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Background: Sepsis-induced myocardial injury (SIMI) is a severe and common 
complication of sepsis; However, its definition remains unclear. Prognostic 
analyses may vary depending on the definition applied. Early prediction of SIMI 
is crucial for timely intervention, ultimately improving patient outcomes. This 
study aimed to evaluate the prognostic impact of SIMI and develop validated 
predictive models using advanced machine learning (ML) algorithms for 
identifying SIMI in critically ill sepsis patients.

Methods: Data were sourced from the Medical Information Mart for Intensive 
Care IV (MIMIC-IV, v3.0) database. Patients meeting Sepsis-3.0 criteria were 
included, and SIMI was defined as troponin T (TNT) levels ≥0.1 ng/mL. Prognostic 
evaluation involved propensity score matching, inverse probability weighting, 
doubly robust analysis, logistic regression, and Cox regression. Patients were 
divided into training and testing datasets in a 7:3 ratio. Least absolute shrinkage 
and selection operator (LASSO) regression was used for variable selection to 
simplify the model. Twelve hyperparameter-tuned ML models were developed 
and evaluated using visualized heatmaps. The best-performing model was 
deployed as a web-based application.

Results: Among 2,435 patients analyzed, 571 (23.45%) developed SIMI following 
intensive care unit (ICU) admission. Boruta and LASSO identified 46 and 10 key 
variables, respectively, for prognostic and predictive modeling. Doubly robust 
analysis revealed significantly worse short- and intermediate-term outcomes 
for SIMI patients, including increased in-ICU mortality [odds ratio (OR) 1.39, 95% 
confidence interval (CI) 1.02–1.85, p < 0.05], 28-day mortality (OR 1.35, 95% CI 
1.02–1.79, p < 0.05), and 180-day mortality [hazard ratio (HR) 1.21, 95% CI 1.01–1.44, 
p < 0.05]. However, one-year mortality showed no significant difference (HR 1.03, 
95% CI 0.99–1.08, p = 0.169). The XGBoost model outperformed others, achieving 
an area under the receiver operating characteristic curve (AUROC) of 0.83 (95% CI 
0.79–0.87). SHapley Additive exPlanations (SHAP) analysis highlighted the top five 
predictive features: creatine kinase-myocardial band (CKMB), creatinine, alanine 
aminotransferase (ALT), lactate, and blood urea nitrogen (BUN). A web-based 
application was subsequently developed for real-world use.
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Conclusion: SIMI significantly worsens patient prognosis, while the XGBoost 
model demonstrated excellent predictive performance. The development 
of a web-based application provides clinicians with a practical tool for timely 
intervention, potentially improving outcomes for septic patients.
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Introduction

Sepsis is one of the most common diseases and remains the leading 
cause of death in intensive care unit (ICU) patients, resulting in a 
significant global health burden (1). Patients with sepsis present with 
multiple life-threatening organ dysfunctions due to a dysregulated 
response to infection (2). Sepsis is a critical condition that often leads to 
severe cardiovascular complications, including cardiac injury. This injury 
is not merely a transient phenomenon; rather, it has far-reaching 
implications for both early-term and long-term prognoses. Studies have 
shown that patients with sepsis frequently exhibit signs of cardiac 
dysfunction that can be detected using various biomarkers and clinical 
assessments. For instance, elevated troponin levels, which are indicative 
of myocardial injury, have been associated with increased mortality rates 
in patients with sepsis. A cohort study demonstrated that undiagnosed 
myocardial infarction in critically ill patients with cardiovascular disease 
was significantly correlated with lower long-term survival rates (3). 
Troponin testing is a crucial tool for detecting sepsis-induced myocardial 
dysfunction in patients with septic shock (4). Thus, early recognition of 
and aggressive intervention for sepsis-induced myocardial injury (SIMI) 
are of paramount importance.

In the ICU, echocardiography requires high-quality imaging and 
precise operational skills. Operator-dependent errors in 
echocardiographic assessments are inevitable and may lead to 
misinterpretation of a patient’s condition. For example, the quality of 
cardiac ultrasound images may be  compromised in patients with 
cardiogenic shock, potentially affecting the evaluation of left ventricular 
function (5, 6). When evaluating sepsis-associated cardiomyopathy, 
utilization of ICU scoring systems is critical. While the Acute Physiology 
and Chronic Health Evaluation II (APACHE II) and Sequential Organ 
Failure Assessment (SOFA) scoring systems demonstrate robust efficacy 
in evaluating disease severity and prognosticating outcomes in patients 
with sepsis (7), they lack specificity for SIMI.

In contrast to the numerous etiologies of cardiomyopathy, SIMI 
exhibits unique reversibility. This distinctive feature underscores the 
critical importance of early detection and prompt intervention in patients 
with septic shock who develop myocardial dysfunction (8). Given the 
current absence a definitive definition of SIMI and effective predictive 
models (9), we approached this research from a clinical perspective, 
utilizing troponin as a diagnostic marker to explore the prognosis of 
patients with SIMI and to develop an early identification model for SIMI.

Methods

Data source

This retrospective observational study utilized data from the 
Medical Information Mart for Intensive Care IV (MIMIC-IV, version 

3.0) database, an updated version of MIMIC-III. This database 
encompasses comprehensive critical care data for ICU patients at the 
Beth Israel Deaconess Medical Center (BIDMC) from 2008 to 2022. 
It contains detailed patient records including laboratory 
measurements, administered medications, vital signs, and additional 
clinical parameters. Access to the database was granted to author PG 
following the completion of the requisite data usage agreement and 
Collaborative Institutional Training Initiative (CITI) certification. 
Given the de-identified nature of all patient data, informed consent 
was not required (10).

