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The integration of electronic medical records (EMRs) in modern healthcare

holds significant promise; however, traditional approaches to syndrome

di�erentiation in Traditional Chinese Medicine (TCM) often encounter

limitations due to incomplete data and inconsistent frameworks. This paper

addresses these challenges by introducing a novel methodology that employs

large-scale language models (LLMs) to extract relevant entities from an

semi-structured TCM knowledge base, facilitating the construction of a

dynamic TCM knowledge graph. By applying the DeepWalk method for

latent knowledge graph embedding, hidden patterns essential for accurate

diagnosis are uncovered. Furthermore, a combined entity linking approach

is implemented to align this knowledge graph with diagnostic data extracted

from EMRs, enhancing clinicians’ insights through essential knowledge-

based embeddings tailored specifically for syndrome di�erentiation tasks.

Additionally, the integration of the BERT model with knowledge graph

embedding technologies strengthens dialectical reasoning within TCM practice

and demonstrates superior performance on specialized datasets compared to

prior methodologies.

KEYWORDS
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1 Introduction

Modern medicine has advanced electronic medical records (EMRs) by effectively

integrating online and offline management systems, improving efficiency and accessibility

compared to traditional record-keeping methods. As EMR systems continue to evolve

within contemporary healthcare, traditional Chinese medicine (TCM) — a vital

component of global medicine is also gradually being standardized. TCM electronic

medical records (TCM-EMRs) typically encompass essential diagnostic information,

including physical examinations, chief complaints, syndrome identification, treatment

plans, and herbal prescriptions (1–3). This comprehensive data forms the foundation for

TCM practitioners to perform accurate syndrome differentiation and develop effective

treatment strategies.

However, it appears that there are still gaps between the technological potential

of EMRs and their practical application in the specific context of TCM. The

Frontiers inMedicine 01 frontiersin.org

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1555781
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1555781&domain=pdf&date_stamp=2025-05-21
mailto:zgk_below@usst.edu.cn
mailto:xiaoyafei_1994@163.com
mailto:hzy2023@xmmc.edu.cn
https://doi.org/10.3389/fmed.2025.1555781
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2025.1555781/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhang et al. 10.3389/fmed.2025.1555781

complexities involved in accurately capturing patient symptoms

and their corresponding syndromes suggest a need for

more sophisticated analytical approaches. Currently, many

methodologies tend to rely on basic statistical analyses or rule-

based systems, which may not fully encompass the multifaceted

nature of TCM diagnostics. To bridge this gap, integrating artificial

intelligence techniques into the TCM framework effectively

enhances syndrome differentiation accuracy and efficiency. This

is achieved by leveraging machine learning and deep learning

models to extract valuable insights from TCM-EMRs while also

automating routine data entry and processing tasks. Furthermore,

incorporating natural language processing (NLP) capabilities

improves the extraction of key clinical features from unstructured

diagnostic narratives in patient records. Besides, the shift toward

evidence-based practice supported by intelligent systems not

only aligns with broader trends in contemporary healthcare but

also honors the holistic principles inherent in TCM practices.

By combining standardized clinical terminologies with advanced

computational techniques, this approach promotes consistency

in diagnosis and enables practitioners to tailor treatments more

precisely according to individual patient circumstances.

Despite advancements in TCM, challenges in syndrome

differentiation persist due to reliance on manual data entry and

basic processing, leading to incomplete information that hinders

clinicians’ decisions, especially in complex cases. Additionally,

the lack of standardized frameworks for integrating diverse data

sources contributes to inconsistencies in diagnosis and treatment.

