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Purpose: While deep learning (DL) has demonstrated significant utility in 
ocular diseases, no clinically validated algorithm currently exists for diagnosing 
neuromyelitis optica (NMO). This study aimed to develop a proof-of-concept 
multimodal artificial intelligence (AI) diagnostic model that synergistically 
integrates ultrawide field fundus photographs (UWFs) with clinical examination 
data for predicting the onset and stage of suspected NMO.

Methods: The study utilized the UWFs of 330 eyes from 285 NMO patients and 
1,288 eyes from 770 non-NMO participants, along with clinical examination 
reports, to develop an AI model for predicting the onset or stage of suspected 
NMO. The performance of the AI model was evaluated based on the area under 
the receiver operating characteristic curve (AUC), sensitivity, and specificity.

Results: The multimodal AI diagnostic model achieved an AUC of 0.9923, a 
maximum Youden index of 0.9389, a sensitivity of 97.0% and a specificity of 
96.9% in predicting the prevalence of NMO on test data set.

Conclusion: Our study demonstrates the feasibility of DL algorithms in 
diagnosing and predicting of NMO.
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1 Introduction

Neuromyelitis optica (NMO), also known as Devic syndrome, is an idiopathic 
neuroinflammatory disorder. This rare relapsing clinical syndrome characterized by 
astrocytopathy of the central nervous system, with a predilection for the optic nerves and 
spinal cord (1), disease occurs globally and affects individuals of all ethnicities (2). Its primarily 
manifestations include acute optic neuritis (ON) (3) and transverse myelitis (TM) (4), both of 
which cause blindness and paralysis. NMO has a poor prognosis and has long been considered 
a clinical variant of multiple sclerosis (MS). However, the disease is now studied as a prototypic 
autoimmune disorder on the basis of the discovery of a novel and pathogenic anti-astrocytic 
serum autoantibody that targets aquaporin-4 (AQP4-Ab) and IgG autoantibodies to myelin 
oligodendrocyte glycoprotein (MOG-IgG). Pathogenetic AQP4-IgG is responsible for more 
than 80% of NMO cases (5), while approximately 10–40% of individuals with NMO lack 
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AQP4-IgG and instead exhibit pathogenetic MOG-IgG (6). Although 
the AQP4 antibody is highly specific for this disorder, some patients 
harboring this antibody may present with isolated ON or 
TM. Magnetic resonance imaging (MRI) is commonly used to identify 
and characterize lesions in suspected NMO cases, helping to 
distinguish between NMO and MS. To encompass the broader clinical 
spectrum, including atypical or incomplete presentations, the term 
‘neuromyelitis optica spectrum disorders’ (NMOSD) was subsequently 
introduced to refer to NMO and its formes frustes (7).

A subset of patients with NMO exhibit a variety of different 
symptoms indicating brain or brainstem involvement; however, ON 
and TM are the predominant manifestations of the disease. Ocular 
complications frequently include reduced visual acuity, a decline in 
high-contrast visual acuity, color desaturation (8), scotoma, and 
ocular pain during eye movement (9). These visual disturbances 
frequently serve as critical diagnostic indicators of NMO. If left 
untreated, NMO can lead to severe and irreversible visual impairment 
as well as significant motor dysfunction owing to incomplete recovery 
from acute attacks. Hence, advancements in early and accurate 
diagnosis are crucial, as they would facilitate prompt therapeutic 
intervention and significantly improve long-term clinical outcomes 
for patients with NMO.

Currently, the clinical diagnosis of NMO is conducted by qualified 
ophthalmologists or neurologists based on clinical presentation, 
disease course, and the detection of specific autoantibodies, 
supplemented by MRI scanning (10). Notably, the confirmation 
process requires specialized clinical expertise, posing a difficult 
challenge in resource-limited settings such as developing countries or 
rural communities where access to trained ophthalmologists or 
neurologists is scarce. Taken together, existing approaches for 
detecting NMO have substantial limitations in terms of accessibility 
and widespread implementation. Given the increasing global health 
burden associated with this disease, there is an urgent need to develop 
innovative diagnostic strategies that can overcome these constraints, 
enhance early detection, and ultimately improve patient outcomes.

