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Background: Acute kidney injury (AKI) following acute myocardial infarction

(AMI) notably a�ects patient outcomes. The impact of KDIGO AKI staging on

post-discharge short- and long-term outcomes, particularly early-stage AKI, is

not well understood. This study evaluates the prognostic implications of various

KDIGO stages in AMI patients.

Methods: Utilizing the Medical Information Mart for Intensive Care IV (version

3.0) database, this retrospective cohort study included adult patients primarily

diagnosed with AMI. Statistical analyses, including doubly robust estimation,

propensity score matching, logistic regression, and Cox regression, were

performed. The study compared Non-AKI (KDIGO stage 0) with Mild-AKI

(maximum KDIGO stage 1 during hospitalization), and Normal-or-mild AKI

(KDIGO stages 0–1) with Moderate-to-severe AKI (KDIGO stages 2–3).

Results: Among 5,715 patients analyzed, 4,306 (75.36%) developed AKI. Doubly

robust analysis revealed no significant di�erences in outcomes between Non-

AKI and Mild-AKI groups (28-day mortality: OR 0.97, 95% CI 0.68–1.38; 180-day

mortality: HR 0.94, 95% CI 0.76–1.18; 1-year mortality: HR 0.98, 95% CI 0.81–

1.20). However, Moderate-to-severe AKI was significantly associated with worse

outcomes compared to Normal-or-mild AKI (28-day mortality: OR 1.67, 95%

CI 1.36–2.05; 180-day mortality: HR 1.06, 95% CI 1.02–1.10; 1-year mortality:

HR 1.22, 95% CI 1.07–1.38; all p < 0.001). Subgroup analyses revealed that

patients under 65 years with Mild-AKI showed higher risks of 180-day and 1-

year mortality compared to Non-AKI, while Moderate-to-severe AKI consistently

demonstrated worse outcomes across all subgroups (age, SOFA score, heart

failure status, and renal disease status). These findings were robust across

multiple sensitivity analyses.

Conclusions: Patients with Mild-AKI can be considered as having “subclinical

AKI,” with prognoses similar to Non-AKI patients. In contrast, Moderate-to-

severe AKI significantly worsens prognosis compared to Normal-or-mild AKI.
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Introduction

In recent years, growing attention has been directed toward the

interplay between cardiovascular conditions, including acute heart

failure, acute myocardial infarction (AMI), and cardiovascular

surgery, and the onset of acute kidney injury (AKI). This is due to

the profound impact AKI has on patient outcomes and prognosis

(1). Research has suggested a strong correlation between cardiac

and renal function, giving rise to the term “cardiorenal syndrome

(CRS)” in the context of heart failure and acute coronary syndrome

(ACS) (2).

The pathophysiology of CRS is characterized by a complex

interplay of hemodynamic and non-hemodynamic factors that

cause mutual cardiac and renal damage. Key contributors

include common risk factors such as hypertension, diabetes,

atherosclerosis, and chronic inflammation, which drive disease

progression (3). Hemodynamic disturbances like venous

congestion and increased intra-abdominal pressure reduce

renal blood flow, impair glomerular filtration, and activate the

renin-angiotensin system (RAAS), worsening renal function

(4, 5). Non-hemodynamic mechanisms involve neurohormonal

dysregulation, oxidative stress, and inflammation, which contribute

to chronic renal hypoxia, tissue injury, and fibrosis (6–8).

Inflammatory mediators such as TNF-α, IL-1, and IL-6 play crucial

roles, leading to both cardiac and renal remodeling (9). Endothelial

dysfunction further exacerbates the cycle of damage by impairing

vasodilation, increasing vascular permeability, and promoting

thrombosis and atherosclerosis (10). Together, these mechanisms

create a self-perpetuating cycle of organ dysfunction, contributing

to the progression of CRS (2).

The occurrence of AKI following AMI significantly prolongs

hospital stay, increases medical costs, and elevates both short-

and long-term mortality. Reported incidence rates of AKI after

AMI range from 5.2% to 59% across studies, primarily due to

variations in the criteria used to define AKI and differences in study

populations (11).

Currently, the most widely used criteria for diagnosing AKI

include the RIFLE criteria (12), AKIN criteria (a later version

of the RIFLE classification) (13), and KDIGO guidelines (14).

Researchers applied both the KDIGO and RIFLE criteria to AMI

patients, revealing that KDIGO detects AKI more effectively than

RIFLE, with detection rates of 36.6% vs. 14.8% (15). KDIGO

integrates elements from both RIFLE and AKIN, combining

their strengths to offer a more standardized and comprehensive

definition of AKI, thereby minimizing discrepancies between

diagnostic frameworks (11). KDIGO is notably more sensitive in

detecting AKI, particularly in the early stages (16). Its three-stage

classification simplifies clinical application while preserving the

diagnostic accuracy of more complex systems like RIFLE. Although

AKI diagnosis relies on acute increases in serum creatinine (SC)

and reduced urine output (UO), UO measurement is underutilized

in clinical practice, despite evidence suggesting its significant

diagnostic and prognostic value (17). The use of the more sensitive

KDIGO criteria, which incorporate UO, may thus provide an

advantage in detecting AKI in patients with AMI. However, few

studies have examined the impact of KDIGO staging on short-

and long-term outcomes in AMI patients after discharge, and it

remains unclear whether even early-stage AKI affects prognosis.

Therefore, this study aims to comprehensively analyze outcomes

in AMI patients across different KDIGO AKI stages to reveal the

prognostic implications of each stage.

Methods

Study design

This study conforms to the Strengthening the Reporting of

Observational Studies in Epidemiology (STROBE) guidelines, as

outlined in the Supplementary materials. It aims to investigate

the short-term and long-term impacts of mild and moderate-

to-severe AKI on the prognosis of ICU patients with acute

myocardial infarction, utilizing real-time monitoring of AKI based

on KDIGO criteria. The KDIGO criteria model in MIMIC-

IV dynamically evaluated AKI stages through serum creatinine

changes over the past seven days and 48 h, alongside hourly urine

output monitored over 6, 12, and 24-h intervals. This approach

improved the sensitivity of AKI assessment, facilitating earlier

detection and more precise classification of kidney injury. The

project received approval from the institutional review boards at

both the Massachusetts Institute of Technology (MIT) and Beth

Israel Deaconess Medical Center (BIDMC), with informed consent

being waived.

This retrospective observational study utilized data from the

Medical Information Mart for Intensive Care IV (MIMIC-IV,

version 3.0) database. This updated version of MIMIC-III includes

critical care information for ICU patients at BIDMC from 2008

to 2022. The database contains comprehensive records from

patient hospitalizations, such as laboratory tests, medications given,

vital signs, and other details. Author PG gained access to the

database after fulfilling the data usage agreement and obtaining

Collaborative Institutional Training Initiative (CITI) certification.

