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Artificial intelligence (AI) has recently garnered significant public attention.

Among the various fields where AI can be applied, medicine stands out as one

with immense potential. In particular, AI is transforming precision oncology

by providing innovative approaches to customize cancer treatments for

individual patients. This article examines the latest developments in AI-powered

tools designed to improve cancer diagnosis accuracy and predict treatment

outcomes. The integration of AI into precision oncology is transforming cancer

care by enabling more personalized and effective treatments, minimizing

treatment-related toxicities, and enhancing patient survival rates. As AI advances,

it will be pivotal in developing more targeted and successful cancer therapies.

The field is still in its early stages, and future progress will benefit from

establishing standards and guidelines to promote rigorous methodological

design and uphold ethical principles. This research highlights the transformative

potential of AI in addressing the challenges posed by cancer heterogeneity.
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1 Introduction

Pediatric cancers constitute a critical health challenge worldwide. Each year,
approximately 400,000 children and adolescents (ages 0–19) are diagnosed with cancer
globally, making it a leading cause of death in this age group (1). Leukemia, brain
tumors, lymphomas, neuroblastoma, and Wilms tumors are among the most common
malignancies encountered in pediatric populations (1). Tragically, more than 100,000
pediatric cancer deaths occur annually worldwide, underscoring significant disparities in
survival rates, with approximately 80% survival in high-income countries compared to less
than 30% in lower-resource settings (2). These stark statistics highlight the urgent need for
advancements in precision oncology to improve early detection, accurate diagnosis, and
effective personalized treatment strategies in pediatric cancer care.

Artificial intelligence (AI) algorithms have been applied in numerous medical tasks
efficiently and accurately. AI algorithms are increasingly being integrated into pediatric
oncology, offering promising advancements in diagnosing, treating, and managing
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childhood cancers. This integration aims to enhance precision
oncology, which focuses on tailoring treatment to the individual
characteristics of each patient and their disease (3, 4)

AI strategies can tackle enormous amounts of original data
in a short time to solve complex tasks with high accuracy. AI
is mainly implemented with machine learning (ML) and deep
learning (DL) working principles. AI algorithms capture data,
identify patterns, and provide decisions and predictions about
actual real-world events. AI can help address the lack of objectivity
and universality in expert systems. However, it can also run the risk
of overfitting training data, thus often a tradeoff between accuracy
and intelligibility (5).

While the field of artificial intelligence (AI) in oncology is
rapidly evolving, we present its interaction with the field under
six major domains (Figure 1): Machine/Deep Learning, Computer
Vision, Natural Language Processing, Predictive Analytics,
Genomic Analysis, and Treatment Planning (6).

Although the development of these AI systems relies heavily
on intricate mathematical models and robust datasets for training
and inference, healthcare professionals are generally less concerned
with the technical underpinnings. Instead, they prioritize the
seamless integration of AI into their workflows. The goal is
to streamline administrative tasks, reduce errors, and free up
time to focus on patient care. Furthermore, AI should minimize
bias in clinical decision-making without introducing unnecessary
complexity into care delivery. This approach ensures that AI as a
tool to enhance the quality of care rather than complicating it.

2 Methods

This review paper utilizes a deep research methodology
to provide a comprehensive overview of the role of artificial
intelligence (AI) in personalized pediatric cancer care. Our research
involved an iterative and in-depth exploration of information from
diverse sources to gain a thorough understanding of the topic. The
research process involved the following steps:

1. Information gathering: A wide range of sources were consulted
to gather information on AI in pediatric precision oncology,
including research articles, clinical trial databases, medical
journals, and reputable online resources.

2. Synthesis and analysis: The gathered information was
carefully synthesized and analyzed to identify key themes,
trends, and challenges related to the application of AI in
pediatric cancer care.

3. Iterative refinement: The research process involved an
iterative information refinement, where initial findings
were further explored and validated through additional
research and analysis.

4. Critical evaluation: The information was critically evaluated
to ensure accuracy, relevance, and reliability.

This profound research methodology allowed for a
comprehensive and nuanced understanding of the role of AI
in personalized pediatric cancer care, enabling the identification
of key applications, challenges, ethical considerations, and future
directions. The following tools were also used to enhance this

search and edit this paper: Google Gemini deep research, OpenAI
ChatGPT, Anthropic Claude, Perplexity, and napkin.ai.

