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Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder characterized by 
pathophysiological mechanisms such as insulin resistance and β-cell dysfunction. 
Recent advancements in T2DM research have unveiled intricate multi-level regulatory 
networks and contributing factors underlying this disease. The emergence of 
precision medicine has introduced new perspectives and methodologies for 
understanding T2DM pathophysiology. A recent study found that personalized 
treatment based on genetic, metabolic, and microbiome data can improve the 
management of T2DM by more than 30%. This perspective aims to summarize the 
progress in T2DM pathophysiological research from the past 5 years and to outline 
potential directions for future studies within the framework of precision medicine. 
T2DM develops through the interplay of factors such as gut microbiota, genetic 
and epigenetic modifications, metabolic processes, mitophagy, NK cell activity, 
and environmental influences. Future research should focus on understanding 
insulin resistance, β-cell dysfunction, interactions between gut microbiota and their 
metabolites, and the regulatory roles of miRNA and genes. By leveraging artificial 
intelligence and integrating data from genomics, epigenomics, metabolomics, and 
microbiomics, researchers can gain deeper insights into the pathophysiological 
mechanisms and heterogeneity of T2DM. Additionally, exploring the combined 
effects and interactions of these factors may pave the way for more effective 
prevention strategies and personalized treatments for T2DM.
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1 Introduction

T2DM, characterized by persistently elevated blood glucose levels, is increasingly recognized 
as a complex metabolic disease affecting the heart and kidneys (1, 2). It also represents a 
significant public health challenge, being the fastest-growing metabolic disease worldwide (3) 
and affecting approximately 10% of the global population (4). Over the past three decades, the 
number of diabetes cases has doubled globally. Currently, one in 11 adults is diagnosed with 
diabetes, and 90% of these cases are T2DM. This makes T2DM a rapidly growing global health 
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concern (5). Asia, particularly China and India, is a key region for the 
rising prevalence of T2DM (6). While developed countries report higher 
prevalence rates (7), developing nations are experiencing faster growth 
in cases (8). The development of T2DM is closely associated with 
multiple risk factors. Obesity, often accompanied by hyperinsulinemia 
and insulin resistance, is one of the main contributors (9). While T2DM 
typically occurs in middle-aged and older adults, its incidence among 
adolescents and children has been increasing due to rising obesity rates 
in these populations (10, 11). Environmental factors, such as specific 
medications and chemicals, may also induce insulin resistance, thereby 
elevating the risk of T2DM (12). Genetic predisposition significantly 
impacts T2DM onset, as individuals with a family history of the disease 
have a higher risk (13). Additionally, other diseases, including thyroid 
disorders (14), Cushing’s syndrome (15), hypertension (16), and 
metabolic syndrome (17), are known to increase the risk of developing 
T2DM.The epidemiology of T2DM is therefore a complex and 
multifaceted issue. Addressing it requires comprehensive interventions, 
such as promoting healthy eating habits, increasing physical activity, 
improving healthcare access, and enhancing health education, which are 
crucial for reducing the prevalence and impact of T2DM.

Precision medicine, defined as “an emerging approach for disease 
treatment and prevention that considers individual variability in genes, 
environment, and lifestyle, “introduces a tailored approach to managing 
diseases (18). This perspective has shifted the understanding of T2DM 
from a single disease to a condition comprising multiple subtypes, each 
presenting distinct features in critical pathological processes such as 
insulin resistance and β-cell dysfunction (19). Identifying these subtypes 
at the diagnostic stage facilitates personalized treatment strategies, 
enabling clinical resources to focus on patients at the highest risk of 
complications. This approach not only enhances patient outcomes but 
also reduces healthcare costs (20). This emphasis on personalized care is 
supported by the treatment recommendations of the American Diabetes 
Association and the European Association for the Study of Diabetes, 
which highlight the need for patient-centered therapeutic approaches 
based on individual characteristics and comorbidities (21).