Study population

Inclusion criteria
Patients with sepsis meeting the Sepsis-3.0 criteria (11).

Exclusion criteria
Non-first hospitalization; absence of ICU records; ICU stay time 

less than 1 day; diseases resulting in elevated troponin T levels 
[including myocarditis, pericarditis, coronary disease, congestive 
heart failure, rhabdomyolysis, end-stage chronic kidney disease 
(CKD), burn, stroke, pulmonary embolism, cancer, myocardial 
contusion, fibrillation, takotsubo syndrome, infiltrative 
cardiomyopathies, aortic dissection, cardioversion, cardiothoracic 
surgery]; absence of troponin T (TNT) examination.

Diagnostic criteria
Currently, there is no established or widely accepted definition for 

SIMI. In clinical settings, TNT serves as a marker for assessing 
myocardial damage in patients with sepsis. Research has demonstrated 
a correlation between elevated TNT levels and increased mortality in 
these patients (4). According to the MIMIC-IV database, a TNT level 
of ≥0.1 ng/mL indicates myocardial injury, and thus we  use this 
threshold as the diagnostic criterion for SIMI. The details of 
population selection are shown in Figure 1.

Data extraction

Data extraction was conducted using PostgreSQL 14 with SQL 
queries (Berkeley, California, United States). The resulting dataset 
comprised patient demographics, ICU length of stay, complications, 
laboratory test results, treatments, and other pertinent clinical 
information. For the prognostic analysis of patients with SIMI, the 
maximum and minimum values of laboratory results were retrieved 
to evaluate their impact on patient outcomes. In constructing the 
machine learning (ML) models, only the initial laboratory results 
obtained at ICU admission were utilized because these early values are 
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promptly accessible and enable timely assessment through clinical 
prediction models.

Statistical analysis

The Kolmogorov–Smirnov test was employed to assess the 
normality of continuous variables. Data with normal distribution 
were reported as mean ± standard deviation, while non-normally 
distributed variables were expressed as median and interquartile 
range [IQR, M (P25, P75)]. Levene’s test was performed to 

evaluate the homogeneity of variances. For comparisons between 
two groups, Student’s t-test was applied to continuous variables 
meeting the criteria of normality and homogeneity of variances; 
otherwise, the Mann–Whitney U test was used. Categorical 
variables were summarized as frequencies and percentages, with 
Fisher’s exact test applied for sample sizes under 40 and the 
chi-square test for larger samples. Missing data were handled 
using multiple imputation with the “mice” package in R, excluding 
variables with over 40% missingness from imputation and 
modeling. A total of 100 imputations were conducted to ensure 
robust estimates.

FIGURE 1

Flow chart of study design.
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The gradient boosted model (GBM) was utilized to calculate 
propensity scores for SIMI. To identify key variables significantly 
associated with the outcome, the Boruta feature selection method was 
applied using the Boruta package in R. This method ensures the 
inclusion of statistically relevant features while reducing noise and 
redundancy from excessive variables. An inverse probability of 
treatment weighting (IPTW) approach was used to create a weighted 
cohort based on propensity scores. Covariate imbalances between the 
original and weighted cohorts were assessed using standardized mean 
differences (SMDs) to evaluate the effectiveness of propensity score 
adjustment. Logistic regression or Cox regression was subsequently 
performed on the weighted cohort, adjusting for any residual 
imbalances. This doubly robust analysis was carried out using the 
“survey” package for weighting and logistic regression through the 
“stats” package. The doubly robust estimator ensures unbiased effect 
estimates even when only one of the underlying models is correctly 
specified (12). Cox proportional hazards models were constructed using 
the “survival” package, which also facilitated testing the proportional 
hazards (PH) assumption via functions such as “cox.zph.” In cases where 
time-dependent covariates violated the PH assumption, appropriate 
methods such as time-dependent effects or stratification were employed 
to enhance model fit and ensure accurate hazard ratio (HR) estimation.

Machine learning model construction

The dataset was split into a 70% training set and a 30% test set. To 
address the impact of high-dimensional data on ML algorithm 
performance, the least absolute shrinkage and selection operator 
(LASSO) method was applied for variable selection prior to model 
construction. This technique minimizes prediction error while 
applying constraints that shrink some coefficients to zero, effectively 
selecting only variables with non-zero coefficients as robust predictors. 
The LASSO analysis, performed in the R environment, utilized a 
10-fold cross-validation process with centered and scaled variables to 
determine the optimal tuning parameter lambda. The implementation 
of LASSO regression was facilitated by the “glmnet” package, which 
simultaneously enables shrinkage and variable selection.