3 Introduction to AI

Artificial Intelligence (AI) is a multidisciplinary field that
combines mathematics, computer science, and data analysis to
develop systems capable of performing tasks that typically require
human intelligence, such as learning, reasoning, and problem-
solving. In medicine, AI encompasses a variety of algorithms
and models designed to interpret complex medical data, enhance
diagnostic accuracy, and improve patient care (7).

One of the foundational techniques in AI is regression analysis,
including linear and logistic regression. These statistical methods
enable the prediction of outcomes based on input variables known
as features. Linear regression predicts continuous outcomes, while
logistic regression is used for binary outcomes, such as the presence
or absence of a disease. These models are integral to medical
research and practice, forming the basis for many clinical decision-
making processes (8).

As AI has advanced, more sophisticated algorithms have been
developed to handle complex datasets. Clustering algorithms, like
k-nearest neighbors, group similar data points, aiding pattern
recognition within patient populations. Dimensionality reduction
techniques, such as Principal Component Analysis (PCA) and
Singular Value Decomposition (SVD), simplify large datasets by
reducing the number of variables, making it easier to visualize and
interpret data without significant loss of information (9).

Decision trees are widely used in predictive modeling for
their ability to model decisions and their possible consequences.
These have evolved into more robust methods like random forests
and gradient boosting machines (e.g., XGBoost), which improve
predictive performance by combining multiple decision trees to
reduce overfitting and enhance accuracy. These ensemble methods
are particularly effective in analyzing tabular medical data, such as
electronic health records, to predict patient outcomes and inform
treatment strategies (10).

The development of neural networks has been pivotal in AI,
leading to the emergence of deep learning. These networks, inspired
by the human brain’s architecture, modeling can model complex,
non-linear relationships in data. In medical imaging, Convolutional
Neural Networks (CNNs) have revolutionized computer vision
tasks by enabling machines to accuracy accurately interpret visual
data. CNNs are extensively used in analyzing radiological images,
assisting in the detection and diagnosis of conditions such as
tumors and fractures (11).

The introduction of transformer architectures has further
advanced AI capabilities, particularly in natural language
processing. Transformers utilize attention mechanisms to
process and generate human language, facilitating the development
of large language models that can comprehend and produce
text with remarkable proficiency. These models have also been
adapted for multimodal applications, integrating visual and
textual data to enhance diagnostic tools and decision support
systems in healthcare.

Additionally, AI plays a significant role in time series
forecasting, which involves analyzing time-ordered data to predict
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FIGURE 1

The interaction of artificial intelligence with the field of oncology is represented under six major domains: machine/deep learning, computer vision,
natural language processing, predictive analytics, genomic analysis, and treatment planning.

future events. In healthcare, this is essential for anticipating disease
outbreaks, managing hospital resources, and monitoring patient
vital signs to detect early warning signs of deterioration.

Integrating AI into medicine holds great promise for enhancing
diagnostic accuracy, personalizing treatment plans, and improving
overall patient outcomes. As AI technologies continue to evolve,
their applications in healthcare are expected to expand, offering
innovative solutions to complex medical challenges.

3.1 Machine/deep learning

AI, encompassing Machine Learning (ML) and Deep Learning
(DL), has emerged as a transformative tool in pediatric oncology.
ML is a more generic term that includes many AI algorithms,
including neural networks. These models learn by analyzing a
large set of data. ML algorithms analyze large datasets to identify
patterns, make predictions, and support decision-making. Their
scope can be extended to analyze text pre-processed to become a
“bag of words.” DL is a more precise term that includes deep neural
networks with multiple hidden layers. Technologies that advanced
basic neural networks to more advanced deep networks included
computational and mathematical advancement. Nevertheless, these
networks remain computationally costly when used to process
natural language or large images. The invention of transformers
and Convolutional Neural Networks (CNNs) solved these problems
and offered enhanced accuracy and efficiency with minimal pre-
processing.

Training machine learning (ML) and deep learning (DL)
models rely on constructing a large dataset containing accurate
dependent variables, such as disease presence, side effect
development, or mortality, along with carefully curated explanatory
variables, also known as features. The correct data, referred to
as the ground truth, is typically divided into training and testing

TABLE 1 Common metrics for evaluating ML/DL model accuracy.