To address these challenges, in this paper, an innovative approach

called Knowledge graph syndrome differentiation network (KGSD-

Net) is proposed that utilizes large-scale languagemodels (LLMs) to

extract critical information from semi-structured TCM knowledge

bases. This process facilitates the construction of a dynamic TCM

knowledge graph, serving as a centralized repository that enhances

the visualization of connections between symptoms, diagnoses,

and treatments. Furthermore, employing the DeepWalk method

for latent knowledge graph embedding reveals essential patterns

fundamental to accurate diagnosis. A unified entity linking strategy

further aligns this knowledge graph with diagnostic data extracted

from EMRs, thus creating a seamless integration of structured

clinical data with traditional practices. Such advancements provide

knowledge-based latent embeddings tailored specifically for

syndrome differentiation tasks, offering clinicians deeper insights

into their decision-making processes. Moreover, by integrating

BERT models with knowledge graph embedding technologies, the

sophistication of dialectical tasks within TCM practice is efficiently

enhanced. Validation on specialized TCM datasets demonstrates

that this comprehensive method outperforms previous approaches,

particularly in terms of performance in syndrome differentiation.

Overall, the main contributions of this paper could be summarized

as follow:

– A dynamic TCM knowledge graph is constructed using

LLMs, enabling the extraction of effective entities from

an semi-structured TCM knowledge base to create a

comprehensive repository of vital information.

– The DeepWalk method for latent knowledge graph

embedding is employed to uncover hidden patterns essential

for accurate syndrome differentiation, providing deeper

insights into the relationships among symptoms, diagnoses,

and treatments.

– A combined entity linking approach is utilized to align the

knowledge graph with diagnostic data extracted from EMRs,

facilitating seamless integration of structured clinical data with

traditional TCM practices.

– Validation on specialized TCM datasets confirms that the

proposed approach demonstrates superior performance in

syndrome differentiation compared to previous methods,

showcasing its effectiveness in enhancing clinicians’ decision-

making processes.

2 Related works

NLP has gained significant attention in the medical field

for enhancing patient management and facilitating knowledge

discovery. Its applications, including information extraction, text

classification, and clinical decision support, are transforming

healthcare practices. For instance, speech recognition technology is

effectively used to transcribe prescriptions swiftly into Electronic

Health Records (EHR) (4). Additionally, paper-based medical

records have been converted into searchable and manageable

EMRs (5). This transition not only streamlines diagnoses but

also supports research efforts for healthcare professionals by

making relevant data more accessible and easier to analyze.

As a branch of artificial intelligence, machine learning employs

various algorithms to uncover potential and meaningful patterns

from large datasets. For example, Tang et al. (6) conducted a

comprehensive analysis using frequency analysis, association rules,

and hierarchical clustering to explore the four diagnostic methods.

Similarly, Lu et al. (7) devised a computer-aided system utilizing

machine learning techniques to assess the severity of sublingual

varicosity. Additionally, to reduce the subjectivity inherent in

electronic medical records, Fan et al. (8) used a random forest

algorithm to extract and select various features from 466 tongue

images, successfully classifying patients based on two different

TCM symptoms related to gastric conditions.

At the same time, deep learning methods automate semantic

extraction through various neural network architectures. For

instance, Teng et al. (9) developed a Symptom-State Graph

Convolutional Network (SSGCN) that integrates symptoms and

state elements, effectively embedding the inherent logic of TCM

diagnosis into a prescription graph. They then trained a multi-

layer perceptron (MLP) to classify different syndromes. In

addition, Chen et al. (10) created a TCM-BERT-CNN model

that combines BERT and CNN for end-to-end TCM evidence

identification, transforming symptom input into classifications

of evidence output. Nevertheless, models like RoBERTa (11),

ERNIE (12), and XLNET (13) often require additional pre-

training for downstream tasks, which can significantly increase

both time and cost. Furthermore, recent studies suggest that

augmenting models with relevant knowledge beyond the input data

can greatly improve performance across a range of applications,

including disease diagnosis (14), document classification (15),

sentiment analysis (16), and even question-answering systems (17).

In this context, Castellano et al. (18) proposed an innovative

classification method that uses knowledge graphs in conjunction
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with deep learning techniques. Similarly, Yang et al. (19) proposed

a syndrome differentiation decision-making system (DSDS) based

on a TCM knowledge graph. By decomposing medical records into

multiple symptom nodes and performing link prediction within

the knowledge graph, the system enables automatic inference of

syndromes, demonstrating the effectiveness of knowledge graphs

in intelligent TCM diagnosis.