Advances in large-scale genomics and metabolomics analyses have 
identified key genes associated with insulin signaling pathways and 
β-cell health, as well as the significant role of epigenetic modifications in 
the development of T2DM (22). The gut microbiota and its metabolites 
have also been shown to influence glucose metabolism and insulin 
sensitivity, contributing to the pathogenesis of T2DM (23). In addition, 
mitophagy and NK cell activity are involved in maintaining systemic 
metabolic homeostasis and are linked to T2DM onset. Alongside these 
mechanisms, interactions among lipid metabolism, dietary patterns, and 
environmental factors further complicate the disease’s pathogenesis. 
Comprehensive studies integrating these aspects will enhance the 
understanding of T2DM’s pathophysiology and support the 
development of strategies for prevention and personalized treatment.

With the emergence of precision medicine in the field of T2DM, 
there has been a lack of prospective studies that comprehensively 
examine the advancements in T2DM pathophysiology over the past 
5 years. Additionally, there has been limited exploration of the future 
research directions of T2DM pathophysiology through the lens of 
precision medicine, which would provide a foundation for targeted 
therapies and drug development. This perspective study focuses on the 
key recent findings in T2DM pathophysiology over the past 5 years and 
discusses the future directions of research on T2DM pathophysiological 
mechanisms within the precision medicine framework, incorporating 
multi-omics analysis and artificial intelligence technologies.

2 Recent advances in the 
pathophysiological mechanisms of 
T2DM over the past 5 years

2.1 Study design

The search of PubMed was conducted on 1 October 2024 since 1 
January 2019, and included the broad terms ‘T2DM’[Title/
Abstract],‘type 2 diabetes mellitus’[Title/Abstract]’,and‘pathophysiolo
gy’[Title/Abstract]’.Only peer reviewed English language publications 
were considered. The inclusion criteria included: a clinical randomized 
controlled trial (RCT) or animal experiment study; The exclusion 
criteria included: non-RCT, case analyses, literature reviews, 
retrospective analyses, meta-analyses and guidelines. The specific 
search strategy can be found in the Supplementary materials.

2.2 Gut microbiota and T2DM

A study published in May 2024 highlights the critical role of gut 
microbiota and its specificity in the pathogenesis of T2DM (24). 
Significant differences in the richness, composition, and function of 
microbial communities have been observed between individuals with 
and without T2DM (25). Research also suggests that gut bacteria 
associated with insulin resistance and sensitivity exhibit a unique 
carbohydrate metabolism pattern. This was demonstrated in mouse 
models, where the specific gut bacteria improved host insulin 
resistance phenotypes (26).

Moreover, several randomized controlled trials (RCTs) and 
animal studies have shown that the gut microbiota plays a pivotal role 
in T2DM progression. Metabolites derived from gut microbiota, such 
as bile acids, lipopolysaccharides, trimethylamine N-oxide (TMAO), 
tryptophan and indole derivatives, and short-chain fatty acids 
(SCFAs), have been implicated in the pathogenesis of T2DM and are 
key mediators in host-microbe crosstalk (27–30). Dysbiosis of gut 
microbiota in T2DM leads to abnormal gut metabolites and 
disruption of the intestinal barrier, promoting the translocation of 
bacteria and harmful metabolites into the circulatory system. These 
aberrant entries disrupt insulin sensitivity, glucose metabolism, and 
immune homeostasis, ultimately damaging multiple organs.

2.3 Genetics and epigenetic modifications 
in T2DM

Genome-wide association studies (GWAS) have identified over 
240 loci associated with T2DM (31). For example, pathogenic 
heterozygous variants reducing the activity of the glucokinase (GCK) 
gene are linked to T2DM. Amino acid substitutions at active site 
residues directly influence protein activity, and critical residues 
involved in GCK’s metabolic stability and conformational dynamics 
regulate its activity, thereby affecting glucose homeostasis and 
contributing to T2DM development (32). These findings underscore 
the vital role of genetic variations in T2DM pathogenesis.