Since all patient information is de-identified, informed consent was

not necessary (17).

Study population

Inclusion criteria: (1) patients aged 18 years or older; (2) AMI

listed among the top three discharge diagnoses. Exclusion criteria:

(1) not a first hospitalization; (2) absence of ICU records; (3) ICU

stay time < 1 day.

The study is divided into two parts. In the first part, patients

classified under KDIGO AKI stages 0 and 1 were grouped as

Non-AKI and Mild-AKI. In the second part, all patients were

included, with those in KDIGO AKI stages 0 and 1 categorized as

Normal-or-mild-AKI, while those in stages 2 and 3 were classified

as Moderate-to-severe-AKI.

Data extraction and preprocessing

Data extraction was performed using PostgreSQL 14 and SQL

queries (Berkeley, California, USA). The dataset extracted included

demographics, ICU length of stay, complications, laboratory

test results, treatments, and other pertinent clinical information.
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Laboratory results were taken from the first tests conducted upon

ICU admission, as these initial values are available quicker and

support timely patient assessment with clinical prediction models.

The estimated glomerular filtration rate (eGFR) was calculated

using the Cockcroft-Gault (CG) equation (18): eGFR = 175 ×

(standardized serum creatinine)−1.154 × (age)−0.203 × 1.212 (if

Black)× 0.742 (if female).

Endpoint

The endpoints were 28-day mortality, 180-day mortality, and

1-year all-cause mortality.

Statistical methods

The normality of continuous variables was evaluated using the

Kolmogorov-Smirnov test. Variables with a normal distribution

were presented as mean ± standard deviation, whereas variables

that did not follow a normal distribution were expressed

as median and interquartile range (IQR) [M (P25, P75)].

The homogeneity of variances for continuous variables across

groups was evaluated using Levene’s test. For comparisons

between two cohorts, continuous variables that followed an

independent normal distribution and demonstrated homogeneity

of variances were analyzed using Student’s t-test. If these

assumptions were not met, the Mann-Whitney U test was used

to assess differences between groups. For categorical variables,

Fisher’s exact test was applied when the sample size was <40.

Otherwise, the Chi-square test was used to assess differences

between groups. Categorical data were presented as frequencies

and percentages. Multiple imputation was performed using the

‘mice’ package in R for variables with missing data. Variables

with more than 20% missing values were excluded from

imputation and not included in model construction. To ensure

robust imputation results, the number of imputations was set

to 100.

The doubly robust estimation approach was utilized to

determine the independent associations between the occurrence

of AKI in patients with myocardial infarction and their prognosis.

This method combines outcome modeling and propensity

score weighting to provide reliable estimates, even if one of

the models (outcome or propensity score) is misspecified. This

method, also known as survey-weighted generalized linear

models, amalgamates a multivariate regression model with a

propensity score model to evaluate both the correlation and

the causal influence of an exposure on an outcome (19, 20).

Typically, unbiased estimation of causal effects using either

a regression model or a propensity score model individually

is possible only when the respective statistical model is

correctly specified. In contrast, the doubly robust estimator

combines these two approaches, ensuring that an unbiased effect

estimate can still be obtained if at least one of the models is

correctly specified.

The gradient boosted model (GBM) was applied to estimate

propensity scores for AKI, with the aim of minimizing covariate

imbalance between the Non-AKI and Mild-AKI groups, as

well as the Normal-or-mild-AKI and Moderate-to-severe-AKI

groups. GBM, a machine learning algorithm, iteratively builds

and combines models into an ensemble to enhance the accuracy

of response variable estimates. Its main principle involves

constructing new models that are highly correlated with the

negative gradient of a predefined loss function. In this study,

regression trees were used as the base learners for the GBM,

incorporating 39 covariates in total (21).

An inverse probability of treatment weighting (IPTW)

approach was applied to construct a weighted cohort, utilizing

the estimated propensity scores as weights. To evaluate the

performance of the propensity score model in achieving balance

between the groups, covariate imbalances were analyzed for

both the unadjusted and weighted cohorts. Standardized mean

differences (SMDs) were computed to measure discrepancies

between the groups. Subsequently, logistic regression or Cox

regression was conducted on this weighted cohort, adjusting

for variables that remained unbalanced between groups in the

propensity score model. This approach is referred to as a

doubly robust analysis using ‘survey’ package. Logistic regression

analyses utilized the ‘stats’ package. In our study, the survival

package was employed to fit Cox proportional hazards models

and assess the proportional hazards (PH) assumption. For time-

dependent covariates that violated the PH assumption, appropriate

transformations, such as time-dependent covariate effects or

stratification, were applied. These adjustments allowed for more

accurate estimation of hazard ratios and improved overall model

fit. The survival package provided essential functions for testing the

PH assumption (e.g., cox.zph) and incorporating time-dependent

effects (e.g., coxph with time-dependent covariates).

Statistical analyses were conducted using R software (version

4.4.1; R Foundation for Statistical Computing, Vienna, Austria). All

tests were two-tailed, with a significance level set at P < 0.05.

Sensitivity analysis

We conducted a series of sensitivity analyses to evaluate the

robustness of the study’s findings and to determine how our

conclusions might be influenced by using different association

inference models. In these analyses, we applied additional models.

For the outcome of 28-day mortality, we used a Log-rank test

model, a Multivariate Several models were utilized in the analysis,

including a logistic regression model adjusted for all covariates,

a multivariate logistic regression model adjusted for unbalanced

covariates, a survey-weighted Generalized Linear Model (GLM)

incorporating IPTW and adjusted for all covariates, and a survey-

weighted GLM with IPTW adjusted for unbalanced covariates.

For the outcomes of 180-day and 1-year mortality, the analysis

employed a log-rank test, a multivariate Cox proportional hazards

model adjusted for all covariates, a multivariate Coxmodel adjusted

for unbalanced covariates, a survey-weighted Cox model with

IPTW adjusted for all covariates, and a survey-weighted Coxmodel

with IPTW adjusted for unbalanced covariates. The effect sizes and

corresponding p-values derived from these models were reported

and compared.
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FIGURE 1

Flow chart of inclusion and exclusion criteria for the target study population of patients with acute myocardial infarction who developed acute

kidney injury.

Results

Baseline characteristics

A total of 5,715 patients were included in this study, as

illustrated in Figure 1. In the first phase, 1,409 patients were

categorized into the Non-AKI group and 1,175 into the Mild-AKI

group. After PSM, both groups comprised 656 patients, as detailed

in Table 1 and Supplementary Tables S1–S4; In the second phase,

2,584 patients were classified into the Normal-or-mild-AKI group,

while 3,131 were assigned to the Moderate-to-severe-AKI group.