3 Methodology

As shown in Figure 1, the proposed KGSD-Net consists

of three main processes: KG construction and representation,

textual representation of EMRs, and fusion of links with

textual representation. In the first process, KG construction and

representation utilizes LSTM-CRF (20) to handle structured EMRs

while concurrently processing the semi-structured knowledge

base through LLMs to construct the KG. Next, during the

textual representation of EMRs, the BERT model is employed to

extract textual representations of chief complaints and symptom

information. Finally, we fuse the KG links with the textual

representations by adopting knowledge graph embedding fusion

(kgb-fusion) techniques and subsequently pass these integrated

outputs to a fully connected layer with softmax activation for

predicting syndromes.

3.1 KG construction and representation

The process begins with the integration of semi-structured

and structured knowledge bases. First, we define the entities and

relationships for the KG, and then we utilize LSTM-CRF and

LLMs to enhance the understanding of symptoms in electronic

medical records. Following this, KG fusion and cleaning are

implemented during the integration of the KG to standardize

the entities. This results in a compact KG that encompasses

148 syndromes and associated diagnostic information, which is

subsequently stored in Neo4j. Finally, the DeepWalk model is

employed for KG representation learning, effectively transforming

implicit knowledge into vector representations.

The attributes of symptoms, syndromes, and herbs from

SymMap provide the foundation for defining the properties

of syndrome entities, as illustrated in Table 1. This initial

step establishes essential attribute terms for core entities such

as drugs, syndromes, and symptoms, clarifying their quantity

and interrelationships. Additionally, supplementary knowledge

bases offer valuable descriptions and definitions for secondary

entity categories, including formulas and treatment methods.

Consequently, a comprehensive KG is created, encompassing

core entity categories along with their associated attributes—

specifically symptoms, syndromes, formulas, treatment methods,

herbs, and disease mechanisms while also incorporating secondary

FIGURE 1

Overview of the KGSD-Net. It consists of KG construction and representation, textual representation of EMRs, and kgb-fusion. LSTM-CRF processes

structured EMRs, while LLMs handle semi-structured data to build the KG. BERT extracts textual features from EMRs. KG links and textual

representations are fused using kgb-fusion for syndrome prediction.
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TABLE 1 Entities with multiple attributes and their counts.

Entity type Entity attributes Attribute
numbers

Syndrome Syndrome_name, Syndrome_English,

Syndrome_PinYin, Syndrome_definition

4

Symptoms TCM_symptom_name, Symptom_PinYin,

Symptom_definition, Symptom_locus,

Symptom_property

5

Herb Chinese_name, Pinyin_name,

English_name, Properties_Chinese,

Meridians_Chinese

5

TABLE 2 Entity pairs and their relationship types.

Entity pairs Relationship types

Syndrome-Disease Has_disease

Syndrome-Symptoms Has_symptom

Syndrome-Treatment Has_treatment

Treatment-Drugs Common pharmaceuticals

Drugs-Flavor Has_flavor

Drugs-Form Dosage form

Disease-Patients Common patients

Disease-Dgroup IspartofD

Drugs-Fgroup IspartofP

categories such as drug components and affected areas. Following

this integration of entities, various forms of entity extraction

components are developed to accommodate both semi-structured

and structured knowledge bases.

3.1.1 LSTM-CRF for structured knowledge base
To further enhance and expand the knowledge graph centered

on the four diagnostic methods in TCM, we carry out entity

recognition and supplementary annotation for diagnostic records

based on the TCM-SD dataset, selecting and pre-processing data

from five representative cases within each of the 85 syndrome

categories to refine the entity recognition process. Afterwards, the

data is used to train an LSTM-CRF model that effectively combines

sequence learning and classification for entity recognition. In this

context, the annotated input sequence is represented as X =

(x1, x2, . . . , xn), where each xn corresponds to a token in the input

text. The objective of the LSTM-CRFmodel is to predict the optimal

label sequence Y = (y1, y2, . . . , yn), with yn being the label assigned

to each corresponding token xn:

Y = fLSTM-CRF(X) = CRF(LSTM(X)) (1)

In this process, the input sequence X is first processed

through the LSTM layer, which captures sequential dependencies

between tokens and allows the model to learn context-aware

representations. Subsequently, the output from the LSTM is passed

through the CRF layer, optimizing the label sequence Y by

considering interdependencies between labels.