Epigenetic modifications, including DNA/RNA methylation, 
histone acetylation, and microRNA (miRNA) expression, are closely 
linked to T2DM onset (33). miRNAs, as “key regulators” in physiological 
and pathological processes, have become a prominent research topic. 
By regulating gene expression at transcriptional, post-transcriptional, 
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and translational levels, miRNAs coordinate intercellular 
communication and regulate a broad range of cellular functions (34).

miRNAs are crucial regulators of insulin secretion (35), and their 
dysregulated expression is associated with the development and 
progression of T2DM (36). For instance, members of the miRNA-29 
family, such as miR-29a-3p, miR-29b-3p, and miR-29c-3p, are widely 
expressed and upregulated under metabolic disease, obesity, and insulin 
resistance conditions. Maintaining a proper balance of miRNA-29 levels 
is critical for cellular and organ homeostasis in metabolism (37). 
Compared with non-diabetic individuals, T2DM patients show 
increased expression of miR-200c in pancreatic islets. Overexpression of 
miR-200c in EndoC-βH1 cells leads to reduced glucose-stimulated 
insulin secretion. The transcription factor ETV5 is a direct target of 
miR-200c in human islets. Knocking down miR-200c increases glucose-
stimulated insulin secretion in islets from T2DM patients by 
approximately threefold, highlighting the significance of the 
miR-200c-ETV5 axis in β-cell dysfunction and T2DM pathophysiology 
(38). Compelling evidence suggests that miR-155 and miR-184-3p play 
pivotal roles in the pathogenesis of diabetes and its complications. 
Clinical studies report lower serum levels of miR-155 in T2DM patients. 
miR-155 is involved in phenotypic transitions of cells within the 
pancreatic islets under metabolic stress and modulates insulin sensitivity 
in the liver, adipose tissue, and skeletal muscle (39). miR-184-3p directly 
targets CREB and regulates the transcription coactivator CRTC1, 
protecting β-cells from lipotoxicity and inflammation-induced apoptosis. 
Its expression is reduced in the pancreatic islets of T2DM patients (40).

Additionally, the relationship between T2DM and DNA/RNA 
methylation has become a new research trend. T2DM and DNA/
RNA methylation are highly dynamic and reversible processes that 
regulate gene expression. DNA methylation has been shown to 
maintain cellular metabolism and trigger β-cell dysfunction and 
insulin resistance, ultimately leading to T2DM. RNA methylation, in 
contrast, primarily regulates eukaryotic gene expression through 
post-transcriptional processes (41).

Compared to research on DNA/RNA methylation and miRNAs, 
studies on histone acetylation in T2DM are relatively limited. However, 
some evidence indicates that T2DM progression is associated with 
histone H3K9 and H3K23 acetylation, H3K4 monomethylation, and 
H3K9 dimethylation in the liver (42). Furthermore, histone H4 lysine 
16 acetylation (H4K16ac) regulates central carbon metabolism in mice. 
Chronic imbalance in H4K16ac promotes metabolic instability, leading 
to the development of metabolic diseases (43).

2.4 Mitophagy and T2DM

Mitophagy, a selective autophagy process crucial for maintaining 
cellular homeostasis, plays a significant role in the pathogenesis of 
T2DM. It eliminates damaged and dysfunctional mitochondria, and 
substantial evidence indicates its importance in regulating T2DM 
mechanisms and maintaining metabolic stability. Defective mitophagy 
is closely associated with the development of insulin resistance (44).

A foundational experiment demonstrated that excessive mitophagy 
in adipose tissue disrupts systemic metabolic homeostasis by activating 
NF-κB signaling, linking it to hepatic insulin resistance and the onset of 
T2DM (45). Another study revealed that abnormal mitophagy mediated 
by the mitophagy receptor FUNDC1  in adipose tissue results in 
mitochondrial quality control dysregulation, increased oxidative stress, 

and overactivation of the MAPK pathway. These changes lead to white 
adipose tissue (WAT) remodeling characterized by enhanced infiltration 
of adipose tissue macrophages (ATMs), M1 macrophage polarization, 
and chronic inflammatory responses, all of which are closely linked to 
metabolic disorders (46). Among these, exosomes derived from 
M1-polarized macrophages (M1-Exos) mediate intercellular transfer of 
miR-212-5p, targeting the sirtuin2 gene and regulating the Akt/GSK-3β/
β-catenin pathway in recipient β-cells, ultimately suppressing insulin 
secretion and contributing to T2DM pathogenesis (47).