Following variable selection, the Synthetic Minority Oversampling 
Technique (SMOTE) was applied as a preprocessing step to balance the 
sample distribution between the SIMI and non-SIMI populations 
within the training dataset. We employed 12 ML methods for model 
construction based on the training set: decision tree (DT), random 
forest (RF), extreme gradient boosting (XGBoost), light gradient 
boosting machine (LightGBM), support vector machines (SVM), 
multilayer perceptron (MLP), K-nearest neighbors (KNN), logistic 
regression, LASSO regression, ridge regression, elastic net (ENet), and 
a stacking ensemble (which integrates KNN, RF, and logistic regression). 
Each ML model underwent grid search for hyperparameter tuning and 
quintuple cross-validation to optimize performance and ensure 
reliability. The area under the receiver operating characteristic curve 
(AUROC) was employed to assess the models’ predictive accuracy 
during validation. AUROC values range from 0.5 to 1.0, with higher 
values indicating better predictive capability. The SHAP (SHapley 
Additive exPlanations) algorithm was applied to interpret the final 
model with the highest efficacy, assigning each variable a corresponding 
SHAP value to quantify its influence on prediction accuracy. A SHAP 
summary plot was created to illustrate the contribution of each feature 

to the model’s performance. All ML analyses were conducted within the 
framework of the “tidymodels” package in R, with SHAP analysis 
performed using Python. The final model’s application development 
and web deployment1 were conducted using the “shiny” and “DT” 
packages in R, making this application accessible to medical centers 
worldwide for model implementation.

Statistical analyses in this study were conducted using R software 
(version 4.4.1; R Foundation for Statistical Computing, Vienna, 
Austria) and Python (version 3.12.3; Python Software Foundation, 
Wilmington, DE, United States). A two-tailed test was utilized, with a 
p-value of less than 0.05 deemed statistically significant.

Results

Baseline characteristics

After rigorous screening, a total of 2,435 patients were ultimately 
included in the final analysis, as detailed in Figure 1. Of the patients 
enrolled in our study, 571 (23.45%) developed SIMI following ICU 
admission, as illustrated in Table 1; Supplementary Tables S1–S3. The 
initial measurements of each parameter enumerated in Table 1 were 
employed as variables for the ML model, since the utilization of these 
initial measurements facilitates the early prediction of 
SIMI. Additionally, we employed the maximum and minimum values 
of various measurements taken during hospitalization as covariates 
[with the exception of TNT, creatinine, and C-reactive protein (CRP), 
for which only the maximum values were included, since the 
minimum values hold little significance for patient prognosis] to 
assess the outcomes of patients with SIMI. This approach allows for a 
more comprehensive capture of the patients’ status throughout their 
hospital stay, thereby enhancing the accuracy of the prognostic analysis.

Feature selection

In the prognostic analysis segment, we  implemented Boruta 
variable selection and ultimately incorporated 46 variables into the 
prognostic analysis, as illustrated in Figure  2A. Supplementary  
Figure S1 highlights that the most significant covariates distinguishing 
the non-SIMI and SIMI groups. In the ML section, we utilized LASSO 
variable selection to construct a more parsimonious model. 
We  selected a lambda of 0.057300 at one standard error, which 
resulted in eight variables [creatine kinase-myocardial band (CKMB) 
first, creatinine first, alanine aminotransferase (ALT) first, lactate first, 
blood urea nitrogen (BUN) first, temperature first, vasopressor use, 
and liver disease] for building the ML model, as illustrated in 
Figures 2B,C.

Outcomes and sensitivity studies

IPTW, based on the estimated propensity scores, was employed to 
standardize differences between the non-SIMI and SIMI groups. 

1 www.shinyapps.io
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TABLE 1 Baseline characteristics before and after propensity score matching of two cohorts.

Before matching After matching

Non-SIMI (N = 1,864) SIMI (N = 571) SMD Non-SIMI (N = 408) SIMI (N = 408) SMD

Age 61.00 [50.00, 74.00] 63.00 [51.00, 75.00] 0.049 62.00 [52.00, 74.00] 64.00 [51.00, 76.00] 0.012

Gender (female) 847 (45.44%) 232 (40.63%) 0.097 163 (42.34%) 163 (42.34%) <0.001

Mechanical ventilation (yes) 1,024 (54.94%) 415 (72.68%) 0.376 263 (68.31%) 245 (63.64%) 0.099

Continuous renal replacement 

therapy (yes)
69 (3.70%) 50 (8.76%) 0.21 43 (11.17%) 23 (5.97%) 0.186

Sedative use (yes) 974 (52.25%) 351 (61.47%) 0.187 243 (63.12%) 218 (56.62%) 0.133

Albumin use (yes) 205 (11.00%) 70 (12.26%) 0.039 66 (17.14%) 47 (12.21%) 0.14

Vasopressor (yes) 760 (40.77%) 345 (60.42%) 0.401 231 (60.00%) 196 (50.91%) 0.184

Hypertension (yes) 980 (52.58%) 293 (51.31%) 0.025 220 (57.14%) 205 (53.25%) 0.078

Diabetes (yes) 430 (23.07%) 129 (22.59%) 0.011 112 (29.09%) 90 (23.38%) 0.13

Renal disease (yes) 215 (11.53%) 77 (13.49%) 0.059 65 (16.88%) 54 (14.03%) 0.079

Liver disease (yes) 260 (13.95%) 64 (11.21%) 0.083 66 (17.14%) 53 (13.77%) 0.094

COPD (yes) 221 (11.86%) 64 (11.21%) 0.02 35 (9.09%) 47 (12.21%) 0.101

Septic shock (yes) 487 (26.13%) 193 (33.80%) 0.168 169 (43.90%) 124 (32.21%) 0.243

MAP first 82.00 [70.00, 95.00] 83.00 [71.00, 94.00] 0.026

MAP min 58.00 [50.00, 65.00] 55.00 [47.00, 63.00] 0.214 55.00 [47.00, 62.00] 56.00 [49.00, 64.00] 0.162

MAP max 103.00 [92.00, 118.00] 105.00 [93.00, 120.00] 0.124 101.00 [92.00, 116.00] 104.00 [92.00, 119.00] 0.017