3.1.2 LLMs for semi-structured knowledge base
OpenAI’s API is utilized for automated entity extraction from

the semi-structured TCM-SD knowledge. Initially, the dataset is

prepared and formatted to comply with the API requirements. The

input sequence, denoted as

X̂ = (x̂1, x̂2, . . . , x̂n̂) (2)

is structured to specify the target entity categories for extraction.

Upon executing the API call, the extraction process yields the

output sequences Ŷ , which consist of the identified entities,

specifically the symptom entities ESz and syndrome entities ESh.

The process can be mathematically represented as follows:

X̂
g
−→ Ŷ → (ESz ,R,ESh) (3)

where g denotes the extraction function that identifies and

extracts the entities, and R represents the defined relationships

between the extracted entities. Once the entities are extracted,

they are systematically processed and organized into a structured

representation T:

T = (ESz ,R,ESh) (4)

Through differentiated entity extractionmethods applied to the

original knowledge base, the final results include primary categories

and their attributes, such as symptoms, syndromes, prescriptions,

treatments, and disease mechanisms, as well as secondary entity

categories like drug ingredients, affected locations, and diagnostic

details from tongue and pulse examinations. Additionally, the

relationships between entities reflect the intrinsic connections

between different types of entities and form the foundation of the

combined entity linking approach. Therefore, in line with the TCM

diagnostic process, we have defined seven entity relationships based

on observation and listening, as shown in the schema diagram of

the knowledge graph in Table 2.

3.1.3 KG fusion and cleaning
After completing entity extraction, let KG1,KG2,KG3 represent

knowledge graphs from different sources, and the KG be denoted

as KG = (V ,R), where V is the set of nodes and R is the set of

relationships. Each node vi ∈ V is connected to other nodes via

specific relationship types r ∈ R. The merged knowledge graph KG

can be expressed as:

KG = f (KG1,KG2,KG3) (5)

where vfused = merge(v1 ∈ KG1, v2 ∈ KG2, v3 ∈ KG3)

for nodes, and rfused = merge(r1 ∈ KG1, r2 ∈ KG2, r3 ∈

KG3) for relationships. Notably, variations in entity descriptions

and recognition can lead to confusion and redundancy in the

knowledge base, affecting the accuracy of the knowledge graph due

to diverse models and data sources (21). To address this, our model

splits, reorganizes, deletes, and merges entities with overlapping

meanings, particularly focusing on syndromes and symptoms.

Specifically, the process, illustrated in Figure 2, begins by using

regular expressions to locate symptom texts in the knowledge base.
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FIGURE 2

Example of symptom label processing process.

Logical Conjunction and Disjunction Handling is employed to deal

with entities that have multiple meanings, and then entity names

are matched to determine whether two or more entities represent

the same knowledge concept. After that, a symptom vocabulary is

sourced from relevant websites, a standard syndrome vocabulary is

obtained from the Classification and Codes of Diseases and Patterns

of Traditional Chinese Medicine, and an Aho-Corasick automaton

(22) is used to normalize all symptoms and syndromes. Finally,

these identical knowledge nodes are integrated into a single unique

node, forming a multi-source knowledge base centered around

syndromes, with the entire KG containing 5,063 nodes and 10,249

triples. Ultimately, we constructe a Traditional Chinese Medicine

Knowledge Graph (TCMKG) centered on syndrome-type nodes, as

shown in Figure 3, where we present all types of nodes and their

relationships within TCMKG, with a focus on the syndrome of

Liver-qi stagnation and Spleen deficiency.

