorithms, XGBoost (XGBoost version 
1.7.10.1) (16), random forest (RandomForest version 4.7–1.2) (17), and 
LASSO regression (glmnet version 4.1–8) (18), were used to analyze the 
differentially expressed genes. The correlation and predictive ability of 
these genes for disease occurrence were analyzed.

Controlling overfitting in XGBoost and 
random Forest

To mitigate overfitting, distinct strategies were used in XGBoost and 
random forest models. For XGBoost, regularization was achieved 
through parameter tuning: max_depth = 6 was set to restrict tree 
complexity, while a learning rate (eta = 0.5) was applied to downweight 
individual tree contributions, implementing a gradient boosting 
shrinkage strategy. Additionally, default parameters, including gamma 
(minimum loss reduction required for splitting), subsample (random 
sampling of observations), and colsample_bytree (random sampling of 
features per tree), were leveraged to indirectly control overfitting.

For random forest, overfitting was addressed via three mechanisms: 
(1) Bootstrap sampling, where both observations and features were 
randomly sampled (with mtry = sqrt(p) specifying the default number 
of features per split) to enhance model diversity; (2) Optimal tree 
number selection, in which the code identified the minimum out-of-bag 
(OOB) error using which.min(rf$err.rate[,1]) to determine the optimal 
number of trees (optionTrees) and avoid redundancy; and (3) Feature 
randomness, whereby each tree utilized only a subset of features (via the 
default mtry parameter) to reduce inter-feature correlation and improve 
generalization. These approaches collectively ensured robust model 
performance while minimizing overfitting across both algorithms.

Immune cell infiltration analysis

The ssGSEA function of the R package “GSVA (version 2.0.5)” 
(19) was used to evaluate the degree of immune cell infiltration, 

Abbreviations: GEO, Gene Expression Omnibus; GO, Gene Ontology; KEGG, 

Kyoto Encyclopedia of Genes and Genomes; XGBoost, eXtreme Gradient Boosting; 

LASSO, Least Absolute Shrinkage and Selection Operator; ssGSEA, single-sample 

Gene Set Enrichment Analysis; PCA, Principal Component Analysis; GSEA, Gene 

Set Enrichment Analysis; MDSCs, Myeloid-Derived Suppressor Cells; DC, Dendritic 

Cell; Treg, regulatory T cell; HIF-1, Hypoxia-Inducible Factor-1; PPAR, Peroxisome 

Proliferator-Activated Receptor; VEGF, Vascular Endothelial Growth Factor; MAPK, 

Mitogen-Activated Protein Kinase; miRNA, microRNA.
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analyze the correlation of immune cell infiltration proportions, the 
differences between the patient and control groups, and the correlation 
between the four core genes and immune cell infiltration (only 
immune cells with a p-value of < 0.05 were shown).

Gene correlation and GSEA analysis

Correlation analysis between the four core genes and all 
genes was performed, and the expression of the top 50 positively 
correlated genes was presented as a heatmap. Based on the results 
of the correlation analysis, GSEA analysis of the Reactome top 20 
results of the four single genes was carried out using the R 
package “clusterProfiler (version 4.14.4),” and the enrichment 
score was calculated to determine the correlation between genes 
and pathways.

Patient clustering and pathway analysis

Based on the four genes, unsupervised clustering typing of 
burn patients was performed using the R package 
“ConsensusClusterPlus (version 1.56.0),” and the optimal number 
of types was determined to be 2. The distribution of the two types 
of patients was shown by PCA plot, and the differential expression 
of the four genes between the different types was analyzed. The R 
package “pheatmap (version 1.0.12)” was used to draw a heatmap 
to show the relationship between clinical characteristics, gene 
expression, and typing. KEGG and Reactome pathways were 
downloaded from the Msigdb database (20), and pathway scoring 
was performed using the R package “GSVA (version 2.0.5).” The 
differences in pathways between the two types were compared, and 
heatmaps were drawn to show the comparison.

Prediction of upstream regulatory factors

The regnetwork database1 was used to predict miRNAs and 
transcription factors upstream of the genes, and the R packages 
“igraph (version 2.1.4) + ggraph (version 2.2.1)” were used to 
construct the regulatory network.