Metric Description

Accuracy Measures the proportion of correct predictions
among the total predictions.

F1 score The harmonic mean of precision and recall, useful
for imbalanced datasets.

AUC (area under curve) Represents the ability of the model to distinguish
between classes.

Precision Measures the proportion of true positive
predictions out of all positive predictions.

Recall Measures the proportion of true positive
predictions out of all actual positives.

subsets. These subsets are used to train the model and validate its
performance. Metrics used to evaluate training accuracy include
accuracy, F1 score, and AUC. Table 1 provides a summary of these
metrics.

A study analyzed data from 1,433 chemotherapy cycles
involving 437 children diagnosed with Wilms’ tumor. The
extreme gradient boosting (XGB) model demonstrated the best
predictive efficiency, achieving an area under the receiver operating
characteristic curve (AUROC) of 0.981 in the training set and 0.896
in the test set. The model’s ability to accurately predict grade ≥ 2
CIM allows for early preventive management strategies, thereby
optimizing patient wellbeing during treatment (12).

Despite these advancements, challenges persist. The rarity
of pediatric cancers and their molecular heterogeneity limit the
availability of large, standardized datasets necessary for training
robust AI models. This scarcity impedes the development of
universally applicable algorithms. Moreover, ethical considerations,
including patient privacy and data security, are paramount,
especially given the sensitivity of health information pertaining to
children (13).
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3.2 Computer vision

Computer vision, a branch of artificial intelligence, aims to
empower machines to understand and analyze visual information
from images and videos. Convolutional neural networks (CNNs)
achieve this by learning from small groups of pixels called kernels.
This breakthrough allows neural networks to focus on key details
in an image, simplifying the learning process and enhancing their
ability to interpret visual data effectively. Segmentation refers to
the process of delineating structures by training special CNN
to recognize the borders of essential parts of the image (e.g.,
pulmonary nodule, pituitary gland, etc.).

For example, AI algorithms have been developed to classify
soft-tissue and bone tumors on radiological images, achieving
accuracy comparable to experienced specialists. In brain tumors,
ML models have improved diagnostic accuracy by analyzing MRI
sequences, particularly in challenging cases where tumor types
overlap (14). Additionally, CNN models have been investigated for
detecting pulmonary nodules in patients with osteosarcoma, with
results comparable to medical doctors (92.3 vs. 90.8%) (15, 16).

However, the development of AI algorithms for pediatric
tumor segmentation faces challenges due to heterogeneous
imaging protocols, variations in patient anatomy, and the
limited availability of multi-institutional data (17). Addressing
these challenges requires collaborative efforts to create large,
standardized datasets and to develop algorithms specifically for
pediatric populations (18).

3.3 Natural language processing

Natural Language Processing (NLP), a subfield of artificial
intelligence, focuses on enabling machines to comprehend,
interpret, and generate human language. The advent of
transformers, driven by attention mechanisms, has significantly
advanced the capability of neural networks to understand natural
language. This process relies on creating numerical representations
of words, known as embeddings, which are derived from analyzing
text and grasping the semantic meaning of tokens (subword
units). Additionally, the positional information of each word
within a sentence is encoded using positional embeddings. These
numerical vectors traverse through multiple layers of neural
networks, interacting within specialized matrices designed to
learn and represent the contextual meaning of words. This
process is elegantly articulated through sophisticated mathematical
formulations (4).

In pediatric oncology, NLP has been applied to extract valuable
insights from unstructured clinical data, such as electronic health
records (EHRs), medical literature, and patient narratives.

NLP tools can assist in summarizing patient histories,
identifying relevant clinical information, and supporting decision-
making processes. For instance, NLP algorithms can analyze
clinical notes to identify patients eligible for clinical trials,
facilitating patient recruitment and personalized treatment
strategies. Additionally, NLP can aid in mining medical
literature for new treatment strategies and biomarkers, supporting
evidence-based practice.