3.1.4 KG representation
To obtain knowledge graph embeddings that illustrate the

connections between entity nodes, we utilize the DeepWalk

algorithm for representation learning. This process involves two

primary steps: first, extracting neighboring nodes to construct an

adjacency list, and second, training the node sequences generated

from random walks using the Skip-gram model. Specifically, the

nodes and relationships extracted from the knowledge graph form

a subgraphG′, and an adjacency listA is constructed to describe the

graph structure:

A(vi) = {vj | (vi, vj) ∈ R} (6)

This adjacency list serves as the basis for subsequent random

walks. For each node vi, multiple random walks are initiated

from the node, generating sequences that capture the graph’s

connectivity. The resulting node sequenceW(vi) is expressed as:

W(vi) = (vi1 , vi2 , . . . , viT ) (7)

where T represents the length of the walk. At each step, the next

node vik+1
is randomly selected from the neighbors of the current

node vik . These generated sequences serve as input for the Skip-

gram model, which aims to maximize the probability of observing

a context node vu given a target node vw within the walks. This

objective is formalized by the following function:

L = max
∑

w∈W

∑

u∈N (w)

logP(u | w) (8)

Here, P(u | w) denotes the probability of observing context

node u given target node w, defined by the softmax function:

P(u | w) =
exp(Vu · Vw)

∑

v∈V exp(Vv · Vw)
(9)

In this equation, Vu and Vw are the embedding vectors for

nodes u and w, respectively. By optimizing this objective function,

the model learns node embeddings Vm and stores them in the

attributes of each entity node for efficient querying and retrieval.

3.2 Textual representation of EMRs

The EMRs representation module consists of a BERT layer

and an entity linking layer, where BERT extracts features from

EMRs while SBERT model facilitates entity linking. To incorporate

knowledge-embedded information, the input data undergoes

modifications, beginning with entity recognition processing before

it is fed into BERT. Additionally, an LSTM-CRF model trained

on the manually labeled TCM-SD dataset identifies complaints,

symptoms, and diseases. Consequently, inputs to the EMRs are

formatted as [CLS] disease name, chief complaint [SEP] history

[SEP], utilizing special symbols specific to BERT. Formally, given

an input sequence B = [b1, b2, . . . , bs], BERT produces a sequence

of embeddingsH = [h1, h2, . . . , hs], where:

hs = TransformerLayerl(bs,B) (10)

where TransformerLayerl denotes the l-th transformer layer. For

text classification tasks, the hidden state of the [CLS] token in

the last layer is typically used as the representation of the entire

sequence, as follows:

V[emrs] = H
(L)
[CLS] (11)

here, H
(L)
[CLS] represents the hidden state of the [CLS] token in the

L-th (final) layer.
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FIGURE 3

All type nodes and relationship types of TCMKG are listed, centering on the syndrome of Liver-qi stagnation and Spleen deficiency (ZZGP).

3.3 Kgb-fusion of links and textual
representation

The purpose of the kgb-fusion is to integrate information

from the knowledge graph with outputs from BERT, creating a

fused vector that is utilized for multi-class classification tasks.

The specific process of kgb-fusion is illustrated in Figure 4. To

enhance the accuracy of entity linking, a semantic model has been

incorporated into the combined entity linking process. Initially,

during the entity linking process, a “hard match” is performed

using Neo4j’s Cypher queries. If this match fails, the SBERT model

(23) is employed to extract information from relevant nodes for

computing semantic similarity. This process can be expressed

as follows:

Em =

{

ematched, if CypherMatch succeeds

esbert, if CypherMatch fails
(12)

Here, ematched represents the entity node that is successfully

matched using Neo4j’s Cypher query. esbert is the most likely node

obtained by invoking SBERT when CypherMatch fails. Based on

the selection criteria, the final linked entity Em is determined.