Statistical analysis

R software (Version 4.1.0) was used for graphing, calculations, and 
statistical analysis of the results. Student’s t-test was utilized to 
compare the mean values of different groups, and we  used the 
Benjamini–Hochberg false discovery rate to correct multiple 
comparisons. To compare immune cell infiltration levels between 
groups, the Wilcoxon rank-sum test was used. For pathway 
enrichment analysis across clusters, Fisher’s exact test was used. 
Statistical significance was set at a p-value of <0.05.

1 https://figshare.com/s/566ab5e5e340e988b6c6

Results

Abnormal enrichment of pathways in burn 
patients

To compare the differences in lactylation-related genes between 
burn patients and normal patients, we analyzed the peripheral blood 
transcriptomics of these two types of patients. For the 18,884 genes from 
767 samples after combining two datasets, we first removed the batch 
effect. Before removal (Figure 1A), the data distribution was rather 
scattered, while after removal (Figure 1B), the data points were more 
clustered and the distribution was more reasonable, effectively reducing 
batch-related errors. Subsequently, data normalization was carried out. 
Before normalization (Figure 1C), the data scales were inconsistent, and 
after normalization (Figure 1D), the data scales were unified, facilitating 
the accurate comparison of gene expression levels in the subsequent 
steps. Finally, differential genes were screened according to the criteria 
of adjusted p-value < 0.05 and|logFC| > 0.5. As a result, 1,247 
upregulated genes and 1,847 downregulated genes were obtained. The 
volcano plot (Figure 1E) showed the distribution of differential genes, 
and the heatmap (Figure 1F) demonstrated the differences in gene 
expression between the healthy and burn groups, indicating that there 
were significant differences in gene expression between the two groups.

Subsequently, we performed the GO/KEGG enrichment analyses 
on the differential genes. The GO analysis of biological processes 
(Figure  2A) enriched inflammation-related pathways such as 
“mononuclear cell differentiation,” “positive regulation of cytokine 
production,” and “leukocyte mediated immunity,” which proved that the 
immune statuses of the two groups of patients were significantly 
different. Similarly, in the GO analysis of molecular functions 
(Figure 2B), immune-related changes were also enriched. In the GO 
analysis of cellular components (Figure 2C), structural changes in many 
transport-related organelles were enriched, which was in line with the 
pathological changes in burn patients. The KEGG analysis (Figure 2D) 
showed that helper T cells had relatively large changes, suggesting that 
helper T cells play an important role in the pathological process of burns.

Changes in Lactylation genes in burn 
patients

Since lactylation plays an important role in biological processes, 
we  took the intersection of the upregulated (Figure  3A) and 
downregulated (Figure 3B) differential genes with the lactylation gene set 
(Supplementary Table S1), obtaining 25 upregulated and 55 
downregulated lactylation genes (Supplementary Figure S1A), which 
were then presented by heatmap (Supplementary Figure S1B) and box 
plot (Supplementary Figure S1C). Subsequently, we performed the GO/
KEGG analyses on these differential genes. The GO analysis of biological 
processes (Figure  3C) revealed enrichment in RNA change-related 
pathways such as “ncRNA processing,” “RNA splicing,” “rRNA 
processing,” and “rRNA metabolic process,” demonstrating significant 
alterations in RNA metabolism in burn patients. Interestingly, in the GO 
analysis of molecular functions (Figure 3D), functions related to binding 
were significantly enriched, indicating changes in cell interactions. GO 
analysis of cellular components (Figure 3E) further proved that RNA 
splicing and related structures had changed. KEGG analysis (Figure 3E) 
showed that metabolic and HIF-1 signaling pathways had changed. The 
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FIGURE 1

Batch effect removal and data normalization. (A) Scatter plot of gene expression data before batch effect removal, showing a relatively scattered 
distribution; (B) Scatter plot of gene expression data after batch effect, with data points more clustered and a more reasonable distribution; (C) Box plot 
of gene expression data before normalization, indicating inconsistent data scales; (D) Box plot of gene expression data after normalization, with unified 
data scales; (E) Volcano plot of differential gene analysis. Blue dots represent downregulated genes, and red dots represent upregulated genes, 
screened based on p-value < 0.05 and |logFC| > 0.5; (F) Heatmap shows the differences in gene expression between healthy and burn groups. Red 
indicates higher expression, and blue indicates lower expression, demonstrating the significant differences in gene expression between the two groups.
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above data indicated that the lactylation-related genes in burn patients 
had significant changes compared to controls, potentially impacting RNA 
processing and other critical cellular functions.