Following PSM, both groups contained 1,507 patients, as shown

in Table 2. In total, 4,306 patients, accounting for 75.36% of the

cohort, developed AKI.

Doubly robust analysis

A propensity score model was initially developed using

39 covariates through GBM. Figure 2 illustrates the relative

contributions of each covariate to the calculated propensity

scores. Figure 2A highlights that the most significant covariates

distinguishing the Non-AKI and Mild-AKI groups include the use

of loop diuretics, eGFR, SOFA score, BUN, and vasopressor use,

all closely associated with the onset of AKI; Figure 2B shows that

the key covariates differentiating the Normal-or-mild-AKI group

from theModerate-to-severe-AKI group are vasopressor use, SOFA

score, loop diuretics, eGFR, and WBC, all of which are strongly

linked to the progression to Moderate-to-severe AKI.

Using the estimated propensity scores, IPTW was applied

to standardize differences between the Non-AKI and Mild-

AKI groups, as well as between the Normal-or-mild-AKI and

Moderate-to-severe-AKI groups. Details are presented in Table 1

and Figures 2C, D. In the first analysis, most covariates in the

weighted cohorts were comparable or balanced between the Non-

AKI and Mild-AKI groups, with some exceptions: SOFA score,

loop diuretics, vasopressor use, renal disease, hemoglobin, sodium,

potassium, BUN, creatinine, and eGFR; In the second analysis,

most covariates were similarly balanced between the Normal-or-

mild-AKI andModerate-to-severe-AKI groups, with exceptions for

SOFA score, loop diuretics, vasopressor use, heart failure, renal

disease, WBC, bicarbonate, BUN, creatinine, and eGFR.
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TABLE 1 Baseline characteristics before and after propensity score matching of the Non-AKI and Mild-AKI cohorts.

Covariates Before matching After matching

Non-AKI
(N = 1,409)

Mild-AKI
(N = 1,175)

SMD Non-AKI
(N = 617)

Mild-AKI
(N = 617)

SMD

Age (years) 68.00 [59.00, 79.00] 71.00 [62.00, 79.00] 0.162 70.00 [61.00, 78.00] 69.00 [61.00, 78.00] 0.038

Gender (Female) 513 (36.41%) 376 (32.00%) 0.093 221 (35.82%) 221 (35.82%) <0.001

ICU score

SOFA score 2.00 [1.00, 4.00] 4.00 [2.00, 6.00] 0.473 4.00 [2.00, 6.00] 3.00 [1.00, 5.00] 0.277

AKI Kidigo

0 1,409 (100.00%) 0 (0.00%) <0.001 617 (100.00%) 0 (0.00%) <0.001

1 0 (0.00%) 1,175 (100.00%) 0 (0.00%) 617 (100.00%)

2 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

3 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

Surgeries and procedures

CABG 186 (13.20%) 264 (22.47%) 0.244 129 (20.91%) 118 (19.12%) 0.045

PCI 193 (13.70%) 88 (7.49%) 0.203 51 (8.27%) 57 (9.24%) 0.034

CRRT 6 (0.43%) 19 (1.62%) 0.119 4 (0.65%) 2 (0.32%) 0.047

IABP 63 (4.47%) 97 (8.26%) 0.155 36 (5.83%) 28 (4.54%) 0.058

Drug use

ACEI/ARB 462 (32.79%) 366 (31.15%) 0.035 175 (28.36%) 194 (31.44%) 0.067

Anticoagulant 1,125 (79.84%) 978 (83.23%) 0.087 495 (80.23%) 498 (80.71%) 0.012

Antiplatelet 1,223 (86.80%) 1,055 (89.79%) 0.093 546 (88.49%) 550 (89.14%) 0.021

β-blocker 1,020 (72.39%) 943 (80.26%) 0.186 487 (78.93%) 476 (77.15%) 0.043

Loop diuretic 542 (38.47%) 769 (65.45%) 0.561 369 (59.81%) 302 (48.95%) 0.219

Positive inotropic 263 (18.67%) 159 (13.53%) 0.14 78 (12.64%) 100 (16.21%) 0.102

Spironolactone 21 (1.49%) 27 (2.30%) 0.059 11 (1.78%) 13 (2.11%) 0.023

Statin 1,141 (80.98%) 1,005 (85.53%) 0.122 520 (84.28%) 512 (82.98%) 0.035

Vasopressor 503 (35.70%) 664 (56.51%) 0.427 329 (53.32%) 269 (43.60%) 0.196

Comorbidities

HF 464 (32.93%) 546 (46.47%) 0.279 246 (39.87%) 231 (37.44%) 0.05

AFIB 112 (7.95%) 124 (10.55%) 0.09 59 (9.56%) 48 (7.78%) 0.063

Diabetes 442 (31.37%) 481 (40.94%) 0.2 232 (37.60%) 218 (35.33%) 0.047

Renal disease 256 (18.17%) 356 (30.30%) 0.286 153 (24.80%) 122 (19.77%) 0.121

Liver disease 12 (0.85%) 12 (1.02%) 0.018 8 (1.30%) 6 (0.97%) 0.031

COPD 154 (10.93%) 165 (14.04%) 0.094 77 (12.48%) 80 (12.97%) 0.015

Stroke 77 (5.46%) 88 (7.49%) 0.082 35 (5.67%) 41 (6.65%) 0.04

Malignancy 124 (8.80%) 124 (10.55%) 0.059 56 (9.08%) 59 (9.56%) 0.017

Vital signs (1st 24h)

MAP (mmHg) 84.00 [74.00, 96.00] 82.00 [72.00, 92.00] 0.13 82.00 [72.00, 93.00] 83.00 [73.00, 93.00] 0.025

Heart rate (bpm) 81.00 [71.00, 93.00] 81.00 [73.00, 92.00] 0.048 81.00 [73.00, 91.00] 80.00 [73.00, 91.00] 0.062

Temperature (◦C) 36.61 [36.39, 36.89] 36.56 [36.33, 36.89] 0.046 36.56 [36.33, 36.83] 36.61 [36.39, 36.89] 0.051

Laboratory tests (1st 24h)

WBC (109/L) 10.80 [8.20, 13.60] 11.00 [8.30, 14.90] 0.057 11.00 [8.40, 14.30] 10.80 [8.20, 14.00] 0.064

Hemoglobin (g/dl) 11.60 [9.80, 13.30] 10.70 [9.00, 12.60] 0.283 10.90 [9.40, 12.70] 11.40 [9.60, 13.10] 0.157