After identifying relevant nodes, their Vm representation vectors

stored in node attributes are retrieved. Given that the knowledge

graph primarily employs a “multi-symptom-multi-syndrome”

triplet format, multiple data points could be obtained during

this linking phase. Consequently, a weighted average is calculated

based on the frequency of each relevant node’s occurrence

across all nodes to derive the final knowledge embedding

vector. This final knowledge embedding vector is computed

as follows:

Vkg =

∑u
i=1 fi · Vmi
∑u

i=1 fi
(13)

Here, Vkg represents the final knowledge embedding vector,

Vmi denotes the embedding vector of the i-th relevant node, fi
indicates the frequency of the i-th relevant node, and u signifies

the total number of relevant nodes. Following this step, the

final representation vector obtained from the combined entity

linking approach undergoes linear transformation before being

concatenated with the text representation vector. Ultimately, the

fused vector Sw undergoes another linear transformation to reduce

its dimensionality from hidden layer size to match the number

of labels:

Sw = Concat(Linear(Vkg),Vemrs) (14)

4 Result

4.1 Dataset

The dataset utilized in this paper is the proposed standardized

dataset for TCM-SD identification. In each syndrome category,

5 records are extracted to supplement the knowledge graph and

following this extraction, the composition of the dataset is updated

to minimize the impact on minority classes. The revised dataset

includes a total of 85 categories based on syndromes, containing

62,208 entries. Notably, the largest category contains 7,912 entries,

while the smallest has only 25 entries, leading to an extremely

unbalanced distribution.
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FIGURE 4

The kgb-fusion integrates knowledge graph data with BERT outputs to produce a fused vector for multi-class classification. This process involves

entity linking through both hard matching and semantic similarity assessments. Ultimately, it results in a transformed knowledge embedding vector,

which is then concatenated with the text representation to form the final input for classification.

4.2 Implementation details

Data cleaning and filtering are performed on the medical

history terms in the dataset to eliminate duplicate entries, symbols,

and timestamps that have minimal impact on identification.

This preprocessing phase establishes a solid foundation for

model development by ensuring high data quality. The training

parameters for BERT include a hidden size of 768, a maximum

position embedding of 512, and configurations of 15 epochs, 12

attention heads, and 12 hidden layers. Additionally, the maximum

input length is set to 128, with a learning rate of 2 × 10−5 and

a batch size of 16. Building on this setup, the experiments aim

to determine an optimal knowledge embedding dimension of 128

while establishing a maximum DeepWalk step length of 20. All

computational tasks are executed using a GEFORCE RTX 2070

GPU, providing robust support for these experiments. More details

could be referred to Table 3.

Evaluation metrics for multiclass classification tasks include

accuracy, macro-precision, macro-recall, and macro-F1. To define

these metrics clearly, TP (True Positive) represents the total

number of positive samples correctly predicted by the model, while

TN (True Negative) refers to the total number of negative samples

accurately identified. Additionally, FP (False Positive) indicates

the number of negative samples incorrectly predicted as positive,

and FN (False Negative) denotes the number of positive samples

misclassified as negative.

4.2.1 Accuracy
Accuracy (ACC) is defined as the ratio of correctly predicted

samples to the total number of samples, as shown in Equation 15:

ACC =
TP + TN

TP + TN + FP + FN
(15)
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TABLE 3 Model parameters and values.

Parameter Value

Loss function CrossEntropyLoss

Optimizer AdamW

Batch size 16

Learning rate 2× 10−5

Weight decay 0.02

Max seq length 128

KG embedding 384

Number of epochs 10

BERT model Bert-base-chinese

4.2.2 Macro-f1
The macro-f1 score is calculated by first averaging the precision

and recall for all classes. Subsequently, the f1 score for each class

is computed as the harmonic mean of its precision and recall. This

process is summarized in Equation 16:

Macro-f1 =
1

N

N
∑

k=1

2 · Precisionk · Recallk

Precisionk + Recallk
(16)

4.2.3 Macro-precision
Macro-precision assesses the accuracy of a classifier’s

predictions across all classes by first calculating the precision

for each individual class. This is then averaged to provide a

comprehensive evaluation, as illustrated in Equation 17:

Macro-precision =
1

N

N
∑

k=1

TPk

TPk + FPk
(17)

Here, N represents the total number of classes, while TPk
and FPk denote the true positives and false positives for class

k, respectively.