Screening of key Lactylation-related 
molecules in burn patients by machine 
learning

To identify the key molecules, we  adopted machine learning, 
including XGBoost, Random Forest, and LASSO regression. XGBoost 
was chosen for its efficiency in handling large-scale datasets and ability 
to capture non-linear relationships, making it suitable for complex 

gene-disease association analysis (21). Random Forest was selected 
due to its robustness against overfitting and interpretability via feature 
importance scores, which aids in identifying critical genes with high 
predictive power for disease occurrence (17). LASSO regression was 
utilized to perform dimensionality reduction and feature selection by 
imposing a penalty on model complexity, effectively narrowing down 
genes through sparse regularization (22). The XGBoost (Figure 4A), 
random forest (Figure 4B), and LASSO regression (Figure 4C) models 
were used to select 15, 15, and 49 lactylation-related genes, 
respectively. In both the XGBoost and random forest models, the gene 
with the highest weight selected was RPL14. Subsequently, we took the 
intersection of the molecules selected by the three machine learning 
models (Figure  4D) and obtained four common key molecules, 

FIGURE 2

GO and KEGG enrichment analyses of differential genes. (A) GO analysis of the biological process (BP) of differential genes; (B) GO analysis of the 
cellular component (CC) of differential genes; (C) GO analysis of the molecular function (MF) of differential genes; and (D) KEGG pathway enrichment 
analysis results of the intersection of differential genes.
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FIGURE 3

Analysis of lactylation-related differential genes. (A) Venn diagram shows the intersection of the upregulated gene set and the lactylation gene set (25 
genes) and the intersection of the downregulated gene set and the lactylation gene set (55 genes); (B) GO analysis of the biological process (BP) of 
lactylation-related differential genes; (C) GO analysis of the cellular component (CC) of lactylation-related differential genes; (D) GO analysis of the 
molecular function (MF) of lactylation-related differential genes; and (E) KEGG pathway enrichment analysis results of lactylation-related differential genes.
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FIGURE 4

Screening of key genes by machine learning. (A) Importance ranking of 15 genes selected by the XGBoost algorithm; (B) Importance ranking of 15 
genes selected by the random forest algorithm; (C) 49 genes screened using LASSO regression; (D) Venn diagram shows the intersection of genes 
selected by the three machine learning algorithms, obtaining four core genes; (E) Correlation heatmap of the four core genes. Red represents positive 

(Continued)
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namely RPL14, SET, ENO1, and PPP1CC. Through correlation 
analysis (Figure 4E), we found that ENO1 was negatively correlated 
with the other three genes, while the other three genes were positively 
correlated with each other. Subsequently, we used these four molecules 
to distinguish burn patients (Figure 4F). The AUC values from high 
to low were as follows: RPL14 (AUC = 0.934), SET (AUC = 0.922), 
ENO1 (AUC = 0.919), and PPP1CC (AUC = 0.919) (Figure 4G). In 
addition, we also compared the above four indicators with the well-
recognized burn-related indicators IL-6, TNF-α, and CRP 
(Supplementary Figure S2). The results showed that the above AUC 
values were all greater than 0.9, indicating that these four molecules 
have a better ability to distinguish burn patients.

Regulation of the immune 
microenvironment and different pathways 
by key Lactylation-related molecules

Next, by exploring changes in the immune microenvironment, 
we found that activated CD8+T cells were most closely correlated with 
myeloid-derived suppressor cells (MDSCs) and follicular helper T 
cells (Figure 5A). Comparing burn patients with healthy individuals 
(Figure 5B), we found that the number of activated DC (dendritic cell) 
cells in burn patients significantly increased, while the numbers of 
activated CD8+T cells, B cells, and CD4+T cells were all decreased. In 
addition, the numbers of neutrophils and Treg cells in burn patients 
were significantly increased, reflecting the body’s efforts to maintain 
the balance of the immune system. Subsequently, we analyzed the 
relationship between the four key molecules and the immune 
microenvironment (Figure 5C). The cells that were most significantly 
positively and negatively correlated with ENO1 were activated DC 
cells and activated CD8+T cells, respectively. Interestingly, the other 
three molecules exhibited the opposite pattern, further confirming the 
negative correlation between ENO1 and the other three molecules.