One notable example of utilizing NLP in pediatric oncology
is ExtractEHR, an innovative software tool designed to extract
and curate data from electronic health records (EHRs). Originally
developed to enhance adverse event reporting in clinical trials,
ExtractEHR has expanded its capabilities to support the creation
of multisite pediatric cancer data sets, facilitating diverse research
applications. This tool has been successfully implemented in
institutions like the Children’s Hospital of Philadelphia and Texas
Children’s Hospital. It enables the extraction and cleaning of
structured and unstructured data, including laboratory results and
clinician notes, through its companion modules CleanEHR and
GradeEHR. These capabilities have been used in various research
contexts, such as studying treatment-related hepatotoxicity and
acute kidney injury in leukemia patients, identifying complications
like typhlitis using automated algorithms, and streamlining data
collection for clinical trials and registries like SEER. By overcoming
traditional data silos and enhancing the granularity of data
analysis, ExtractEHR represents a significant advancement in
pediatric oncology research, offering cost-effective and scalable
solutions to support real-world data integration and patient care
improvements (19).

3.4 NLP in clinical trial recruitment

Recently, investigators from multiple institutions developed
and evaluated a clinical trial matching system called PRISM,
utilizing a custom-tuned LLM called OncoLLM1. OncoLLM
demonstrated superior performance compared to other models
like GPT-3.5 Turbo and matched the performance of qualified
medical doctors for clinical trial matching1. The model achieved
63% accuracy in question answering related to patient eligibility,
which increased to 66% when ambiguous inputs were excluded
34. OncoLLM also performed well in concept-wise accuracy,
outperforming GPT-4 in biomarkers. In ranking trials, OncoLLM
ranked ground truth trials in the top three 65.3% of the time in
patient-centric searches and achieved an NDCG score of 0.68 in
trial-centric searches. The model met 62% of the criteria on average
for ground truth trials, an accuracy of 66.7% for trials ranked in
the top three 910. Furthermore, OncoLLM also produced fewer
“N/A” responses than GPT-3.510. A key benefit is the significantly
lower cost of OncoLLM, approximately $0.17 per patient-trial pair,
compared to $6.18 for GPT-4 (20).

3.5 NLP in medical literature mining

The rapidly expanding volume of medical literature poses
significant challenges for healthcare professionals attempting to
stay abreast of the latest developments and establish meaningful
connections between findings. Despite numerous resources
for searching medical literature, the ability to distill and
translate knowledge into actionable patient care insights remains
predominantly available through paid services.

The increase in open-access articles has amplified the volume
of information available for review and added to the complexity
of synthesizing this data effectively. There is a pressing need for
intelligent systems capable of searching literature using advanced
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keyword strategies, constructing meaningful semantic connections
between publications, and extracting and assessing knowledge
tailored to specific patient needs.

State-of-the-art models addressing these challenges include
those trained in medical comprehension, such as BioBERT,
and systems leveraging Retrieval-Augmented Generation (RAG).
These advanced models utilize search embeddings to process
large volumes of documents, retrieve relevant information, and
perform summarization linked to individual patient scenarios. By
integrating such capabilities, these AI systems demonstrate the
potential for enhancing the accessibility and usability of medical
knowledge in clinical practice.

The current landscape of medical literature is dynamic and
increasingly accessible, underscoring the importance of innovative
tools to bridge the gap between knowledge acquisition and
application in patient care (21).

3.6 Genomics

The advent of next-generation sequencing (NGS) and the
subsequent genome human genome mapping have catalyzed an
explosion in medical knowledge, ushering in the era of truly
massive data. These advancements have facilitated discoveries
previously beyond imagination (22). Complex computational
models are now essential for identifying genetic mutations, copy
number variations, structural anomalies, quantitative changes in
RNA expression (transcriptomics), and qualitative and quantitative
alterations in methylation and other epigenetic modifications.

Recently, the groundbreaking determination of 3D protein
structures from amino acid sequences, recognized with a Nobel
Prize, has opened unprecedented opportunities for cancer research.
This breakthrough promises numerous discoveries that are
poised to improve patient outcomes. Concurrently, second-
generation phenotyping, which analyzes subtle facial and physical
characteristics, is advancing the prediction of genetic abnormalities
with remarkable precision.

In pediatric research, liquid biopsy techniques utilizing
circulating tumor DNA (ctDNA) are gaining traction, enabling
minimally invasive diagnostics and monitoring (23). The study
of somatic mutations (acquired within tumors) and germline
mutations (inherited or constitutional) has become pivotal in
pharmacogenomics and biomarker discovery, driving personalized
medicine and advancing pediatric oncology practice (24, 25).