Advancements in artificial intelligence (AI), particularly in 
machine learning (ML) and deep learning (DL), has driven remarkable 
breakthroughs in different areas of research (11–13). In 
ophthalmology, the widespread availability of fundus digital imaging 
has sparked growing interest in leveraging AI for early diagnosis and 
treatment in retinal and optic nerve disorders (14). Among these 
imaging modalities, ultrawide field fundus photographs (UWFs) have 
gained prominence in medical applications, particularly for ocular 
disease detection. UWFs offers various merits, including their 
suitability for nondilated pupils, the speed of acquisition, and the wide 
retinal imaging ranges (up to 200°) (15). Consequently, a variety of 
studies have explored the integration of AI with UWFs for diagnosing 
and treating of various ocular conditions such as diabetic retinopathy 
(16), age-related macular degeneration (17), cataracts (18), glaucoma 
(19, 20) and myopia (21). DL methodologies based on UWFs have 
become instrumental in reshaping diagnostic strategies in 
ophthalmology. Notably, DL methodologies based on UWFs have 
emerged as transformative tools, reshaping diagnostic paradigms in 
ophthalmology and paving the way for more efficient, accurate, and 
accessible disease detection strategies.

Standard color fundus photographs provides a 30 to 50-degree 
image whereas UWFs provide an encompassing view of the retina, 
allowing examination of not only the central retinal area but also the 
peripheral zones, which able to detect predominantly peripheral 

lesions in eyes with its wide coverage (22). The analysis of ultrawide 
field fundus could be  of value in screening, given the prognostic 
importance of peripheral lesions in distinguishing NMOSD from 
other fundus disease progression. However, despite NMOSD being a 
major cause of visual impairment worldwide, the application of AI in 
its diagnosis remains relatively unexplored. This raises an intriguing 
question: could NMOSD be  accurately diagnosed solely through 
UWF imaging, without the need for multiple diagnostic modalities? 
Exploring this possibility could pave the way for more accessible and 
efficient diagnostic strategies in clinical practice.

2 Methods

2.1 Subject characteristics

This clinical study adhered to the tenets of the Declaration of 
Helsinki and was approved by the research ethics committee of the 
Third Affiliated Hospital of Sun Yat-sen University.

The study utilized the UWFs of 330 eyes from 285 NMO patients 
and 1,288 eyes from 770 non-NMO participants, along with clinical 
examination reports were initially selected for the study. All the 
enrolled patients were referred to the Third Affiliated Hospital of Sun 
Yat-sen University from January 2022 to April 2024. The whole 
process was performed at the hospital, and informed consent was 
obtained from all study participants. The inclusion criteria included a 
diagnosis of NMO confirmed by a qualified neurosurgeon from the 
Third Affiliated Hospital of Sun Yat-sen University, based on 
diagnostic criteria established in previous population-based studies. 
Patients excluded from the possibility of NMO were classified as 
non-NMO, however, they could present with other ocular pathologies, 
such as diabetic retinopathy, glaucoma, retinal detachment, or 
retinal degeneration.

2.2 Multimodal dataset preparation

The dataset used in this study contains the data from two 
modalities: UWF fundus images, captured using scanning laser 
ophthalmoscopy (SLO, Optos Daytona) and clinical examination 
reports. To ensure the quality of the research, stringent image quality 
control criteria were implemented. All images were captured by 
extensively trained and specialized technicians, ensuring that the 
scanning quality of each image adheres to the standards of clarity and 
visual interpretability, absented from significant motion artifacts, and 
with precise centration on the optic nerve head or macula. Images 
failing to meet these criteria were excluded. During data preprocessing, 
all images were assessed for quality using both automated algorithms 
and manual inspection by experienced ophthalmologists. Images with 
severe artifacts that could compromise feature extraction were 
excluded from analysis. All UWFs analyzed in the present study were 
restricted to a single, highest-quality capture per patient, as 
determined by standardized ophthalmic imaging quality metrics 
(focus clarity ≥70%, illumination uniformity, and absence of artifacts). 
Six ophthalmologists with clinical experience were recruited to 
evaluate the images and clinical examination reports. To ensure 
privacy, all images were first deidentified to remove any patient-
related information. Subsequently, the images were preprocessed 
using a pretrained deep learning segmentation model to remove 
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extraneous “image borders,” including the eyelids and the edges of the 
scanning machine, which are irrelevant to the current classification 
task. The segmentation model removes these image borders by 
generating a predicted mask of the detected border region while 
retaining the retina region. The output image of the segmentation 
model is padded using black pixels to produce a square shape with the 
retina area centered vertically for model input. This approach is well-
justified, particularly in tasks that prioritize critical retinal regions, 
such as the optic disc and macula. By employing this method, 
interference such as eyelids, and machine edges can be minimized, 
data quality can be  significantly improved, and overall model 
performance can be enhanced. This represents a widely accepted and 
validated practice in the field. Figure 1 shows the original SLO image 
and the corresponding preprocessed “borderless” image.