(Continued)
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TABLE 1 (Continued)

Before matching After matching

Non-AKI
(N = 1,409)

Mild-AKI
(N = 1,175)

SMD Non-AKI
(N = 617)

Mild-AKI
(N = 617)

SMD

Platelet (109/L) 202.00 [156.00, 250.00] 187.00 [138.00, 240.50] 0.117 189.00 [136.00, 242.00] 192.00 [149.00, 249.00] 0.093

Sodium (mmol/L) 138.00 [135.00, 140.00] 137.00 [134.00, 140.00] 0.133 137.00 [135.00, 139.00] 138.00 [135.00, 140.00] 0.118

Potassium (mmol/L) 4.20 [3.90, 4.60] 4.30 [3.90, 4.80] 0.189 4.30 [3.90, 4.80] 4.20 [3.90, 4.60] 0.125

Bicarbonate (mmol/L) 23.00 [21.00, 25.00] 23.00 [20.00, 25.00] 0.106 23.00 [21.00, 25.00] 23.00 [21.00, 25.00] 0.074

Chloride (mmol/L) 104.00 [101.00, 107.00] 104.00 [101.00, 107.00] 0.095 104.00 [101.00, 107.00] 104.00 [101.00, 107.00] 0.027

BUN (mg/dl) 17.00 [13.00, 26.00] 20.00 [15.00, 33.00] 0.196 18.00 [14.00, 31.00] 17.00 [13.00, 25.00] 0.184

Creatinine (mg/dl) 0.90 [0.80, 1.20] 1.00 [0.80, 1.60] 0.282 1.00 [0.80, 1.40] 0.90 [0.80, 1.20] 0.204

eGFR (ml/min/1.73m2) 77.02 [55.06, 97.32] 65.80 [39.71, 88.27] 0.334 70.12 [44.62, 91.88] 75.23 [54.05, 97.32] 0.216

BNP (tested) 45 (3.19%) 45 (3.83%) 0.035 26 (4.21%) 22 (3.57%) 0.034

TNT (tested) 946 (67.14%) 648 (55.15%) 0.248 354 (57.37%) 376 (60.94%) 0.073

CK-MB (tested) 652 (46.27%) 449 (38.21%) 0.164 240 (38.90%) 261 (42.30%) 0.069

CABG, coronary artery bypass grafting; PCI, percutaneous coronary intervention; CRRT, continuous renal replacement therapy; IABP, intra-aortic balloon pump; ACEI/ARB, angiotensin-

converting enzyme inhibitor/angiotensin II receptor blocker; HF, heart failure; AFIB, atrial fibrillation; COPD, chronic obstructive pulmonary disease; MAP, mean arterial pressure; WBC, white

blood cell; BUN, blood urea nitrogen; TNT, troponin T; CK-MB, creatine kinase-muscle/brain; eGFR, estimated glomerular filtration rate; CK-MB, creatine kinase-MB. Values are presented as

mean (standard deviation) or median [Q1, Q3] for continuous variables and number (percentage) for categorical variables. Variables in bold have p-value < 0.05.

To address the residual imbalance in covariates within the

weighted cohorts, several regressionmodels were constructed using

doubly robust estimation.

Outcomes and sensitivity studies

The doubly robust analysis revealed no significant differences in

short- or long-term outcomes between patients with Non-AKI and

Mild-AKI (28-day mortality: OR 0.97, 95% CI 0.68–1.38, p= 0.854;

180-day mortality: HR 0.94, 95% CI 0.76–1.18, p = 0.618; 1-year

mortality: HR 0.98, 95% CI 0.81–1.20, p = 0.857); However, when

comparing the Normal-or-mild-AKI group with the Moderate-to-

severe-AKI group, patients with Moderate-to-severe-AKI had a

significantly worse prognosis (28-day mortality: OR 1.67, 95% CI

1.36–2.05, p < 0.001; 180-day mortality: HR 1.06, 95% CI 1.02–

1.10, p < 0.001; 1-year mortality: HR 1.22, 95% CI 1.07–1.38, p

< 0.001). As shown in Table 3, Supplementary Tables S5–S28 and

Figure 3, sensitivity analyses consistently confirmed these findings

across all estimation models.

Subgroup analysis

We performed a subgroup analysis stratified by age (<65 or

≥65 years), SOFA score (<5 or ≥5), heart failure status, and

renal disease status. Within the Non-AKI and Mild-AKI group,

patients under 65 years with Mild-AKI exhibited a significantly

higher risk of 180-day and 1-year mortality compared to those

without AKI. However, no significant differences in outcomes were

observed between Non-AKI and Mild-AKI patients within the

other subgroups; In the comparison between the Normal-or-mild-

AKI and Moderate-to-severe-AKI groups, patients with Moderate-

to-severe-AKI consistently showed significantly worse outcomes

compared to those with Normal-or-mild-AKI across all subgroups.

These findings are illustrated in Figure 4.

Discussion

AMI is a leading cause of global mortality and morbidity.

Patients with AMI are highly susceptible to complications such

as AKI, which is common in critically ill patients and linked

to worse clinical outcomes, including higher morbidity and

mortality (22). While the association between AKI and adverse

outcomes is well-documented, the impact of varying severities

of AKI on the prognosis of AMI patients remains not fully

understood. Addressing this crucial knowledge gap can inform

targeted interventions and improve clinical decision-making. Our

study uses advanced statistical methods, such as doubly robust

estimation and rigorous sensitivity analyses, to explore the short-

and long-term outcomes of ICU patients with different severities of

AKI following AMI. This comprehensive approach aims to enhance

clinical practices and guide future research by providing a detailed

understanding of AKI severity’s prognostic implications.

Cardiorenal syndrome (CRS) is a complex disorder

characterized by bidirectional interactions between cardiac and

renal dysfunction, mediated by multiple molecular mechanisms. It

is a major cause of AKI in patients with AMI (20). Oxidative stress

and inflammation represent central pathways in CRS pathogenesis.

Activation of the NF-κB signaling pathway promotes the

production of pro-inflammatory cytokines (e.g., IL-6, TNF-α) and

oxidative stress markers (e.g., NOX2, iNOS), contributing to tissue

damage in both organs (23, 24). Concurrently, impairment of the

Nrf2 antioxidant pathway reduces the expression of cytoprotective
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TABLE 2 Baseline characteristics before and after propensity score matching of the Normal-or-mild-AKI and Moderate-to-severe-AKI cohorts.