2.5 Natural killer (NK) cells and T2DM

NK cells are integral to the inflammatory microenvironment, 
contributing to various obesity-related metabolic diseases and playing 
a role in T2DM pathogenesis through systemic inflammation 
regulation. In obesity, the proliferation and activation of NK cells in 
visceral adipose tissue (VAT) are critical in the mechanisms of insulin 
resistance and T2DM development (48). A foundational experiment 
revealed that the cytotoxic activity of NK cells correlates with T2DM 
progression. In T2DM mice, the cytotoxicity of NK cells gradually 
decreases as the disease advances. Notably, even during the obesity-
induced prediabetic stage, NK cell cytotoxicity is impaired. High 
glucose conditions further suppress NK cell activity, with reduced 
cytotoxicity being a common feature of both T1DM and T2DM (49). 
Clinical studies also demonstrate a significant inverse relationship 
between NK cell activity and fasting blood glucose, glycated 
hemoglobin, and 2-h postprandial glucose levels (50).

2.6 Metabolism and T2DM

Metabolic factors also play a vital role in T2DM pathogenesis. A 
September 2024 study identified hypertriglyceridemia as a risk factor 
for T2DM, potentially promoting its mechanisms either directly or 
via elevated non-esterified fatty acids (NEFAs). Mild acute 
hypertriglyceridemia was shown to impair glucose tolerance, insulin 
sensitivity, and clearance directly, with selective and opposing effects 
on β-cell function depending on NEFA neutralization. These findings 
offer new biological insights into the mechanisms underlying insulin 
resistance and chronic hyperinsulinemia during T2DM 
progression (51).

Additionally, the twin-cycle hypothesis provides a novel 
perspective on T2DM causation, proposing that excessive fat 
accumulation in the liver and pancreas represents a reversible cause 
of T2DM (52). Excess liver fat contributes to an over-supply of fat to 
the pancreas, resulting in dysfunction in both organs (53). Liver fat 
content positively correlates with systemic metabolic disturbances and 
the severity of chronic complications in T2DM patients (54), 
underscoring the critical role of fat metabolism in T2DM development.

2.7 Diet, environmental factors, and T2DM

Environmental factors also significantly impact T2DM. Studies 
show that trace elements like zinc, selenium, and copper are associated 
with T2DM development. While moderate zinc levels regulate insulin 
receptors, extend insulin action, and promote a healthy lipid profile, 
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excessive levels may induce oxidative stress and exert toxic effects, 
contributing to T2DM progression (55).

The relationship between metal exposure and T2DM risk is 
gaining attention. A clinical study identified SOD2 and ICAM1 as 
potential targets of lead-induced T2DM, providing novel insights into 
the biological effects and mechanisms of internal metal exposure on 
T2DM in the Chinese population (56).

In summary, T2DM development is a complex process involving 
multiple interconnected factors, including gut microbiota, genetics 
and epigenetic modifications, metabolism, mitophagy, immunity, 
diet, and environmental influences. The dynamic interactions among 
these factors shape the pathogenesis of T2DM. Comprehensive 
studies of these elements will enhance our understanding of T2DM 
mechanisms and pave the way for innovative strategies in prevention 
and personalized treatment.

3 Precision medicine and future 
research directions

In recent years, significant progress has been made in 
understanding the pathophysiological mechanisms of 
T2DM. However, its complexity and diversity continue to present 
challenges for precision medicine. The concept of precision medicine 
emphasizes the tailoring of treatment strategies based on an 
individual’s genes, environment, lifestyle, and the specific molecular 
mechanisms of the disease. From the perspective of precision 
medicine, future research on the pathophysiology of T2DM will 
increasingly focus on personalization, precision, and in-depth 
exploration at the molecular mechanism level (57). Based on current 
research advances, future studies on the pathophysiological 
mechanisms of T2DM from the precision medicine viewpoint can 
be directed toward the following five aspects.