Heart rate first 93.00 [78.00, 107.00] 96.00 [81.00, 111.50] 0.103 — — —

Heart rate min 72.00 [61.00, 84.00] 75.00 [61.00, 87.00] 0.068 73.68 (18.71) 73.78 (17.46) 0.006

Heart rate max 108.00 [95.00, 124.00] 110.00 [96.00, 124.00] 0.031 109.00 [95.00, 130.00] 108.00 [96.00, 123.00] 0.135

Temperature first 36.83 [36.44, 37.28] 36.67 [36.06, 37.17] 0.314 — — —

Temperature min 36.50 [36.11, 36.78] 36.33 [35.44, 36.67] 0.368 36.33 [35.56, 36.61] 36.44 [35.94, 36.72] 0.279

Temperature max 37.44 [37.06, 38.11] 37.33 [36.89, 38.00] 0.248 37.33 [37.00, 37.89] 37.44 [37.00, 38.06] 0.121

PH first 7.35 [7.28, 7.41] 7.29 [7.19, 7.37] 0.458 — — —

PH min 7.30 [7.22, 7.37] 7.22 [7.13, 7.31] 0.566 7.22 [7.12, 7.32] 7.27 [7.17, 7.35] 0.325

PH max 7.44 [7.39, 7.49] 7.44 [7.38, 7.50] 0.098 7.44 [7.38, 7.49] 7.45 [7.40, 7.50] 0.191

PO2 first 101.00 [73.00, 161.75] 102.00 [67.75, 174.25] 0.065 — — —

PO2 min 70.00 [54.00, 92.00] 62.00 [47.00, 80.50] 0.257 62.00 [46.00, 76.00] 65.00 [49.00, 86.00] 0.118

PO2 max 153.00 [102.00, 232.00] 181.00 [119.50, 266.00] 0.229 180.00 [115.00, 274.00] 171.00 [111.00, 248.00] 0.07

PCO2 first 41.00 [35.00, 49.00] 39.00 [33.00, 50.00] 0.095 — — —

(Continued)
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TABLE 1 (Continued)

Before matching After matching

Non-SIMI (N = 1,864) SIMI (N = 571) SMD Non-SIMI (N = 408) SIMI (N = 408) SMD

PCO2 min 35.00 [30.00, 40.00] 32.00 [27.00, 38.00] 0.305 32.00 [28.00, 37.00] 33.00 [28.00, 38.00] 0.092

PCO2 max 47.00 [39.00, 59.00] 49.00 [40.00, 62.00] 0.099 49.00 [41.00, 64.00] 48.00 [40.00, 59.00] 0.083

HCO3 first 22.00 [19.00, 25.00] 19.00 [16.00, 23.00] 0.442 — — —

HCO3 min 20.00 [17.00, 23.00] 17.00 [13.00, 20.00] 0.567 17.00 [13.00, 20.00] 19.00 [15.00, 21.00] 0.33

HCO3 max 27.00 [24.00, 31.00] 26.00 [22.00, 29.00] 0.236 26.00 [22.00, 30.00] 26.00 [23.00, 30.00] 0.153

Lactate first 1.90 [1.20, 3.00] 3.00 [1.60, 5.53] 0.567 — — —

Lactate min 1.10 [0.80, 1.50] 1.20 [0.90, 1.90] 0.336 1.20 [0.90, 1.80] 1.10 [0.90, 1.60] 0.196

Lactate max 2.20 [1.40, 3.60] 3.80 [2.00, 7.70] 0.589 4.00 [2.20, 7.70] 2.70 [1.80, 4.60] 0.392

TNT first 0.01 [0.01, 0.03] 0.19 [0.11, 0.44] 0.502 — — —

TNT max 0.01 [0.01, 0.03] 0.25 [0.15, 0.62] 0.532 0.02 [0.01, 0.05] 0.20 [0.13, 0.44] 0.521

BNP first 996.50 [237.50, 3068.25] 1692.00 [758.50, 5805.50] 0.288 — — —

BNP max 1174.00 [240.00, 3288.00] 1658.00 [438.00, 7052.00] 0.319 1748.00 [378.00, 6002.00] 1265.00 [257.00, 3966.00] 0.15

Creatinine first 1.00 [0.70, 1.50] 1.40 [1.00, 2.20] 0.361 — — —

Creatinine max 1.20 [0.80, 1.90] 2.00 [1.20, 3.60] 0.501 2.00 [1.20, 3.70] 1.50 [1.00, 2.90] 0.18

BUN first 19.00 [13.00, 32.00] 26.00 [17.00, 44.00] 0.344 — — —

BUN min 13.00 [9.00, 22.00] 19.00 [12.00, 30.00] 0.352 19.00 [11.00, 31.00] 17.00 [11.00, 28.00] 0.118

BUN max 27.00 [17.00, 46.00] 39.00 [25.00, 68.00] 0.435 42.00 [26.00, 69.00] 36.00 [23.00, 63.00] 0.171

WBC first 11.60 [7.80, 16.60] 13.50 [9.20, 19.50] 0.239 — — —

WBC min 7.80 [5.50, 10.80] 8.20 [5.45, 11.80] 0.134 8.10 [4.90, 11.60] 8.00 [5.70, 10.80] 0.068

WBC max 15.30 [10.80, 21.30] 18.80 [12.90, 26.20] 0.294 18.00 [12.60, 25.90] 17.10 [12.40, 24.50] 0.129