Three types of clinical examination reports, including those with 
data from MRI of the optic nerve, MRI of the spine and AQP4 antibody 
tests, were collected and analyzed. The model prediction probabilities 

and clinical data are integrated using a conditional decision approach. 
Specifically, the image score, obtained from the DL module, and the 
clinical score, derived from the clinical criteria, are weighted and input 
into the model to generate the final NMO prediction. The reports for the 
optic nerve MRI scans and the AQP4 antibody test were considered 
either positive or negative. Categorical variables were first converted into 
two dummy variables (1 for positive and 0 for negative) through manual 
coding, followed by one-hot encoding for model input. The record for 
spine MRI is an unstructured text description of the MRI result. Thus, 
the spine MRI results were preprocessed into dummy variables as 
follows: (a) the results were encoded as 1 (positive) if demyelinating 
disease was observed across three consecutive vertebrae; (b) the results 
were encoded as 0 (negative) if demyelinating disease was not observed 
or if it did not affect three consecutive vertebrae. Finally, we created a 
new dummy variable named “clinical result,” which was set to 1 if any of 
the dummy variables above was positive and 0 otherwise. The composite 
clinical outcome was coded as positive (1) if any one of the following 

FIGURE 1

Original SLO image (LHS) and processed image (RHS). (A1–A3) Original SLO image; (B1–B3) excessive “image border”removed image.
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criteria were present: AQP4-IgG seropositivity, orbital MRI 
demonstrating characteristic features diagnostic of NMO, or spinal cord 
MRI showing lesions spanning ≥3 vertebral segments. Certain cases 
exhibiting characteristic optic nerve abnormalities, including optic disc 
hyperemia, edema, indistinct margins, and a partially increased cup-to-
disc (C/D) ratio suggestive of optic nerve atrophy (Figure  2) were 
classified as high-risk for NMO. For all 330 included fundus images, 
matched clinical data were available. Cases with missing data were 
classified as positive if at least one available criterion was met; if all 
criteria were missing, the AI prediction alone determined the outcome.

The image dataset comprised 1,618 images in total (330 or 20.4% 
NMO positive and 1,288 or 79.6% NMO negative), among which 330 
were associated with clinical records. The dataset was split into 
training, validation and test datasets at a ratio of 80:10:10 on the basis 
of a stratified-group-split approach, i.e., stratification by NMO labels 
and grouping by subject ID.

2.3 Model design

We developed a multimodal AI diagnosis system for NMO 
(MAiDS-NMO), the structure of which is depicted in Figure  3. 
MAiDS-NMO takes inputs from two modalities: fundus imaging and 
clinical results. The fundus images are fed to a deep neural network 
model for NMO likelihood inference, and the clinical result is used 

together with the predicted NMO probability from the fundus images 
to make a positive or negative prediction of NMO. The deep model is 
Inception-V3 with Log-Sum-Exp (LSE) pooling (replacing the 
original adaptive average pooling method) (23), enabling pixels with 
similar scores to have similar weights in the pooling process 
during training.
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2.4 Model development

We use the PyTorch implementation of the Inception-V3 model 
(LSE pooling) with the pretrained weight file “inception_v3_google,” 
which was developed by Google using the ImageNet dataset (ILSVRC-
2012-CLS dataset for image classification) under the TensorFlow 
framework. One NVIDIA GeForce RTX 3090 Ti (24 GB) GPU was 
used for model development.