4.2.4 Macro-recall
Macro-recall evaluates a classifier’s ability to accurately identify

all relevant instances across different classes. To calculate it, the

recall for each class is computed individually and then averaged,

as demonstrated in Equation 18:

Macro-recall =
1

N

N
∑

k=1

TPk

TPk + FNk
(18)

4.3 Ablation study

An ablation study compares the classification performance

of three models: the KG-only model, the BERT-only model, the

KGSD-Net-noST model, and the proposed KGSD-Net. The KG-

only model refers to the version of KTSD that has removed the

BERT module for representing medical texts in EMRs. Meanwhile,

TABLE 4 Ablation experiment without di�erent parts.

Model ACC Macro-F1 Macro-
precision

Macro-
recall

BERT-only 0.801 0.528 0.558 0.532

KG-only 0.571 0.282 0.276 0.289

KGSD-Net-noST 0.805 0.561 0.594 0.531

KGSD-Net 0.826 0.585 0.652 0.555

TABLE 5 Performance comparison with di�erent KG embedding

dimensions.

KG
dimension

ACC Macro-F1 Macro-
precision

Macro-
recall

64 0.804 0.541 0.587 0.502

128 0.815 0.570 0.611 0.534

384 0.826 0.585 0.652 0.555

768 0.806 0.576 0.630 0.531

the BERT-only model indicates the version where the knowledge

graph representation and linking modules have been omitted. The

KGSD-Net-noST model eliminates the SBERT model and relies

exclusively on Neo4j lookups for entity linking. In this setup, if

no entity is linked, the resulting knowledge embedding becomes

a 384-dimensional zero vector. As shown in Table 4, the KG-only

model underperforms relative to the BERT model on the TCM-SD

dataset, indicating that relying solely on knowledge representation

vectors offers limited advantages for syndrome differentiation

tasks. This limitation arises from the high redundancy in TCM

symptom records, where overlapping symptomsmay correspond to

different syndrome categories. In contrast, the combined approach

leveraging both KG and BERT achieves superior classification

results. This improvement is likely due to knowledge embeddings

compensating for gaps in TCM-specific data during BERT’s

pretraining, while also addressing the shortcomings of knowledge-

only methods in comprehensively interpreting diagnostic records.

At the same time, the KGSD-Net-noST model still outperforms

the BERT model, with Macro-f1 and Macro-precision improving

by 3.36% and 3.65%, respectively. This finding demonstrates

that the knowledge graph effectively contains entities consistent

with the dataset. However, when compared to the complete

KGSD-Net, the performance of KGSD-Net-noST shows a certain

decline. These results suggest that disparities in descriptions within

the knowledge graph remain significant, and employing SBERT

model for semantic matching substantially enhances entity linking,

thereby improving the effectiveness of the knowledge embeddings.

4.4 Performance on di�erent
KG-embedding dimension

The most suitable dimension for KG embeddings is explored

under equivalent experimental conditions. Taking into account the

computation time and performance of SBERT model in the linking

component, 768 dimensions are set as the upper limit. The models

are then compared with KG-embedding dimensions of 64, 128,384,
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768 on the TCM-SD dataset. Experimental results, as shown in

Table 5, indicate that the 384-dimensional KG embedding achieves

the best classification performance. This could be attributed to

the fact that this dimensionality matches the output vector size

of SBERT model used in the linking module, resulting in more

effective entity linkage. Furthermore, minimizing the dimensional

disparity between text representation vectors and KG embeddings

facilitates better information retention from KG embeddings

during kgb-fusion.

4.5 Performance on di�erent fusion
methods

Additionally, the experiment compared the impact of

different knowledge representation information Vkg and EMRs

representation information Vemrs on information fusion methods.