We performed correlation analyses between ENO1, PPP1CC, 
RPL14, SET, and other genes, selecting the top 50 for display (Figure 6A). 
Based on these correlations, we conducted single-gene GSEA analysis 
using Reactome (Figure  6B). Interestingly, although ENO1 was 
negatively correlated with the other three molecules, all four molecules 
were enriched in the “rRNA processing” pathway, indicating significant 
changes in the ribosome function in burn patients. Moreover, 
we  analyzed the gene regulatory network of these four molecules 
(Supplementary Figure S3), from which the complexity of the regulatory 
network and the regulation by has-miRNA could be observed.

Identification of Lactylation-related 
molecular subgroups and differences 
between subgroups

To explore the relationship between the expression of the four 
lactylation-related molecules and the subgroups of burn patients, 

we performed a consensus clustering analysis on all burn patients. By 
increasing the clustering variable (k) from 2 to 10, we found that when 
k = 2, the within-group correlation was the highest and the between-
group correlation was relatively low, indicating that burn patients 
could be  well divided into two clusters based on the above four 
molecules (Figure 7A). PCA analysis showed that patients in Cluster 
A and Cluster B could be distinguished by this clustering method 
(Figure 7B). Subsequently, we explored the inter-cluster expression 
patterns of the four genes and found that there were significant 
differences in the expression of SET, PPP1CC, ENO1, and RPL14 
between the clusters. Cluster A exhibited higher expression levels of 
SET, PPP1CC, and RPL14, while Cluster B was characterized by 
enhanced expression of ENO1 (Figure 7C). The heatmap (Figure 7D) 
showed that there were slightly more patients in Cluster A than in 
Cluster B, and the expression patterns of the four molecules in the two 
groups of patients were completely different. The KEGG pathway 
analysis (Figure  7E) of the two groups of patients showed that 
pathways such as “VALINE_LEUCINE_AND_ISOLEUCINE_
DEGRADATION,” “RIBOSOME,” and “SPLICEOSOME” were 
upregulated in Cluster A, while pathways such as “PPAR,” “VEGF,” 
and “MAPK” were enriched in Cluster B. The Reactome pathway 
analysis (Figure 7F) showed that RNA remodeling was very active in 
Cluster A, while extracellular matrix degradation and remodeling 
were active in Cluster B. The above data indicated that these four 
lactylation-related molecules could significantly distinguish different 
burn patients and might be beneficial for the stratified treatment of 
burn patients.

Discussion

In this study, we  conducted a comprehensive analysis of the 
peripheral blood transcriptomes of burn patients and normal 
controls. Through a series of bioinformatics and machine learning 
techniques, we identified significant differences in gene expression 
and pathway enrichment between the two groups, with a particular 
emphasis on lactylation-related genes (SET, PPP1CC, ENO1, 
and RPL14).

The observed changes in immune-related pathways (3, 23) and 
the immune microenvironment (24) in burn patients are consistent 
with the known pathophysiology of burn injuries (25, 26). The 
upregulation of inflammation-related pathways and the alterations 
in immune cell populations highlight the body’s attempt to mount 
an immune response and maintain homeostasis (27). The 
dysregulation of lactylation genes may further modulate these 
processes, potentially affecting the severity and outcome of 
burn injuries.

Lactylation, a newly discovered post-translational 
modification, is closely associated with cellular metabolic states, 
particularly lactate metabolism (28, 29). Burn injury typically 
triggers severe systemic inflammation and metabolic disorders, 
during which lactate accumulation may occur due to tissue 

correlation, and green represents negative correlation; (F) ROC curves of the four genes for predicting disease occurrence; The X-axis is “1-specificity,” 
and the Y-axis is “sensitivity.” Different genes have different sensitivities and specificities, and the area under the ROC curve (AUC) reflects the predictive 
ability of the gene for disease occurrence; (G) AUC values of the ROC curves of the four genes.

FIGURE 4 (Continued)
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FIGURE 5

Evaluation of immune cell infiltration. (A) Heatmap shows the correlation of immune cell infiltration proportions; (B) Box plot shows the differences in 
immune cell infiltration between the patient and control groups; (C) Scatter plot shows the correlation between the four core genes and immune cell 
infiltration. The size of the circle represents the correlation coefficient, and the color represents the p-value.

https://doi.org/10.3389/fmed.2025.1554791
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 10.3389/fmed.2025.1554791