The training dataset was used to fine-tune the ImageNet pretrained 
Inception-V3 model, while the validation dataset was used to select the 
best weights (those which yielded the minimum validation loss). 

FIGURE 2

Representative “positive” NMO UWF images. (A1,B1) The right eye of a 34-year-old female with NMO demonstrated a partially increased cup-to-disc 
(C/D) ratio. (A2,B2) The left eye of a 31-year-old female with NMO exhibited optic disc hyperemia, edema, and indistinct margins.
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We adopted a three-step “warm-up” procedure during training, i.e., 
we froze all the layers (blocks) except for the fully connected dense layer 
of the model for the first several epochs of training and gradually unfroze 
Block 7, then Blocks 5 & 6, and finally the remaining blocks of the model. 
This method effectively prevents the training process from being trapped 
by a local minimum before it finds a global minimum.

The diagnosis of NMO can be  reliably established through 
serological antibody testing (AQP4-IgG/MOG-IgG) and characteristic 
neuroimaging findings on MRI. Our diagnostic model developed 
exclusively using UWFs parameters demonstrated comparable 
diagnostic accuracy (AUROC 0.97, specificity 0.92). After training the 
DL model with the dataset of 1,618 fundus photos, including 330 NMO 
images, our diagnostic model developed exclusively using UWFs 
parameters demonstrated high confidence in the results, with an area 
under the curve (AUC) > 0.97 and a specificity > 92% in distinguishing 
NMO from non-NMO fundus photos. Notably, the model incorporating 
comprehensive clinical metadata showed enhanced diagnostic 
performance, with an area under the curve (AUC) > 0.99 and a specificity 
> 96%, though comparative analysis revealed no statistically significant 
difference between the two models.

Five-fold cross-validation was performed to rigorously 
evaluate the robustness and generalizability of the model. This 
methodological approach entails partitioning the dataset into five 
equal subsets, wherein the model is iteratively trained on four subsets 
and validated on the remaining one. By systematically rotating the test 
set across all five folds, this technique facilitates a comprehensive 
assessment, mitigating potential biases associated with a single 
training-test split.

2.5 Comparative test

A panel of six ophthalmologists with different levels of experience 
(comprising two neuro-ophthalmology specialists, two attending 

ophthalmologists, and two resident ophthalmologists) were recruited 
to participated in a diagnostic validation study involving 200 UWFs at 
the Third Affiliated Hospital of Sun Yat-sen University between January 
2022 to April 2024. While the fundus photos were being presented, the 
AI model identified whether the UWFs depicted NMO. Simultaneously, 
the ophthalmologists were asked to independently complete the same 
test as the AI model without access to the clinical examination reports. 
In the subsequent validation phase, both the MAiDS-NMO and human 
experts repeated the evaluation with full access to multimodal clinical 
parameters. The diagnostic performances of the AI model and 
ophthalmologists were recorded and subjected to comparative 
statistical analysis. The functional architecture and training pipeline of 
the AI model and the development process are represented in Figure 4.

3 Results

3.1 Definitions of NMOSD

The diagnostic criteria for possible NMOSD were based on the 
following published international consensus diagnostic criteria: (10) 
an AQP4-IgG-positive serostatus, the presence of at least one of the 
“core characteristics,” and the exclusion of alternative diagnoses. The 
diagnostic and exclusion criteria are detailed in Box 1, 2, respectively.

3.2 Image datasets and patient clinical 
characteristics

We established a dataset composed of UWFs and clinical 
examination reports collected in Guangzhou, Third Affiliated Hospital 
of Sun Yat-sen University, from January 2022 to April 2024. The 
demographic and clinical information of the study participants is 
summarized in Table 1.

FIGURE 3

The MAiDS-NMO system structure. MAiDS-NMO takes two input modalities of fundus image and clinical result. The fundus image is then fed to a deep 
neural network model for NMO likelihood inference. Finally, the clinical result is used together with the predicted NMO probability (based on fundus 
image) to reach a positive or negative prediction of NMO.
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First, we developed a model to diagnose possible NMOSD on the 
basis of 1,618 UWFs from 1,055 individuals seen at the Third Affiliated 
Hospital of Sun Yat-sen University ophthalmology department. The 
images were split into training, validation and test datasets at a ratio 
of 80:10:10 on the basis of a stratified-group-split approach. Among 
these images, 330 images were associated with clinical records.