Covariates Before matching After matching

Normal-or-
mild-AKI

(N = 2,584)

Moderate-to-
severe-AKI
(N = 3,131)

SMD Normal-or-
mild-AKI
(N = 1,449)

Moderate-to-
severe-AKI
(N = 1,449)

SMD

Age (years) 69.00 [60.00, 79.00] 73.00 [64.00, 81.00] 0.218 72.00 [63.00, 80.00] 71.00 [63.00, 80.00] 0.026

Gender (Female) 889 (34.40%) 1,105 (35.29%) 0.019 527 (36.37%) 514 (35.47%) 0.019

ICU score

SOFA score 3.00 [1.00, 5.00] 5.00 [3.00, 8.00] 0.538 4.00 [2.00, 6.00] 4.00 [2.00, 6.00] 0.214

AKI KIDIGO

0 1,409 (54.53%) 0 (0.00%) 3.88 656 (45.27%) 0 (0.00%) 3.65

1 1,175 (45.47%) 0 (0.00%) 793 (54.73%) 0 (0.00%)

2 0 (0.00%) 2065 (65.95%) 0 (0.00%) 1,141 (78.74%)

3 0 (0.00%) 1066 (34.05%) 0 (0.00%) 308 (21.26%)

Surgeries and procedures

CABG 450 (17.41%) 530 (16.93%) 0.013 288 (19.88%) 310 (21.39%) 0.038

PCI 281 (10.87%) 217 (6.93%) 0.139 106 (7.32%) 110 (7.59%) 0.011

CRRT 25 (0.97%) 130 (4.15%) 0.203 22 (1.52%) 16 (1.10%) 0.036

IABP 160 (6.19%) 442 (14.12%) 0.265 140 (9.66%) 111 (7.66%) 0.071

Drug use

ACEI/ARB 828 (32.04%) 1054 (33.66%) 0.034 478 (32.99%) 471 (32.51%) 0.01

Anticoagulant 2,103 (81.39%) 2,821 (90.10%) 0.251 1,241 (85.65%) 1,202 (82.95%) 0.074

Antiplatelet 2,278 (88.16%) 2,845 (90.87%) 0.088 1,293 (89.23%) 1,283 (88.54%) 0.022

β-Blocker 1,963 (75.97%) 2,489 (79.50%) 0.085 1,159 (79.99%) 1,167 (80.54%) 0.014

Loop diuretic 1,311 (50.74%) 2,251 (71.89%) 0.445 965 (66.60%) 849 (58.59%) 0.166

Positive inotropic 422 (16.33%) 554 (17.69%) 0.036 202 (13.94%) 204 (14.08%) 0.004

Spironolactone 48 (1.86%) 78 (2.49%) 0.043 34 (2.35%) 32 (2.21%) 0.009

Statin 2,146 (83.05%) 2,743 (87.61%) 0.129 1,254 (86.54%) 1,246 (85.99%) 0.016

Vasopressor 1,167 (45.16%) 2,146 (68.54%) 0.486 850 (58.66%) 719 (49.62%) 0.182

Comorbidities

HF 1,010 (39.09%) 1,739 (55.54%) 0.334 696 (48.03%) 621 (42.86%) 0.104

AFIB 236 (9.13%) 492 (15.71%) 0.201 188 (12.97%) 179 (12.35%) 0.019

Diabetes 923 (35.72%) 1,303 (41.62%) 0.121 580 (40.03%) 575 (39.68%) 0.007

Renal disease 612 (23.68%) 1,003 (32.03%) 0.187 429 (29.61%) 367 (25.33%) 0.096

Liver disease 24 (0.93%) 66 (2.11%) 0.097 16 (1.10%) 16 (1.10%) <0.001

COPD 319 (12.35%) 489 (15.62%) 0.094 206 (14.22%) 186 (12.84%) 0.04

Stroke 165 (6.39%) 373 (11.91%) 0.193 131 (9.04%) 124 (8.56%) 0.017

Malignancy 248 (9.60%) 345 (11.02%) 0.047 144 (9.94%) 148 (10.21%) 0.009

Vital signs (1st 24h)

MAP (mmHg) 83.00 [73.00, 94.00] 81.00 [71.00, 94.00] 0.045 82.00 [72.00, 93.00] 82.00 [72.00, 93.00] 0.029

Heart rate (bpm) 81.00 [72.00, 92.00] 84.00 [74.00, 97.00] 0.148 82.00 [73.00, 94.00] 81.00 [73.00, 93.00] 0.052

Temperature (◦C) 36.61 [36.39, 36.89] 36.61 [36.33, 36.94] 0.037 36.56 [36.33, 36.89] 36.61 [36.33, 36.89] 0.009

Laboratory tests (1st 24h)

WBC (109/L) 10.90 [8.30, 14.12] 12.20 [9.10, 16.30] 0.152 11.70 [8.80, 15.30] 11.20 [8.60, 14.70] 0.102

Hemoglobin (g/dl) 11.20 [9.40, 13.00] 10.90 [9.10, 12.70] 0.098 10.80 [9.20, 12.60] 10.90 [9.30, 12.60] 0.032

(Continued)
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TABLE 2 (Continued)

Before matching After matching

Normal-or-
mild-AKI

(N = 2,584)

Moderate-to-
severe-AKI
(N = 3,131)

SMD Normal-or-
mild-AKI
(N = 1,449)

Moderate-to-
severe-AKI
(N = 1,449)

SMD

Platelet (109/L) 195.00 [146.00, 246.25] 192.00 [145.00, 251.00] 0.016 189.00 [142.00, 245.00] 188.00 [144.00, 242.00] 0.038

Sodium (mmol/L) 137.00 [135.00, 140.00] 137.00 [134.00, 140.00] 0.026 137.00 [134.00, 140.00] 137.00 [135.00, 140.00] 0.01

Potassium (mmol/L) 4.20 [3.90, 4.70] 4.30 [3.90, 4.80] 0.033 4.30 [3.90, 4.70] 4.30 [3.90, 4.70] 0.037

Bicarbonate (mmol/L) 23.00 [21.00, 25.00] 22.00 [20.00, 25.00] 0.128 23.00 [20.00, 25.00] 23.00 [21.00, 25.00] 0.084

Chloride (mmol/L) 104.00 [101.00, 107.00] 104.00 [100.00, 107.00] 0.106 104.00 [100.00, 107.00] 104.00 [101.00, 107.00] 0.032

BUN (mg/dl) 18.00 [14.00, 29.00] 23.00 [16.00, 36.00] 0.217 21.00 [15.00, 33.00] 19.00 [14.00, 30.00] 0.091