HB first 11.00 [9.40, 12.50] 11.10 [9.20, 13.00] 0.079 — — —

HB min 8.90 [7.40, 10.50] 8.30 [6.90, 10.20] 0.133 8.00 [6.80, 10.20] 8.30 [6.90, 10.10] 0.071

HB max 11.40 [10.10, 13.00] 11.70 [10.20, 13.40] 0.144 11.70 [10.20, 13.30] 11.40 [9.90, 13.00] 0.109

PLT first 193.00 [132.00, 262.00] 185.00 [125.00, 254.00] 0.094 — — —

PLT min 145.50 [91.00, 206.00] 116.00 [69.50, 169.50] 0.346 104.00 [59.00, 166.00] 121.00 [73.00, 181.00] 0.17

PLT max 243.00 [163.00, 356.00] 221.00 [148.50, 318.50] 0.153 218.00 [144.00, 338.00] 226.00 [149.00, 341.00] 0.017

INR first 1.20 [1.10, 1.50] 1.30 [1.10, 1.80] 0.179 — —

INR min 1.20 [1.10, 1.30] 1.20 [1.10, 1.40] 0.13 1.20 [1.10, 1.40] 1.10 [1.10, 1.30] 0.168

INR max 1.40 [1.20, 1.70] 1.50 [1.30, 2.30] 0.275 1.50 [1.30, 2.20] 1.40 [1.30, 1.90] 0.157

D-dimer first 2280.00 [1152.50, 5691.00] 4951.00 [2450.00, 8702.00] 0.571 — — —

(Continued)
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TABLE 1 (Continued)

Before matching After matching

Non-SIMI (N = 1,864) SIMI (N = 571) SMD Non-SIMI (N = 408) SIMI (N = 408) SMD

D-dimer min 1680.00 [1042.50, 4621.00] 3169.00 [1286.00, 7012.00] 0.357 3562.00 [1381.00, 6577.00] 2421.00 [1251.00, 6389.00] 0.164

D-dimer max 4273.00 [1769.00, 8389.00] 6765.00 [2321.00, 13978.50] 0.269 6106.00 [2100.00, 14017.00] 5545.00 [2079.00, 9954.00] 0.17

FIB first 341.00 [187.25, 565.75] 266.00 [138.50, 446.50] 0.323 — — —

FIB min 357.00 [203.00, 547.75] 284.00 [150.50, 474.00] 0.26 306.00 [159.00, 489.00] 320.00 [185.00, 513.00] 0.068

FIB max 434.00 [252.00, 674.25] 392.00 [226.00, 630.50] 0.153 422.00 [243.00, 649.00] 425.00 [243.00, 649.00] 0.018

PT first 13.80 [12.40, 16.30] 14.50 [12.70, 19.00] 0.174 — — —

PT min 12.80 [11.60, 14.40] 12.90 [11.60, 15.35] 0.119 13.00 [11.70, 15.60] 12.80 [11.60, 14.60] 0.159

PT max 14.80 [13.10, 18.10] 16.50 [14.00, 23.90] 0.288 16.50 [14.50, 23.70] 15.70 [13.70, 20.50] 0.173

ALT first 33.00 [18.00, 69.00] 63.00 [28.00, 215.25] 0.333 — — —

ALT max 44.00 [22.00, 104.00] 85.00 [34.50, 368.00] 0.384 90.00 [39.00, 260.00] 54.00 [27.00, 134.00] 0.254

AST first 47.00 [26.00, 97.00] 104.50 [49.00, 362.00] 0.326 — — —

AST max 65.00 [32.00, 150.00] 134.00 [60.50, 603.50] 0.363 140.00 [68.00, 471.00] 85.00 [47.00, 207.00] 0.221

ABL first 2.90 [2.50, 3.40] 2.90 [2.40, 3.30] 0.116 — — —

ABL min 2.80 [2.30, 3.30] 2.70 [2.25, 3.10] 0.201 2.60 [2.10, 3.00] 2.70 [2.30, 3.10] 0.248

ABL max 3.10 [2.70, 3.50] 3.00 [2.70, 3.50] 0.076 3.00 [2.60, 3.50] 3.10 [2.70, 3.50] 0.131

Ca first 8.10 [7.50, 8.70] 8.00 [7.40, 8.60] 0.056 — — —

Ca min 7.60 [7.10, 8.10] 7.40 [6.90, 7.90] 0.19 7.40 [7.00, 7.80] 7.50 [7.00, 8.00] 0.132

Ca max 8.80 [8.30, 9.30] 8.80 [8.30, 9.50] 0.116 8.90 [8.30, 9.60] 8.80 [8.30, 9.40] 0.065

Na first 139.00 [135.00, 142.00] 139.00 [136.00, 142.00] 0.105 — — —

Na min 136.00 [132.00, 138.00] 135.00 [132.00, 138.00] 0.019 134.00 [131.00, 138.00] 135.00 [132.00, 138.00] 0.037

Na max 143.00 [140.00, 147.00] 144.00 [141.00, 149.00] 0.17 144.00 [140.00, 149.00] 144.00 [140.00, 149.00] 0.033

K first 4.10 [3.70, 4.60] 4.20 [3.70, 4.90] 0.19 — — —

K min 3.40 [3.10, 3.70] 3.40 [3.10, 3.70] 0.015 3.30 [3.00, 3.70] 3.40 [3.10, 3.70] 0.033

K max 4.60 [4.20, 5.20] 5.00 [4.50, 5.80] 0.316 5.00 [4.50, 5.80] 4.80 [4.40, 5.50] 0.202