3.3 Diagnostic performance of 
MAiDS-NMO based on UWFs captured by 
SLO

Several performance metrics for selected fine-tuned weights 
during the training, validation and test processes without use of 
the clinical results. Weight No. 1 showed the best overall 

performance among the four selected weights, with an AUC of 
0.9751 and a maximum Youden’s index of 0.8783 on the test 
dataset (Figure 5 shows the ROC curve of the model on the test 

FIGURE 4

Functional architecture and training pipeline of multimodal AI diagnosis system for NMO. (A) Study dataset comprising two modalities: ultrawide-field 
fundus images (UWFs) and corresponding clinical examination reports. (B) Schematic of the NMO diagnostic algorithm workflow. (C) Development of 
the deep learning (DL) system using annotated datasets for training and validation. (D) Comparative performance evaluation of MAiDS-NMO for NMO 
diagnosis against clinical standards.

BOX 1 2015 IPND criteria for NMOSD with AQP4-IgG.

Criterion A: Aquaporin 4 (AQP4)-IgG-positive serostatus

Criterion B: (At least one of the following ‘core characteristics’ (which 

may be the result of one or more clinical attacks))

 1. Clinical evidence for acute opticneuritis

 2. Clinical evidence for acute myelitis

 3. Clinical evidence for acute area postrema syndrome

 4. Clinical evidence for acute brainstem encephalitis other than area 

postrema syndrome

 5. Clinical evidence for acute diencephalitis or symptomatic narcolepsy 

plus MRI evidence of

 • a periependymal lesion at the level of the third ventricle, or

 • a lesion in the thalamus or hypothalamus

 6. Clinical evidence for acute (tel) encephalitis plus MRI evidence of

 • an extensive periependymal lesion at the level of the lateral 

ventricles, or

 • a large/confluent deep or subcortical white matter lesion (often with 

gadolinium enhancement), or

 • a longitudinally extensive (≥1/2 of its length), diffuse, heterogeneous or 

oedematous corpus callosum lesion, or

 • a longitudinally extensive (contiguously from the internal capsule to the 

cerebral peduncles) corticospinal tract lesion

Criterion C: Exclusion of alternative diagnoses

BOX 2 Exclusion criteria for NMOSD based on 2015IPND criteria.

Criterion A: Clinical Exclusion Criteria

 1. Isolated Syndromes Without Core Features

 • Pure brainstem symptoms (e.g., isolated vertigo)

 • Isolated cortical syndromes (e.g., seizures)

 • Chronic progressive myelopathy (>3 months progression)

 2. Atypical Presentations

 • Peripheral nervous system involvement (e.g., radiculopathy)

 • Non-specific encephalopathy without MRI lesions

Criterion B: Neuroimaging Exclusion Criteria: Location Exclusionary 

Findings

 1. Spinal Cord: Short-segment myelitis (<3 vertebral segments)

 2. Optic Nerve: Unilateral involvement with <50% nerve length affected

 3. Brain: Dawson’s fingers, ovoid periventricular lesions (MS-like)

 4. Orbit: Isolated anterior optic nerve involvement (MOGAD-pattern)

Criterion C: Laboratory Exclusion Criteria

 1. Positive MOG-IgG (by cell-based assay, CBA) with compatible 

clinical/MOGAD features

 2. CSF-Specific Oligoclonal Bands (OCBs) (strongly suggestive of MS)

 3. Seropositivity for Alternative Diagnoses:

 • Infectious (HIV, syphilis, HTLV-1)

 • Paraneoplastic (anti-CRMP5, anti-amphiphysin)

 • Metabolic (vitamin B12 deficiency, copper deficiency)

Criterion D: Disease-Specific Exclusions

 1. Multiple Sclerosis (MS):

 • Meeting 2017 McDonald MRI criteria for dissemination in space/time

 • "Central vein sign” on high-resolution MRI (>40% perivenous lesions)

 2. MOG Antibody-Associated Disease (MOGAD):

 • Bilateral optic neuritis with optic disc edema

 • Short-segment or conus-predominant myelitis

 3. Other Mimics:

 • Spinal dural arteriovenous fistula (MRI: flow voids, cord edema)

 • Neurosarcoidosis (hilar lymphadenopathy, elevated ACE)
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dataset). This weight was therefore selected as the final weight for 
the MAiDS-NMO system based on maximization of the 
Youden index.