Creatinine (mg/dl) 1.00 [0.80, 1.40] 1.10 [0.90, 1.70] 0.215 1.10 [0.80, 1.60] 1.00 [0.80, 1.40] 0.059

eGFR (ml/min/1.73m2) 72.08 [46.56, 95.29] 57.75 [35.26, 81.81] 0.312 62.86 [39.31, 86.25] 67.85 [45.23, 92.68] 0.123

BNP (tested) 90 (3.48%) 170 (5.43%) 0.094 63 (4.35%) 60 (4.14%) 0.01

TNT (tested) 1,594 (61.69%) 2,093 (66.85%) 0.108 841 (58.04%) 859 (59.28%) 0.025

CK-MB (tested) 1,101 (42.61%) 1,527 (48.77%) 0.124 610 (42.10%) 608 (41.96%) 0.003

CABG, coronary artery bypass grafting; PCI, percutaneous coronary intervention; CRRT, continuous renal replacement therapy; IABP, intra-aortic balloon pump; ACEI/ARB: angiotensin-

converting enzyme inhibitor/angiotensin II receptor blocker; HF, heart failure; AFIB, atrial fibrillation; COPD, chronic obstructive pulmonary disease; MAP, mean arterial pressure; WBC, white

blood cell; BUN, blood urea nitrogen; TNT, troponin T; CK-MB, creatine kinase-muscle/brain; eGFR, estimated glomerular filtration rate; CK-MB, creatine kinase-MB. Values are presented as

mean (standard deviation) or median [Q1, Q3] for continuous variables and number (percentage) for categorical variables. Variables in bold have p-value < 0.05.

enzymes (e.g., HO-1, MnSOD), exacerbating oxidative injury

(20). These processes are evident across all CRS subtypes, as

demonstrated in animal models of myocardial infarction (CRS1)

and chronic kidney disease (CRS2) (25, 26). The renin-angiotensin-

aldosterone system (RAAS) is hyperactivated in CRS, leading to

vasoconstriction, sodium retention, and fibrosis. Upregulation

of ACE and AT1R, coupled with downregulation of protective

AT2R and MasR, has been observed in experimental models (27).

RAAS inhibitors (e.g., ACEIs/ARBs) reduce urinary podocin loss

in CRS2 patients, indicating glomerular protection (28). Moreover,

the TGF-β1/Smad pathway mediates fibrosis through collagen

deposition and epithelial-mesenchymal transition. Studies in CRS

rats show elevated TGF-β1 and phosphorylated Smad3 in cardiac

and renal tissues, which are attenuated by empagliflozin and

dapagliflozin (29). Aberrant Wnt/β-catenin signaling contributes

to cardiac hypertrophy and renal fibrosis. In CRS2 models,

activation of β-catenin promotes pro-fibrotic gene expression

(e.g., Twist, Snail1), while its inhibition with ICG-001 ameliorates

organ damage (30). Gut microbiota dysbiosis further exacerbates

CRS by producing uremic toxins (e.g., TMAO), which enhance

inflammation and fibrosis via NF-κB and TGF-β1 pathways

(31, 32). Noncoding RNAs, such as miR-21 and lncRNA ANRIL,

also play roles by modulating fibrosis (e.g., targeting PPARα) and

inflammasome activation (33, 34).

Research indicates that the incidence of AKI among ICU

patients ranges from 12.1% to 60.93% (1). However, our study

found a significantly higher AKI incidence of 75.35% in patients

with AMI. We believe this discrepancy may stem from our more

sensitive method of detecting AKI. In our study, each laboratory

test and every fluctuation in fluid input/output were dynamically

monitored throughout the hospitalization period, allowing for

earlier detection of AKI. This increased sensitivity, as described

in our study design, likely contributed to the higher incidence we

observed. Supporting this, a study involving 1,050 AMI patients

demonstrated that using the KDIGO criteria identified significantly

more cases of AKI compared to the RIFLE criteria, suggesting

that KDIGO is more sensitive for detecting AKI in AMI patients

(15). Additionally, Kanic et al. (35) found that even minor rises

in serum creatinine and progressive increases in AKI severity, as

evaluated by the KDIGO criteria, were associated with poorer long-

term outcomes in AMI patients. This underscores the importance

of employing more sensitive methods, like KDIGO, to detect AKI

in this population.

Compared to patients with Mild-AKI, those Non-AKI used

loop diuretics and vasopressors more frequently, and they exhibited

lower eGFR, higher SOFA scores, and elevated BUN levels. These

five variables were identified as the most significant during the

PSM process. The use of loop diuretics, lower eGFR, higher BUN

levels, and elevated SOFA scores all indicate poorer renal function.

Additionally, the frequent use of vasopressors suggests a higher

incidence of hypotensive states, which can lead to renal ischemia

and further kidney function deterioration (36).

In the PSM process comparing the Normal-or-mild-AKI and

Moderate-to-severe-AKI groups, the five most significant variables

were vasopressor use, SOFA score, loop diuretics, eGFR, and

WBC count. The first four variables were consistent with the

findings in the Non-AKI group. However, the WBC count was

notably higher in the Moderate-to-severe-AKI group. Elevated

leukocyte levels, particularly WBC, play a critical role in the

pathophysiology of AKI, involving complex immunopathological

interactions. These include mechanisms such as damage-associated

molecular patterns (DAMPs), pathogen-associated molecular

patterns (PAMPs), oxidative stress, hypoxia-inducible factors, the

complement system, and various immune cells like dendritic

cells, neutrophils, lymphocytes, and macrophages (37). A study

by Chen et al. found that in AMI patients, the percentage of
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FIGURE 2

The relative influence factors evaluate the discriminative power of the 39 covariates within the propensity score model in predicting acute kidney

injury (AKI) outcomes (the higher the value in the bar graph, the more important the variable). (A) For Non-AKI and Mild-AKI; (B) For

Normal-or-mild-AKI and Moderate-to-severe-AKI; Change in standardized mean di�erence (SMD) of cohorts before and after propensity score

matching: the red curve represents pre-matching, the green curve represents post-matching, and the blue curve represents inverse probability of

treatment weighting (IPTW) adjustment. The smaller the curve fluctuation, the better the data quality. (C) For Non-AKI and Mild-AKI; (D) For

Normal-or-mild-AKI and Moderate-to-severe-AKI.

neutrophils in peripheral blood (NEUT%) was positively correlated

with both the incidence of AKI and short-term all-cause mortality

(38). Elevated serum calcium can induce renal vasoconstriction,

reducing renal blood flow and causing tubular injury, while

hypocalcemia may indicate the severity of cardiac dysfunction and

renal impairment. Previous research (39) has demonstrated that

acute kidney injury occurs more frequently in patients with ST-

elevation myocardial infarction complicated by cardiogenic shock,

leading to poor short-term clinical outcomes. A recent study (40)

utilizing theMIMIC database developed a predictivemodel for AKI

risk in AMI patients. Their model identified estimated glomerular

filtration rate, creatinine, blood urea nitrogen, cardiogenic

shock, and creatine-kinase myocardial band as the five most

significant predictors. These findings are largely consistent with

our results.