3.1 Multi-omics analysis of T2DM 
pathophysiology

The pathophysiological mechanisms and clinical manifestations 
of T2DM patients are highly heterogeneous. Multi-omics analysis 
(including genomics, transcriptomics, proteomics, metabolomics, 
etc.) provides a more comprehensive perspective to explore the 
pathophysiological mechanisms of T2DM (58).

Genomic studies have identified several susceptibility genes 
associated with T2DM, such as TCF7L2 and PPARG, which are 
involved in insulin secretion and metabolic regulation. Transcriptomic 
analysis reveals gene expression abnormalities in the β-cells, adipose 
tissue, and liver of T2DM patients, particularly genes related to insulin 
secretion, inflammatory responses, and fat metabolism.

Moreover, proteomic analysis has shown significant changes in 
the expression of insulin signaling pathways, inflammatory factors, 
and metabolic enzymes, suggesting mechanisms of insulin resistance 
and β-cell dysfunction. Metabolomic studies, on the other hand, 
reveal abnormalities in metabolites such as glucose, fatty acids, and 
amino acids, reflecting disruptions in glucose and fat metabolism 
(59). Integrating multi-omics data allows for a more comprehensive 
understanding of the pathophysiology of T2DM, providing a new 
theoretical basis for personalized treatment and early intervention.

3.2 Applications of big data and artificial 
intelligence

From the perspective of precision medicine, the pathophysiology of 
T2DM can be deeply understood through the integration of multi-level 
information, including genes, metabolism, environment, and lifestyle. 
The goal of precision medicine is to develop personalized treatment plans 
based on individual characteristics, optimizing clinical outcomes and 
prevention strategies. Artificial intelligence (AI) plays a crucial role in this 
process. By integrating genetic, metabolic, environmental, and lifestyle 
data from patients, AI algorithms, with their powerful data-processing 
capabilities, can synthesize multi-dimensional patient information (60). 
These algorithms can also uncover potential pathophysiological 
mechanisms of T2DM from large datasets, assisting researchers in 
further exploring the complex mechanisms of disease development and 
providing new directions for future research (61). Additionally, AI can 
perform personalized risk assessments and predictions, aiding in the 
early identification of T2DM risks and supporting the development of 
individualized treatment plans. By enabling real-time monitoring of 
blood glucose levels, physical activity, and diet through smart devices, AI 
provides personalized health management recommendations, advancing 
T2DM treatment towards personalization and intelligence. Precision 
medicine combined with AI is expected to enhance early prevention, 
treatment efficacy, and patients’ quality of life (62).

3.3 In-depth analysis of insulin resistance 
and β-cell dysfunction

One of the core pathological mechanisms of T2DM is insulin 
resistance and β-cell dysfunction (63). Insulin resistance reduces the 
sensitivity of tissue cells to insulin, impairing glucose utilization and 
increasing the burden on β-cells. Future research will focus on further 
refining the interaction mechanisms between these two factors, including 
the key molecules and regulatory mechanisms in the insulin signaling 
pathway, particularly in different tissues such as the liver, adipose tissue, 
and skeletal muscle (64). On the other hand, the molecular mechanisms 
of β-cell dysfunction will also be a key research direction. The relationship 
between β-cell dysfunction and genetic and epigenetic modifications, 
immune and inflammatory responses, as well as autophagy and 
apoptosis, may become a major research focus in the future (65).