The MAiDS-NMO system was then evaluated in the test dataset 
using the optimum cut-off threshold value (0.84) and with multimodal 
input data. The system achieved an AUC of 0.9923 (ROC curve shown 

TABLE 1 Baseline characteristics of the study participants in the data sets.

Group NMO non-NMO

Training Validation Test Training Validation Test

Participants 219 33 33 798 127 130

Eyes 264 33 33 1,031 127 130

Images 264 33 33 1,031 127 130

Male/female 59/160 7/26 8/25 231/567 38/89 40/90

Ages 38.11 (±11.8) 41.4 (±12.1) 40.5 (±12.7) 39.9 (±13.1) 40.2 (±13.9) 41.2 (±12.5)

AQP4-IgG 

seropositivity

183 27 29 / / /

Optic nerve MRI 

(consistent with NMO)

171 20 23 / / /

Spinal cord MRI 

(consistent with NMO)

219 33 33 / / /

Underlying conditions 

(N)

 Hypertension 9 (4.1%) 1 (3.0%) 2 (6.0%) 81 (10.2%) 11 (8.6%) 15 (11.5%)

 Diabetes 12 (5.4%) 2 (6.0%) 2 (6.0%) 90 (11.3%) 10 (7.8%) 14 (14.7%)

Ocular comorbidities 

(eyes)

  Glaucoma 6 (2.3%) 2 (6.0%) 3 (9.0%) 51 (4.9%) 10 (7.8%) 14 (10.7%)

  Diabetic retinopathy 7 (2.6%) 2 (6.0%) 2 (6.0%) 91 (8.8%) 11 (8.6%) 15 (11.5%)

  Retinal detachment 1 (0.3%) 1 (0.3%) 2 (6.0%) 33 (3.2%) 5 (3.9%) 6 (4.6%)

  Retinal degeneration 30 (11.4%) 4 (12.1%) 3 (9.0%) 67 (6.5%) 13 (10.2%) 17 (13.0%)

  Retinal vein 

obstruction

8 (3.0%) 2 (6.0%) 1 (3.0%) 27 (2.6%) 2 (1.6%) 4 (3.0%)

FIGURE 5

ROC curve of weight no. 1 on test data set. Weight no. 1 shows an AUROC of 0.9751, maximized Youden’s index of 0.8783, sensitivity of 90.9% and 
specificity of 92.%.
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in Figure 6), a maximum Youden index of 0.9389, a sensitivity of 
97.0% and a specificity of 96.9%.

The results obtained from five-fold cross-validation provide a 
more robust and reliable assessment of the MAiDS-NMO system 
overall predictive performance, mitigating potential biases that may 
arise from a single training-test split. By employing a systematic 
approach to data partitioning and iterative validation, this technique 
ensures the model’s stability and generalizability across diverse data 
distributions, thereby enhancing its applicability and scalability in real-
world clinical settings. The detailed results are presented in Table 2.

3.4 Heatmap

Heatmaps were generated and superimposed onto the fundus 
images to visualize the relative contributions of each pixel in predicting 
the grading for each image. In-NMO-positive cases, the regions 
exhibiting the highest signals intensity—indicating the most significant 
influence on the grading prediction—were predominantly localized to 
the optic nerve and peripapillary areas, aligning with known pathological 
sites of the disease. In contrast, NMO-negative cases displayed no areas 
of high signal intensity in the optic nerve and its surrounding regions, 
suggesting an absence of characteristic NMO-related features. 
Representative examples of these heatmaps are shown in Figure 7.