CRP first 99.70 [38.60, 204.40] 99.30 [38.60, 217.50] 0.023 — — —

CRP max 129.80 [58.95, 218.15] 120.10 [66.00, 230.35] 0.026 103.20 [45.80, 210.80] 99.70 [47.40, 220.40] 0.001

CKMB first 4.00 [2.00, 7.25] 13.50 [6.00, 31.00] 0.545 — — —

COPD, chronic obstructive pulmonary disease; MAP, mean arterial pressure; PH, power of hydrogen; PO2, partial pressure of oxygen; PCO2, partial pressure of carbon dioxide; TNT, troponin T; BNP, brain natriuretic peptide; BUN, blood urea nitrogen; WBC, white 
blood cell; HB, hemoglobin; PLT, platelet; INR, international normalized ratio; FIB, fibrinogen; PT, prothrombin time; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ABL, albumin; Ca, calcium ion; Na, sodium ion; K, potassium ion; CRP, c-reactive 
protein; CKMB, creatine kinase MB; SIMI, sepsis-induced myocardial injury. Values are presented as mean (standard deviation) or median [Q1, Q3] for continuous variables and number (percentage) for categorical variables. Variables in bold have p-value <0.05.

https://doi.org/10.3389/fmed.2025.1555103
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Guo et al. 10.3389/fmed.2025.1555103

Frontiers in Medicine 08 frontiersin.org

Detailed results are provided in Table 1 and Supplementary Figure S2. 
Leveraging a doubly robust analysis employing a survey-weighted 
GLM/Cox model adjusted with Boruta-selected covariates and using 
IPTW as the primary focus, we  found that patients with SIMI 
exhibited significantly worse short- and intermediate-term prognosis 
compared to those without SIMI. However, the one-year all-cause 
mortality risk showed no significant difference [in-ICU mortality: 
odds ratio (OR) 1.38, 95% CI 1.02–1.86, p < 0.05; 28-day mortality: 
OR 1.35, 95% CI 1.02–1.79, p < 0.05; 180-day mortality: HR 1.21, 95% 
CI 1.01–1.44, p < 0.05; 1-year mortality: HR 1.03, 95% CI 0.99–1.08, 
p = 0.169]. These findings were robustly validated through 
comprehensive sensitivity analyses across diverse estimation models, 
as detailed in Table  2; Supplementary Tables S4–S24 and 
Supplementary Figures S3–S5. The covariates adjusted in different 
models are detailed in the Supplementary material.

Model evaluation and comparison

Figure 3A illustrates the AUROC curves for the training set of 12 
ML models, while Figure 3B displays the AUROC curves for the test 
set. In the test set, the XGBoost model emerged as the optimal 
predictor, demonstrating superior performance with an AUROC of 
0.83 (95% CI: 0.79–0.87), indicating exceptional predictive capabilities. 
Consequently, the interpretability analysis of the XGBoost model 
became the primary focus of subsequent investigations. Figure  4 
comprehensively depicts the performance of various ML models 
across both training (A) and test (B) datasets. The calibration curves 
for the training and test sets of each model are shown in Figure 5, 
demonstrating that although the AUROC of the XGBoost model is 
not the highest, it is only 0.01 lower than the highest value. Moreover, 
the calibration curve of the XGBoost model is closer to the ideal 
diagonal line, indicating that it has greater accuracy and reliability 
compared with other models.

Feature importance in XGBoost models

We conducted SHAP analysis to evaluate the significance of 
individual characteristic variables within the XGBoost model and 

their predictive contributions, with results presented in 
Figures 6A,B. The analysis consistently highlighted CKMB as the most 
critical variable, exhibiting the largest SHAP value and emerging as a 
pivotal risk factor for SIMI. Subsequent influential variables in 
descending order included creatinine, ALT, lactate, BUN, temperature, 
vasopressor use, and liver disease. The study further explored 
subgroup-specific outcomes for continuous and categorical variables 
in populations with and without SIMI (Figures  6C,D), providing 
comprehensive insights into variable interactions and predictive  
mechanisms.

Model application development

To enhance the generalizability and clinical utility of our 
predictive model for SIMI, we developed a comprehensive web-based 
application designed for external validation and real-world 
implementation. The platform, accessible at https://qhdpanguo.
shinyapps.io/SIMI/, represents a critical translation of our ML 
algorithm into a user-friendly, interactive clinical tool (Figure 7).

Discussion

In this study, we  conducted a comprehensive assessment of 
patients with SIMI. We  demonstrated that SIMI diagnosis can 
be simplified and made more clinically applicable, achievable through 
TNT results alone. Prognostic analysis revealed that SIMI patients 
exhibit significantly worse short- and medium-term outcomes 
compared to non-SIMI patients. Therefore, early identification of 
high-risk patients for in-hospital SIMI development is of paramount 
importance, which motivated our construction of a ML model for 
predicting in-hospital SIMI risk. To the best of our knowledge, this is 
the first study to develop a ML model for such patients and create a 
web-based application for external validation and clinical application. 
This approach can assist clinicians in the early identification of high-
risk SIMI patients and enable timely interventions.