3.4 Gut microbiota and its metabolites

Studies have shown that gut microbiota plays a pivotal role in the 
complex metabolic network of T2DM. The diversity and composition 
of these microbes, along with their metabolites, such as short-chain 
fatty acids and bile acids, have profound effects on insulin sensitivity 
and β-cell function. These metabolites can directly influence host 
metabolic pathways and indirectly regulate related signaling pathways 
(30). Current cutting-edge research reveals that gut dysbiosis is not only 
a key factor in the development and progression of T2DM but also 
closely associated with the exacerbation of insulin resistance and 
increased systemic inflammation. Therefore, under the wave of 
precision medicine, future research should focus on how to utilize 
multi-omics data to explore the intrinsic link between individual gut 
microbiota characteristics and the pathogenesis of T2DM. This will 
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provide evidence for uncovering new disease mechanisms, developing 
personalized treatment plans, and formulating prevention strategies, 
effectively reducing the incidence of T2DM (66).

3.5 Micro-ribonucleic acid and genes

In recent years, large-scale genome-wide association studies 
(GWAS) and high-precision whole-genome sequencing technologies 
have enabled scientists to identify multiple gene variants closely 
associated with T2DM, such as TCF7L2 (67), FTO (68), and PPARG 
(69). These gene variants not only directly regulate insulin secretion, 
sensitivity, and action but also drive the onset and progression of 
T2DM through complex interactions with environmental factors, 
lifestyle, and metabolic pathways (70). Notably, miRNAs, as key 
epigenetic regulators, finely modulate the expression of related genes, 
forming a complex feedback network with DNA methylation, histone 
modifications, and other epigenetic mechanisms, further stabilizing 
and specifying gene expression (71). Furthermore, specific miRNAs 
show significant differences in the plasma or tissue samples of T2DM 
patients, offering potential for early diagnosis and prognosis 
evaluation (72). By analyzing miRNA expression profiles, doctors can 
develop personalized treatment plans. Therefore, in-depth 
exploration of the interactions between genomics and epigenetics will 
undoubtedly provide new perspectives and strategies for revealing 
the full picture of T2DM pathophysiology and developing 
personalized therapeutic approaches (73).

4 Discussion

Looking ahead, under the influence of precision medicine, 
research on T2DM will place greater emphasis on individual 
differences in the disease and the integration of multi-dimensional 
data. Through integrated multi-omics analysis and the application of 
big data and AI, researchers will be able to more deeply uncover the 
pathophysiological mechanisms of T2DM (76). This will not only 
help develop personalized treatment plans but also fundamentally 
change the approach to T2DM treatment, making it more precise 
and effective.

However, precision medicine entails the interdisciplinary 
integration of fields such as genomics, data science, and clinical 
medicine. In resource-limited settings, challenges related to data 
collection, integration, sharing, and privacy protection may arise, 
both from technical and legal perspectives. The existing healthcare 
system may struggle to rapidly adapt to the demands of precision 
medicine, thereby hindering its widespread adoption and application. 
Furthermore, the imbalance between the supply and demand for 
advanced technologies and specialized professionals in relevant fields 
presents additional potential obstacles to the effective implementation 
of precision medicine.

5 Conclusion

In the future, precision medicine holds great promise for providing 
more effective treatment options to improve health. This advancement 
is largely driven by new technologies, particularly the expansion of 
knowledge regarding disease mechanisms through large-scale 

biomedical research. Diseases like T2DM, with their heterogeneous 
nature, have multifactorial etiologies. Therefore, implementing 
precision medicine in T2DM requires not only a better understanding 
of genomics but also the integration of other types of omics, including 
epigenomics, proteomics, metabolomics, and pharmacogenomics, into 
a comprehensive precision medicine model for T2DM (74).

Moreover, the combination of precision medicine and artificial 
intelligence (AI) has tremendous potential in elucidating the 
pathophysiological mechanisms of T2DM, personalizing treatments, 
enabling early prevention, and facilitating dynamic monitoring. 
Through big data analysis and deep learning, AI can significantly 
enhance the diagnosis, treatment, and management of T2DM, 
providing patients with more precise and personalized medical 
services. This novel healthcare model not only improves treatment 
outcomes but also reduces treatment costs, advancing the smart and 
personalized development of diabetes management (75).
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