3.5 Comparative test

To verify the performance of MAiDS-NMO in assessing NMO, a 
comparative test involving 200 UWFs was conducted between the 
model and six ophthalmologists. In the initial assessment, the 
precision rates of the proposed system in the two tests were 90.2 and 
97.8% across two tests, demonstrating stable and reliable performance 
of the neural network. Indicating that the neural network achieved 
relatively stable training results. In contrast, the accuracy rates of 
experts, attending physicians, and residents in the first test were 78.3, 

56.8, and 33.3%, respectively. However, when provided with clinical 
information the accuracy rates improved to 98, 85.7, and 70.2%, 
respectively. Results of the comparative test were shown in Figure 6. 
These results highlight the potential of MAiDS-NMO in assisting 
clinical diagnosis, particularly in settings where access to specialized 
expertise is limited. The detailed results of the comparative test are 
presented in Figure 8.

FIGURE 6

ROC curve of MAiDS-NMO with multimodal input on test data set. The system achieved an AUROC of 0.9923, maximized Youden’s index of 0.9389, 
sensitivity of 97.0% and specificity of 96.9%.

TABLE 2 Results of five-fold cross-validation.

Fold ID Training Validation Test

Fold 1 Sensitivity: 87.8% AUC: 0.971 AUC: 0.9734

Youden: 0.838 Youden: 0.8249

Specificity: 89.5% Sensitivity: 88.1% Sensitivity: 87.9%

Specificity: 93.1% Specificity: 94.6%

Fold 2 Sensitivity: 85.3% AUC: 0.960 AUC: 0.9774

Youden: 0.8298 Youden: 0.8331

Specificity: 89.0% Sensitivity: 75.0% Sensitivity: 84.8%

Specificity: 93.8% Specificity: 96.9%

Fold 3 Sensitivity: 92.2% AUC: 0.9311 AUC: 0.9641

Youden: 0.7208 Youden: 0.8471

Specificity: 93.4% Sensitivity: 75.8% Sensitivity: 78.9%

Specificity: 94.3% Specificity: 96.9%

Fold 4 Sensitivity: 92.4% AUC: 0.9318 AUC: 0.9834

Youden: 0.726 Youden: 0.8702

Specificity: 94.3% Sensitivity: 83.6% Sensitivity: 84.8%

Specificity: 87.7% Specificity: 94.6%

Fold 5 Sensitivity: 88.0% AUC: 0.9554 AUC: 0.9753

Youden: 0.782 Youden: 0.8322

Specificity: 90.7% Sensitivity: 80.9% Sensitivity: 84.8%

Specificity: 90.2% Specificity: 93.8%
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4 Discussion

NMOSD occurs worldwide and affects individuals of all ethnic 
backgrounds (24). This severe and widespread disorder has a profound 
impact on global health, imposing a heavy global burden. Without 
timely treatment, approximately 50% of NMOSD patients may 
become disabled and blind, and one-third die within five years of their 

initial attack (25). Diagnosing NMOSD and monitoring treatment is 
challenging, burdensome, and clinically time-consuming due to the 
disease’s variable and often insidious manifestations. Furthermore, 
access to essential diagnostic tools such as MRI scanning and tests for 
AQP4-IgG and MOG-IgG is limited in many regions, and some 
patients are seronegative. Thus, it may be challenging to distinguish 
NMOSD solely based on brain MRI at disease onset. Misdiagnosis of 

FIGURE 7

Original SLO image (right) and heatmap (left). (A1) Positive case. (A2) Negative case. (B1) In the NMO-positive case, the areas of high signal intensity 
closely corresponded to the anatomical distribution of the optic nerve and peripapillary region. (B2) In the negative case, no areas of high signal 
intensity were observed in these anatomical regions.

FIGURE 8

Diagnostic performance comparison (AI vs. ophthalmologists at different levels): AI model for NMO detection; L1: specialists; L2: attendings; L3: 
residents. L1: senior specialists [>10 years’ experience]; L2: attendings [3–10 years]; L3: residents [<3 years].
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NMOSD is common, leading to delays in appropriate treatment and 
potentially resulting in severe or irreversible vision loss. Additionally, 
NMOSD lesions may be missed if patients are evaluated outside the 
acute phase or present with atypical clinical symptoms. Differences 
among ethnic populations, selection bias, and the availability of expert 
knowledge further complicate accurate diagnosis and analysis.