It is important to note that certain variables remained

unbalanced between groups despite PSM. To minimize the impact

of these variables on study outcomes, we performed corrections

in subsequent modeling, though it remains necessary to discuss

why statistical methods struggled to eliminate imbalances in these

factors. Seven variables showed persistent intergroup imbalance in

both analyses (Non-AKI vs. Mild-AKI and Normal/mild-AKI vs.

Moderate-severe-AKI): SOFA score, loop diuretic use, vasopressor

administration, preexisting renal disease, BUN, creatinine, and

eGFR. These metrics are inherently linked to renal function,

explaining why baseline disparities for such variables persisted even
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TABLE 3 Primary outcome with di�erent models for two parts.

Methods Non-AKI vs. Mild-AKI Normal-or-mild-AKI vs.
Moderate-to-severe-AKI

Result p-value Result p-value

28-day mortality

Log-rank test [HR (95% CI)] 1.25 (0.97, 1.62) 0.082 2.38 (2.09, 2.71) <0.001

Multivariate Logistic model adjusted with all covariates [OR (95% CI)] 0.94 (0.64, 1.36) 0.736 2.01 (1.63, 2.48) <0.001

Multivariate Logistic model adjusted with unbalanced covariates [OR (95% CI)] 0.9 (0.69, 1.17) 0.444 1.87 (1.62, 2.15) <0.001

Survey-weighted GLMmodel adjusted with all covariates using IPTW [OR (95% CI)] 0.9 (0.62, 1.31) 0.588 1.87 (1.49, 2.33) <0.001

Survey-weighted GLMmodel adjusted with unbalanced covariates using IPTW [OR (95%

CI)]

0.97 (0.68, 1.38) 0.854 1.67 (1.36, 2.05) <0.001

180-day mortality

Log-rank test [HR (95% CI)] 1.24 (1.02, 1.51) <0.05 2.10 (1.88, 2.34) <0.001

Multivariate COX model adjusted with all covariates [HR (95% CI)] 0.95 (0.77, 1.18) 0.671 1.09 (1.06, 1.13) <0.001

Multivariate Cox model adjusted with unbalanced covariates [HR (95% CI)] 1.02 (0.82, 1.27) 0.839 1.07 (1.03, 1.10) <0.001

Survey-weighted Cox model adjusted with all covariates using IPTW [HR (95% CI)] 0.89 (0.71, 1.11) 0.309 1.07 (1.03, 1.11) <0.001

Survey-weighted Cox model adjusted with unbalanced covariates using IPTW [HR (95% CI)] 0.94 (0.76, 1.18) 0.618 1.06 (1.02, 1.10) <0.01

1-year mortality

Log-rank test [HR (95% CI)] 1.29 (1.08, 1.54) <0.01 1.97 (1.78, 2.17) <0.001

Multivariate Cox model adjusted with all covariates [HR (95% CI)] 0.99 (0.81, 1.19) 0.879 1.37 (1.22, 1.54) <0.001

Multivariate Cox model adjusted with unbalanced covariates [HR (95% CI)] 1.05 (0.87, 1.27) 0.626 1.28 (1.14, 1.44) <0.001

Survey-weighted Cox model adjusted with all covariates using IPTW [HR (95% CI)] 0.93 (0.76, 1.14) 0.491 1.26 (1.11, 1.43) <0.001

Survey-weighted Cox model adjusted with unbalanced covariates using IPTW [HR (95% CI)] 0.98 (0.81, 1.20) 0.857 1.22 (1.07, 1.38) <0.01

Statistical analyses of different models with p-value < 0.05 were displayed in bold. HR, odds ratio; HR, hazard ratio; CI, confidence interval; IPTW, inverse probability of treatment weighting.

after PSM—patients with divergent renal profiles inherently exhibit

unequal baselines for these parameters. The renal subcomponent

of the SOFA score directly assesses renal function, while a

history of preexisting renal disease characterizes chronic renal

status. Loop diuretic use often reflects fluid overload, a hallmark

of renal dysfunction, whereas vasopressor therapy typically

indicates hypotension that may compromise renal perfusion. BUN,

creatinine, and eGFR serve as direct renal function biomarkers:

elevations in BUN, creatinine and declines in eGFR are sensitive

indicators of deteriorating renal health.

Additionally, imbalance persisted in several indices across

groups, presumably because statistical methods like PSM—being

baseline characteristic-matched—cannot eliminate differences in

indices strongly associated with the disease itself. In the Non-AKI

vs. Mild-AKI group, renal concentrating dysfunction in AKI causes

hyponatremia, while tubular potassium excretion impairment leads

to hyperkalemia, contributing to data imbalance (41). Anemia

(low hemoglobin) acts as both a risk factor for AKI (e.g., reduced

oxygen-carrying capacity exacerbates renal injury during ischemia)

and a consequence (e.g., decreased renal erythropoietin secretion),

forming a bidirectional relationship (42).

In the Normal/mild-AKI vs. Moderate-severe-AKI group,

heart failure impairs cardiac pumping, reducing renal perfusion,

triggering renal vasoconstriction, and activating the renin-

angiotensin-aldosterone system (RAAS) to induce/worsen AKI

(43), making these patients more prone to moderate-severe AKI.

WBC counts increase with infection, inflammation, and stress, and

higher AKI severity correlates with greater infection probability

and stress response (37), leading to uneven WBC distribution.

As a key acid-base buffer regulated by the kidneys, bicarbonate

metabolism is disrupted in AKI: varying degrees of renal injury

across AKI severities cause differential impairment in bicarbonate

reabsorption/secretion, and bicarbonate levels inversely correlate

with AKI incidence and prognosis (44).

Numerous studies have examined the impact of AKI on

prognosis in patients with AMI. Skalsky et al. (45) found that AMI

patients with stage 1 AKI who did not recover within 48 h, as well

as those with stage 2–3 AKI without recovery within 96 h, had a

significantly higher risk of mortality. However, their diagnosis and

staging of AKI were based solely on serum creatinine levels, without

considering the diagnostic significance of urine output. Similarly,

Kanic et al. (35) reported that the incidence of AKI among AMI

patients undergoing PCI was 8.5%. During an average follow-up

of 4.2 ± 3.0 years, the mortality rates were 50.3% for stage 1 AKI,

56.9% for stage 2, and 87.2% for stage 3. The hazard ratios for all-

cause mortality were 1.77, 1.85, and 6.30 for stages 1, 2, and 3,

respectively, compared to patients without AKI. In another study,

Sun et al. observed 1,371 AMI patients and found that the severity

of AKI, as classified by the KDIGO criteria, was an independent

risk factor for 30-day mortality. Stage 3 AKI was also identified as

an independent predictor of mortality between 30 days and 5 years.