Large language models (LLMs) are used to analyze large
volumes of text data, such as medical records and research papers,
to extract meaningful insights and support clinical decision-
making. For example, Rady Children’s Hospital and the Institute
for Genomic Medicine are building pediatric genomic LLMs to
improve the treatment of rare pediatric diseases. LLMs can help
researchers and clinicians access and interpret vast amounts of
information, potentially leading to faster diagnoses and more
effective treatments (26).

Generative AI techniques are used to create new data that
resembles accurate data, which can augment existing datasets
or train AI models in situations where data is scarce. This is
particularly valuable in pediatric oncology, where data can be
limited due to the rarity of childhood cancers. The Elizabeth Glaser

Pediatric AIDS Foundation is applying generative AI techniques to
provide clinicians with real-time insights into HIV patient risks in
children. By generating synthetic data, researchers can overcome
data limitations and develop more robust AI models.

ML and generative AI models are used to analyze complex
datasets and make predictions, such as predicting treatment
responses or identifying new biomarkers. Memorial Sloan
Kettering Cancer Center is developing advanced ML and
generative AI models to drive improvements in translational
research and broad-scale changes in precision cancer care for
children worldwide. These models can help identify patterns and
insights that may not be apparent to human observers, leading to
more personalized and effective treatments (27).

Deep learning approaches for single-cell analysis are also being
explored. Researchers like Dr. Fabian are using deep learning,
a subfield of machine learning, to model single-cell variation
and understand cellular responses, potentially leading to the
development of single-cell foundation models. This research could
lead to a deeper understanding of the complex interactions within
tumors and pave the way for new therapeutic strategies.

Projects like THALES leverage ML frameworks to analyze
family genetic data and predict cancer risk, enabling early
intervention strategies. AI supports cancer subtyping, mutation
prediction, and prognostication by integrating multi-omics data,
including genomics, radiomics, and transcriptomics. For instance,
AI models have been developed to classify pediatric brain
tumors into clinically significant subgroups, aiding in tailored
treatment planning.

Despite these advancements, challenges remain, including
the need for large, high-quality datasets, and the complexity of
integrating diverse data types. Ethical considerations, such as data
privacy and the potential for genetic discrimination, must also be
addressed to ensure the responsible use of AI in genomic analysis.

4 Artificial intelligence in pediatric
oncology

Despite the current AI advancements, the development of
sustainable AI tools depends upon the availability of large
datasets with strict quality control. Several biomedical imaging
repositories have been created to date, such as The Cancer Imaging
Archive (TCIA), focusing on cancer imaging, and PRIMAGE
project, an open cloud-based platform based on the European
population with high-quality anonymized datasets (imaging,
clinical, molecular, and genetics) (28). Although they have huge
potential, these repositories have been created as stand-alone
entities. As such, we still need repositories that are fully findable,
accessible, interoperable, and reusable repository based on multiple
populations for AI analysis (29).

The development of AI techniques promotes numerous
potential applications in pediatric oncology (30). AI algorithms
provide timely references based on large amounts of data. In
contrast, DL-CNNs can learn automatically from medical literature
that can assist in precise diagnosis, which can assist in correct
diagnosis and optimal treatment selection. The present review
provides insights into emerging AI applications for pediatric
oncology (31, 32).
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4.1 Diagnostic accuracy and early
detection

AI systems can identify patterns in medical images that may
indicate cancerous growth. It has been successfully applied to
various pediatric cancers. For instance, studies have shown that AI
can achieve diagnostic accuracy rates exceeding 90% for conditions
like acute lymphoblastic leukemia (ALL) and other hematological
malignancies by analyzing microscopic images and patient histories
(30, 33, 34). Another example is intracranial tumors, where ML
models have improved diagnostic accuracy for brain tumors by
analyzing MRI sequences, particularly for challenging cases where
tumor types overlap (35).