Under the same experimental conditions, we compared the average

summation (AVG), weighted summation (WEIGHTED), and

concatenation (CONCAT) fusionmethods on the TCM-SD dataset.

The experimental results, as shown in Figure 5, indicate that the

CONCAT method achieved the best classification performance.

4.6 Compared with other methods

The baseline for experimental comparison includes three types

of methods: those based on classical neural networks, methods

leveraging language models, and models specifically designed for

the TCM domain. The first category encompasses classical neural

network models suitable for Chinese text categorization, including

FastText (24), TextCNN (25), TextRNN (26), and Transformer.

The second category focuses on classical models that have been

effectively utilized for Chinese text categorization, such as BERT

and Enrie (27). Afterwards, the third category features models

tailored to the TCM domain; these utilize a domain-specific corpus

for training to enhance performance on downstream tasks, such

as TCM-sd. The last category is the multilingual general models

that have performed well in various NLP tasks in recent years, such

as E5 (28), and BGE-M3E (29). The results are shown in Table 6.

The models showed less advantage here, even underperforming on

precision compared to traditional deep learning models, likely due

to limited exposure to TCM-specific corpora. Notably, the TCM-sd

model, on a TCM corpus, outperformed in all metrics, highlighting

the importance of domain-specific pre-training. Furthermore, we

compare the classification precision of BERT and KGSD-Net

across various syndrome classes. As illustrated in Figure 6, dataset

imbalance results in variations in classification precision for certain

classes. BERT faces challenges with classes that have fewer samples.

TABLE 6 Performance comparison of models on TCMSD dataset.

Model ACC Macro-F1 Macro-
precision

Macro-
recall

TextCNN (25) 0.7771 0.5000 0.6130 0.4734

TextRNN (26) 0.7604 0.3905 0.4346 0.3939

FastText (24) 0.7794 0.4788 0.6149 0.4490

Transformer (30) 0.7263 0.3852 0.5807 0.3443

BERT (31) 0.8014 0.5277 0.5576 0.5323

Enrie (27) 0.7814 0.4711 0.5405 0.4602

TCM-sd (32) 0.8104 0.5561 0.6352 0.5192

BGE-M3E (29) 0.8025 0.5430 0.5965 0.5251

E5 (28) 0.8200 0.5512 0.6218 0.5449

KGSD-Net 0.8259 0.5850 0.6518 0.5547

FIGURE 5

The figure illustrates the Macro-precision achieved by integrating Vemrs and KG representations Vkg using average (AVG), weighted sum (WEIGHTED),

and concatenation (CONCAT) methods. Among these, the CONCAT method yields the highest Macro-precision, while the AVG method results in the

lowest Macro-precision.
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FIGURE 6

The precision for all categories is displayed, with the orange color representing the best result from BERT and the gray points indicating the precision

of each category from our model in its best run. The line 1 and line 2 represent the fitted precision distribution functions for our model and BERT,

respectively.

In contrast, KGSD-Net enhances the classification of these low-

sample classes, demonstrating its ability to deliver more stable

classification outcomes across all classes compared to other models.

5 Conclusion

This paper presents advancements in TCM syndrome

differentiation through the integration of LLMs and knowledge

graph techniques. By extracting entities from unstructured data

and constructing a dynamic TCM knowledge graph, a robust

framework has been established that significantly enhances

clinicians’ capacity to make informed decisions in complex

cases. The application of DeepWalk for latent embedding

uncovers crucial patterns, while a combined entity linking

approach effectively bridges traditional practices with electronic

medical records, resulting in more coherent and structured

diagnostic processes. Additionally, the incorporation of the

BERT model enriches contextual understanding, ensuring that

dialectical reasoning within TCM practice is both sophisticated

and effective. Moving forward, future work will prioritize

enriching the knowledge graph with diverse data sources to

further refine accuracy in syndrome differentiation. Furthermore,

optimization of the proposed network tailored specifically for

clinical applications will be pursued alongside the exploration of

personalized treatment recommendations based on individual

patient profiles.
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