Screening for NMOSD, coupled with timely referral and 
treatment, is a widely recognized strategy for preventing blindness. 
Thus, there is high clinical demand for an efficient and reliable AI 
model that capable of overcoming the abovementioned obstacles and 
aiding in the early detection of NMOSD. Such a model could facilitate 
prompt intervention and improve patient outcomes. Deep learning 
algorithms have been widely applied in the diagnosis of ophthalmic 
diseases, demonstrating outstanding diagnostic performance (26, 27). 
However, to our knowledge, few studies have explored the effectiveness 
of DL- or AI-based methods in NMOSD diagnosis.

In this study, our AI model achieved exceptional performance in 
diagnosing NMOSD using UWFs as the input. First, the training 
dataset was constructed entirely based on the ophthalmologist’s 
grading of all color fundus images, enabling the development of a DL 
algorithm with robust accuracy in identifying individuals suspected 
of having NMOSD at various stages. The model achieved an 
AUC > 0.97, sensitivity > 90%, and specificity > 92% across all datasets 
with available data. Second, beyond using UWFs as input, the AI 
model is well-suited for integrating additional clinical examinations 
and MRI reports of the optic nerve and spinal cord. This allows for 
NMOSD subtype classification and disease progression tracking, 
incorporating multimodal data to enhance predictive performance. 
Third, the model was trained on both high-quality and low-quality 
UWFs, ensuring its applicability to images affected by eye movement, 
media opacities, or other conditions that may obscure image clarity. 
Lastly, in a comparative test between the model and ophthalmologists, 
results indicated that while the neural network achieved relatively 
stable training results, ophthalmologists demonstrated superior 
diagnostic performance when provided with clinical data for reference.

The shortage of ophthalmologists and neurologists in rural areas 
has led to delays in NMOSD diagnosis and treatment, leaving many 
patients without timely medical care. UWFs is noninvasive and user-
friendly tool that playing a significant role in telemedicine, proving 
invaluable in regions with limited access to specialized 
ophthalmological services. By enabling remote diagnostics and 
facilitating prompt medical interventions (28), UWF helps bridge 
healthcare gaps in underserved areas. Our AI-driven algorithm and 
platform, designed to diagnose NMOSD using UWF images, 
streamline the diagnostic process without requiring direct involvement 
from ophthalmologists or neurologists. This innovation has the 
potential to assist governments in providing more accurate and timely 
medical support to economically disadvantaged populations, 
improving healthcare accessibility and outcomes.

There are several limitations to this study. First, the dataset 
included a relatively small number of patients with NMSOD, 
largely due to the rarity of the disease in the general population. 
This limited sample size may have affected the model’s training and 
its overall predictive performance. Second, all the data were 
derived exclusively from a single-center, hospital-based Chinese 
population, without representation from broader community-
based or multi-ethnic cohorts. This homogeneity, coupled with the 
lack of an external validation dataset, restricts the generalizability 
and external applicability of our findings. Validation using data 

from multiple centers and more diverse ethnic populations will 
be  essential to confirm the robustness and adaptability of the 
model. Third, the current application is designed specifically for 
the early identification or onset prediction of NMOSD but does not 
address disease progression or recurrence was limited to onset 
prediction and cannot predict progression, the latter being an 
essential part of NMOSD management. Despite this limitation, the 
model still provides clinical value, especially in assisting with the 
challenging differential diagnosis during the early stages of the 
disease. Future research with larger, more diverse datasets and 
longitudinal follow-up will be  essential to develop a fully 
automated and comprehensive deep learning framework capable 
of both diagnosing and monitoring NMOSD.

5 Conclusion

The emergence and advancement of AI have provided new 
opportunities for improving novel systems and strategies for detecting 
NMOSD. Our study demonstrated that the proposed DL system 
exhibits high sensitivity and specificity in identifying NMOSD 
patients, while also showing potential for predicting disease onset and 
progression. With improved computing capabilities and advanced 
database technologies, this model could potentially be developed into 
a comprehensive virtual screening system for NMOSD in 
clinical practice.
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