Frontiers in Medicine 10 frontiersin.org

hypoxia, glycolytic pathway activation, or immune cell dysfunction 
(30, 31). The dysregulation of lactylation-related genes observed 
in this study suggests that abnormal lactylation modification may 
participate in the molecular mechanisms underlying burn injury 
by affecting multiple biological processes. The identification of 
four key lactylation-related molecules (RPL14, SET, ENO1, and 
PPP1CC) using machine learning algorithms provides novel 
insights into the molecular mechanisms underlying burn injury. 
According to our analysis, these molecules not only showed strong 
predictive power for distinguishing burn patients but also 
exhibited complex regulatory relationships with each other and 
with the immune microenvironment (32, 33). Among them, 
ENO1, as a glycolytic enzyme, can play a tumor-promoting role in 
a variety of tumors (34–36), which may indicate that the type B 
burn patients identified in this article have a poorer prognosis. 
The negative correlation between ENO1 and the other three 
molecules, along with their shared enrichment in the rRNA 
processing pathway, suggests a coordinated regulatory network 
that may be crucial for cellular function and response to burn 
stress (37, 38).

Furthermore, the immune microenvironment analysis in this 
study revealed correlations between lactylation-related genes and 
immune cell infiltration. For instance, ENO1, a key gene involved in 
glycolysis, was negatively correlated with activated CD8 + T cells but 
positively correlated with activated dendritic cells (39). This may 
indicate that lactylation modulates immune cell function by 
regulating metabolic pathways. In the context of burn injury, excessive 
lactate production may induce an immunosuppressive 
microenvironment through lactylation modification, thereby 
inhibiting T cell function while promoting the activation of myeloid-
derived suppressor cells (MDSCs) or dendritic cells (30, 40), 

ultimately affecting the body’s anti-infection ability and 
wound healing.

The clustering analysis based on these four molecules revealed 
two distinct subgroups of burn patients, each with characteristic 
gene expression patterns and pathway enrichments (41, 42). This 
finding implies the potential for personalized treatment strategies 
tailored to the specific molecular profiles of individual patients. For 
example, patients in Cluster A, with upregulated VALINE_
LEUCINE_AND_ISOLEUCINE_DEGRADATION, RIBOSOME, 
and SPLICEOSOME pathways, may respond differently to 
interventions compared to those in Cluster B, where pathways such 
as PPAR, VEGF, and MAPK are enriched. These data may provide 
favorable scientific evidence for the treatment of these patients with 
pathway inhibitors.

The predicted regulatory network involving miRNAs and 
transcription factors provides a broader context for understanding the 
transcriptional and post-transcriptional regulation of lactylation-
related genes (43). This network may offer additional targets for 
therapeutic modulation (44) and further investigation into the 
complex regulatory mechanisms in burn injury.

However, our study has several limitations. The transcriptomic 
data were derived from peripheral blood samples, which may not fully 
represent the molecular changes occurring in the burn-injured 
tissues. Then, the clinical significance of the subgroups was not 
analyzed due to the absence of clinical data available in this study. 
Additionally, further experimental validation, such as functional 
studies and in  vivo models, is required to confirm the biological 
significance of the identified genes and pathways. Longitudinal 
studies are also needed to monitor the dynamic changes in gene 
expression and the immune microenvironment over the course of 
burn injury and recovery.

FIGURE 6

Characteristics of lactylation-related genes. (A) Correlation Analysis between Four Genes and All Genes Heatmap shows the expression of the top 50 
positively correlated genes in the correlation analysis between the four genes and all genes; (B) GSEA Analysis of Four Single GenesReactome top 20 
GSEA analysis results of the four single genes based on the correlation analysis in top 50 positively correlated genes. The values below represent the 
enrichment score. A positive score indicates a positive correlation between the gene and the pathway, and a negative score indicates a negative 
correlation.
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FIGURE 7

Clustering and pathway analysis of burn patients. (A) Unsupervised clustering typing of burn patients based on four genes, with the optimal number of 
types being 2; (B) PCA plot shows the distribution of the two types of patients; (C) Box plot shows the differential expression of the four genes between 
different types; (D) Heatmap shows the relationship between clinical characteristics, gene expression, and typing; (E,F) Heatmaps comparing the 
differences in the KEGG and Reactome pathways between the two types of patients. Pathway scoring was performed after downloading the pathways 
from the Msigdb database.
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Conclusion

Our study provided valuable insights into the molecular 
alterations in burn patients, particularly those related to lactylation. 
The identified key molecules and pathways offer potential targets 
for future research and the development of personalized treatment 
strategies. Future studies should focus on validating these findings 
and exploring the clinical applications of these molecular 
signatures in improving the management and prognosis of 
burn patients.
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