However, like previous studies, their definition of AKI relied solely
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FIGURE 3

Unadjusted Kaplan-Meier survival curves for 28-day mortality (A, D), 180-day mortality (B, E), and 1-year mortality (C, F). (A–C) represent

comparisons between Non-AKI and Mild-AKI groups, while (D–F) represent comparisons between Normal-or-mild-AKI and Moderate-to-severe-AKI

groups. The shaded areas in the graphs indicate the 95% confidence interval.

on serum creatinine levels, without incorporating assessments of

GFR or urine output. A review by Kaltsas et al. (11) summarized

key studies on AKI complicating AMI, emphasizing that all studies

consistently showed AKI worsened patient outcomes, increasing

mortality by two- to threefold both within the first 30 days and

throughout the first year after the acute event. Furthermore, a study

(46) identified serum calcium levels as a strong predictor of AKI

in AMI patients. Consequently, we set our outcome measures at

28 days, 180 days, and 1 year to better evaluate the long-term

prognostic characteristics of this patient population.

We utilized a more sensitive dynamic assessment method

based on the KDIGO criteria to evaluate the occurrence of

AKI in patients with AMI. As shown in Table 3, no significant

differences in prognosis were observed between the Non-AKI

and Mild-AKI groups in the multivariable-adjusted models.

However, the Log-rank test indicated differences in 180-day and

1-year mortality rates, suggesting that these differences may have

been driven by other covariates rather than AKI itself. Further

subgroup analysis identified age as a potential contributing factor.

Specifically, patients under 65 years with Mild-AKI had worse

outcomes compared to those without AKI. As reported in a

study (47), younger patients in the ICU are more sensitive to

nephrotoxic drugs (e.g., vancomycin and calcineurin inhibitors),

which significantly deteriorate the prognosis of young AKI patients.

Our analysis also suggests that physicians might adopt more

conservative treatment strategies for these patients, assuming

that younger individuals have stronger renal compensatory

capacity. This approach may lead to progression of mild AKI

or delayed control of systemic effects, thereby impacting patient

outcomes. Across all models for the three outcome events, patients

with Moderate-to-severe AKI consistently had worse outcomes

compared to those with Normal-or-mild AKI. Sensitivity analyses

confirmed the robustness of these findings.

Patients with Mild-AKI, referred to as “subclinical AKI,” only

reached stage 1 AKI during hospitalization and did not experience

adverse prognostic effects. In contrast, many patients initially

classified as stage 1 AKI progressed to stages 2–3, leading to

significantly worse outcomes compared to those who remained at

AKI stages 0–1. The dynamic evaluation of AKI stages is clinically

significant, as it allows for early detection of “subclinical AKI,”

enabling timely intervention to prevent “conversion” to Moderate-

to-severe AKI. The risk factors for progression may include the use

of vasopressors, loop diuretics, higher SOFA scores, lower eGFR,

and elevated WBC counts.
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FIGURE 4

Forest plot of subgroup analysis for 28-day mortality (A, D), 180-day mortality (B, E), and 1-year mortality (C, F). (A–C) represent comparisons

between Non-AKI and Mild-AKI groups, while (D–F) represent comparisons between Normal-or-mild-AKI and Moderate-to-severe-AKI groups. The

dashed lines in the plots indicate the null e�ect line, and any result intersecting the null e�ect line suggests no significant di�erence.

The treatment of CRS remains challenging. Diuretics, a

mainstay in managing fluid overload, have uncertain long-

term benefits. High-dose intermittent furosemide seems safe

and effective in acute heart failure, but its impact on severe

kidney disease is unclear. Ultrafiltration shows promise in some

aspects like weight loss, yet its overall efficacy is still debated.

CARRESS-HF indicated that ultrafiltration might not be the

best primary treatment for type 1 CRS. While neurohormonal

modulation therapies such as vasopressin antagonists and

nesiritide have not significantly improved clinical outcomes

in large-scale trials (48), sacubitril/valsartan has demonstrated

renal protective effects in patients with cardiorenal syndrome

(49). Furthermore, both traditional vasopressin antagonists

and sacubitril/valsartan have been proven to be safe in clinical

use. RAAS inhibitors are beneficial for some patients with

CRS, yet they carry risks like hyperkalemia. β-adrenergic

blockers have shown efficacy in reducing mortality in heart

failure, but their use in CRS patients needs more evidence

(48). Meanwhile, research has shown (50) that psychological

interventions for patients with AKI can help improve their

clinical outcomes.

Future research should focus on identifying additional

influential factors and developing machine learning and deep

learning models to predict the risk of moderate-to-severe AKI in

AMI patients, and develop targeted effective treatment strategies to

improve patient outcomes.

Limitation

While MIMIC-IV’s data provide detailed records of

clinical information for critically ill patients, the single-center

and retrospective design warrant careful consideration of

generalizability. Clinical data from this center may differ from

those in community, rural, or international settings, potentially

influencing outcome estimates—particularly for subgroups

underrepresented in the dataset.

The retrospective design introduces risks of selection bias and

unmeasured confounding factors. Although rigorous statistical

methods were used to mitigate these limitations, residual

confounding from unrecorded variables (e.g., family medical

history, socioeconomic status) cannot be fully eliminated, which

may affect the robustness of our findings.

External validation in independent cohorts remains essential

to confirm the stability of these results. Future research should

prioritize prospective multicenter studies across diverse healthcare

systems to evaluate consistency across populations with differing

baseline risks and care environments. Such efforts will enhance the

generalizability of this study’s findings and help provide a reliable

theoretical foundation for clinical practice, ensuring these insights

can inform real-world medical decision-making.

Conclusion

Patients with Mild-AKI can be more accurately described as

having “subclinical AKI,” as their prognosis is often comparable

to that of Non-AKI patients. However, the prognosis for

those with Moderate-to-severe AKI is significantly worse than

for patients with Normal-or-mild AKI. This indicates that if

“subclinical AKI” undergoes a “conversion” to Moderate-to-

severe AKI during hospitalization, the patient’s prognosis will

deteriorate considerably. Therefore, the dynamic and sensitive early

identification of “subclinical AKI” and its potential “conversion”

to Moderate-to-severe AKI is of great importance for timely

intervention and improved outcomes.
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