Currently, there is no clear consensus on the definition of 
SIMI. However, most studies apply the Sepsis-3.0 criteria to determine 
sepsis occurrence and then exclude patients with other conditions that 

FIGURE 2

(A) Boruta variable selection for prognostic analysis section. (B) The optimal parameter (lambda) for the least absolute shrinkage and selection operator 
(LASSO) model was determined through 10-fold cross-validation employing the minimum criteria. The partial likelihood deviance (binomial deviance) 
curve was depicted against the log(lambda). (C) The coefficient profiles from the LASSO model. A plot of the coefficient profiles was created against 
the log(λ) sequence.

https://doi.org/10.3389/fmed.2025.1555103
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://qhdpanguo.shinyapps.io/SIMI/
https://qhdpanguo.shinyapps.io/SIMI/


Guo et al. 10.3389/fmed.2025.1555103

Frontiers in Medicine 09 frontiersin.org

TABLE 2 Primary outcome with different models for cohort.

Result p-value

In-ICU mortality

Log-rank test [HR (95% CI)] 2.51 (2.04, 3.09) <0.001

Multivariate logistic model adjusted with Boruta selected covariates [OR (95% CI)] 1.55 (1.15, 2.09) <0.01

Multivariate logistic model adjusted with unbalanced covariates [OR (95% CI)] 1.52 (1.13, 2.03) <0.01

Logistic model adjusted with Boruta selected covariates using IPTW [HR (95% CI)] 1.38 (1.12, 1.69) <0.01

Logistic model adjusted with unbalanced covariates using IPTW [HR (95% CI)] 1.32 (1.08, 1.61) <0.01

Survey-weighted GLM model adjusted with Boruta selected covariates using IPTW [OR (95% CI)] 1.38 (1.02, 1.86) <0.05

28-day mortality

Log-rank test [HR (95% CI)] 2.60 (2.15, 3.16) <0.001

Multivariate logistic model adjusted with Boruta selected covariates [OR (95% CI)] 1.48 (1.14, 1.93) <0.01

Multivariate logistic model adjusted with unbalanced covariates [OR (95% CI)] 1.45 (1.11, 1.88) <0.01

Logistic model adjusted with Boruta selected covariates using IPTW [HR (95% CI)] 1.35 (1.14, 1.61) <0.001

Logistic model adjusted with unbalanced covariates using IPTW [HR (95% CI)] 1.3 (1.10, 1.53) <0.01

Survey-weighted GLM model adjusted with Boruta selected covariates using IPTW [OR (95% CI)] 1.35 (1.02, 1.79) <0.05

180-day mortality

Log-rank test [HR (95% CI)] 2.39 (2.01, 2.84) <0.001

Multivariate Cox model adjusted with Boruta selected covariates [HR (95% CI)] 1.29 (1.10, 1.52) <0.01

Multivariate Cox model adjusted with unbalanced covariates [HR (95% CI)] 1.28 (1.09, 1.50) <0.01

Cox model adjusted with Boruta selected covariates using IPTW [HR (95% CI)] 1.2 (1.01, 1.44) <0.05

Cox model adjusted with unbalanced covariates using IPTW [HR (95% CI)] 1.17 (1.00, 1.35) <0.05

Survey-weighted Cox model adjusted with Boruta selected covariates using IPTW [HR (95% CI)] 1.21 (1.01, 1.44) <0.05

1-year mortality

Log-rank test [HR (95% CI)] 2.24 (1.89, 2.64) <0.001

Multivariate Cox model adjusted with Boruta selected covariates [HR (95% CI)] 1.04 (1.00, 1.09) <0.05

Multivariate Cox model adjusted with unbalanced covariates [HR (95% CI)] 1.04 (1.00, 1.08) 0.079

Cox model adjusted with Boruta selected covariates using IPTW [HR (95% CI)] 1.15 (0.97, 1.37) 0.107

Cox model adjusted with unbalanced covariates using IPTW [HR (95% CI)] 1.12 (0.95, 1.33) 0.187

Survey-weighted Cox model adjusted with Boruta selected covariates using IPTW [HR (95% CI)] 1.03 (0.99, 1.08) 0.169

HR, Hazard ratio; OR, odds ratio; CI, confidence interval; IPTW, inverse probability of treatment weighting; GLM, generalized linear model. Statistical analyses of different models with p-
value <0.05 were displayed in bold.

FIGURE 3

ROC curves for the test and validation sets of 12 machine learning models are shown. (A) ROC curves for the training set. (B) ROC curves for the test 
set.
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could elevate troponin levels. These patients are then diagnosed with 
SIMI based on their troponin values (13, 14). The threshold for 
troponin levels in SIMI diagnosis remains controversial. Some studies 
utilizing the MIMIC database emphasize that TNT ≥0.01 ng/mL 
should define SIMI (14, 15). However, our attempt to extract records 
with TNT <0.01 ng/mL from the MIMIC database yielded only 24 
records, making it implausible that the vast majority of hundreds of 
thousands of hospitalized patients would exhibit myocardial injury. 
Authoritative research supports TNT ≥0.1 ng/mL as positive (16), and 
the MIMIC database explicitly states that TNT ≥0.1 ng/mL is required 
to determine myocardial injury. Therefore, we adhere to the original 
laboratory indicator in the MIMIC database, using TNT ≥0.1 ng/mL 
as the criterion for SIMI diagnosis. We chose the maximum TNT 
value after ICU admission as the diagnostic standard, consistent with 
previous studies (17), to facilitate the identification of more SIMI 
patients. Subsequently, we  explored the impact of our diagnostic 
criteria on patient outcomes. Results demonstrated that patients 
diagnosed with SIMI had significantly worse short- and medium-term 
prognoses compared to non-SIMI patients, thus confirming the 
clinical significance of this diagnosis.

Numerous studies have consistently demonstrated the poor prognosis 
of SIMI patients. Garcia et al. (17) conducted a large-scale, multicenter 
retrospective study revealing a significant correlation between troponin 
elevation during acute infection and substantially increased risks of major 
adverse cardiovascular events (MACE) within the subsequent 12-month 
period. These events encompassed acute myocardial infarction, 
cerebrovascular accidents, de novo atrial fibrillation, and decompensated 
heart failure, highlighting the critical prognostic value of troponin as a 
long-term cardiovascular risk stratification biomarker. Angriman et al. 
(18) investigated 268,259 adult sepsis patients without pre-existing 
cardiovascular disease, demonstrating a significantly elevated risk of 
major cardiovascular events during a median follow-up of 3 years. Liang 
et al. (19) utilized the MIMIC-III database to reveal that sepsis-induced 
cardiomyopathy (SIC) patients exhibited higher in-hospital mortality 
compared to non-SIC patients. Consistent with these findings, our 
research concluded that SIMI patients significantly experienced elevated 
risks of in-ICU mortality, 28-day mortality, and 180-day mortality 
compared to non-SIMI patients.

To predict the risk of SIMI earlier, we constructed up to 12 ML 
models using initial admission assessment data from various 

FIGURE 4

Comparison of machine learning model performance on the training (A) and test (B) sets across various evaluation metrics. Higher values are 
highlighted in red, whereas lower values are shown in green, illustrating the models’ effectiveness in both sets.

FIGURE 5

Calibration curves of 12 machine learning models. (A) Calibration curves for the training set. (B) Calibration curves for the test set.
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FIGURE 6

SHAP diagrams of the XGBoost model. (A) Ranking of variables by SHAP values. (B) SHAP honeycomb diagram. (C) Trend diagram of SHAP value 
changes for continuous variables. (D) Box plot of SHAP values for categorical variables.

FIGURE 7

Schematic diagram of the web-based application for predicting sepsis-induced myocardial injury.
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indicators and validated them. The validation results suggested that 
the XGBoost model performed best on the test set, with an ROC AUC 
of 0.83, accuracy of 0.85, NPV of 0.89, PPV of 0.73, sensitivity of 0.67, 
and specificity of 0.91. These outstanding metrics led us to select the 
XGBoost model for further analysis.

Subsequently, we  performed SHAP analysis on the model, 
revealing the top five predictive features: CKMB, creatinine, ALT, 
lactate and BUN. CKMB, a well-established biomarker of 
myocardial damage, demonstrates earlier elevation compared to 
TNT and exhibits significant predictive potential for 
SIMI. Moreover, CKMB serves as a valuable prognostic indicator 
for assessing complications and mortality risk (20, 21). Creatinine 
is an indicator of renal function. As sepsis severity increases, the 
risk of acute kidney injury (AKI) escalates (22). The underlying 
pathological mechanisms include direct inflammatory factor-
induced tubular cell damage (23), sepsis-associated hypotension 
and renal hypoperfusion (24), and metabolic reprogramming and 
adaptive responses of tubular cells leading to AKI (25). ALT is an 
important indicator of liver function. An acute elevation in ALT 
represents a rapid deterioration of liver function. Plasma ALT 
levels can be used for early diagnosis of sepsis-related liver injury 
(26), and its elevation is significantly associated with the prognosis 
of patients with sepsis (27, 28). Lactate represents a significant 
clinical concern, especially in sepsis, serving as a marker of tissue 
hypoperfusion and metabolic derangement (29). Lactate 
accumulation indicates a shift towards anaerobic metabolism due 
to inadequate tissue oxygenation, a characteristic of septic shock 
(30). In critically ill patients, elevated lactate levels are associated 
with increased morbidity and mortality, making it a crucial 
parameter for monitoring and management in intensive care 
settings (31). BUN, primarily excreted by the kidneys, is the main 
end product of protein metabolism. BUN levels elevate under two 
conditions: increased protein catabolism or decreased glomerular 
filtration rate. In sepsis patients, both conditions frequently 
occur—there is enhanced protein breakdown and a high risk of 
acute renal injury, leading to elevated BUN levels (32, 33).

We developed the model into a web-based application and 
released it, facilitating further validation and dissemination of the 
model. Additionally, the application allows for dynamic adjustments 
to the model based on the incorporation of new data.

Limitations

This study has three limitations. First, it is a single-center 
retrospective study, which may limit the generalizability of the 
findings to broader populations. Second, the ML model requires 
further external validation to confirm its robustness and applicability 
in diverse clinical settings. Thirdly, our study conducted an analysis 
on the overall ICU patient population without detailed stratification 
of different ICU subtypes or primary diagnoses. While our model 
demonstrates good discriminatory power for SIMI patients, it may not 
adequately account for the high dimensionality and heterogeneity 
typical of clinical data (34). Future research could benefit from a more 
granular analysis, considering the unique characteristics and risk 
factors associated with different ICU environments and patient 
populations, thereby enhancing the model’s precision and applicability 
across diverse clinical settings.

Conclusion

In conclusion, the development of SIMI significantly worsens 
patient prognosis, and ML models have proven to be reliable tools 
for its prediction. Among all the predictive models, the XGBoost 
model has exhibited the highest effectiveness, resulting in the 
development of an externally applicable application based on this 
model. This application may support clinicians in providing 
precise management and initiating timely interventions for  
septic patients at risk of SIMI, ultimately helping to 
reduce mortality.
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