Artificial Intelligence (AI)-driven radiomics has emerged as
a powerful approach to clinical imaging in pediatric oncology.
Radiomics involves extracting large amounts of quantitative data
from medical images, offering enhanced predictive capabilities.
Recent studies have shown significant promise in using CT-based
radiomic features to predict pulmonary metastasis risk in pediatric
osteosarcoma patients at initial diagnosis (14). Additionally,
multimodal imaging that combines PET and MRI, enhanced by AI
methodologies, has improved the accuracy of detecting pediatric
lymphoma, illustrating the advantage of integrating functional and
anatomical data (33). Furthermore, MRI-based radiomic signatures
have successfully differentiated molecular subtypes of pediatric
medulloblastoma, providing a valuable non-invasive diagnostic
tool (36). The inclusion of these methodologies—radiomics, CT,
PET, and multimodal imaging—represents significant progress
toward precision diagnosis in pediatric oncology.

4.2 Predictive analytics

Predictive analytics involves using statistical algorithms and
AI techniques to analyze historical data and predict future events.
In pediatric oncology, predictive analytics can forecast treatment
responses, disease progression, and patient outcomes, supporting
personalized treatment planning and improving clinical decision-
making.

Personalized treatment planning harnesses AI-driven
predictive analytics to optimize therapy tailored to individual
patient profiles. For instance, machine learning models have been
effectively utilized to forecast chemotherapy-induced toxicities,
such as severe myelosuppression in pediatric Wilms tumor
patients, thereby allowing clinicians to adjust chemotherapy dosing
and supportive care proactively (12). Moreover, AI algorithms that
integrate multi-modal patient data—including genomic, radiomic,
and clinical factors—have proven instrumental in stratifying
patients into risk groups, enabling personalized therapeutic
approaches that enhance both efficacy and safety (28, 32).
Additionally, AI-powered auto-segmentation tools have improved
the precision and efficiency of radiotherapy planning in pediatric
oncology by accurately delineating tumors and organs-at-risk,
reducing human error, and improving treatment outcomes (27).

Ramesh et al. reviewed the application of AI in pediatric
oncology. They elegantly listed recent literature and highlighted
multiple examples of the use of AI in predicting features and
outcomes of pediatric cancer (37).

4.2.1 CNS tumors
1. Tumor classification using neural networks:

◦ Quon et al. applied a neural network model to classify
posterior fossa tumors in pediatric CNS patients using
816 MRI images. The model achieved an AUROC of
0.99, classification accuracy of 92%, and sensitivity and
specificity of 0.96 and 1.00, respectively (38).

2. Medulloblastoma subtype classification:

◦ Iv et al. used a support vector machine (SVM) model
on MRI data to classify medulloblastoma into molecular
subgroups (e.g., Sonic Hedgehog, Group 3, and Group 4),
achieving AUROCs of 0.79, 0.70, and 0.83, respectively.
However, the model struggled with the Wingless subtype
(AUROC = 0.45) (36, 39).

3. Differentiating tumor types with SVM

◦ Fetit et al. utilized an SVM model trained on 3D textural
attributes of MRI scans to differentiate medulloblastomas,
ependymomas, and pilocytic astrocytomas. AUROCs
ranged from 0.76 to 0.86 in pairwise testing (40, 41).

4.2.2 Extracranial solid tumors
4. Necrosis prediction in osteosarcoma

◦ Huang et al. developed a random forest model to identify
regions of necrosis in histology slides of osteosarcoma
patients post-chemotherapy, achieving a sensitivity of 94%,
specificity of 78%, and AUROC of 0.90 (42).

5. Pathology slide analysis for tumor necrosis

◦ Arunachalam et al. used both SVM and deep learning
models to predict tumor necrosis in osteosarcoma slides,
each achieving an AUROC of 0.99 (43).

6. Ewing sarcoma diagnosis

◦ Chaber et al. employed a quadratic discriminant analysis
classifier on MRI scans to distinguish Ewing sarcoma from
osteomyelitis, achieving precision and recall metrics of 75-
88% (44).

7. Neuroblastoma histologic classification

◦ Gheisari et al. used a Convolutional Deep Belief Network
on 1,043 histologic images to classify neuroblastoma
subtypes with a precision of 84.5% and recall of 87.6% (45).

4.2.3 Leukemia
8. Predicting relapse in ALL

◦ Pan et al. developed a random forest model to predict
relapse in pre–B-ALL patients, achieving an AUROC of
0.904. This study incorporated external validation with an
84-patient cohort (46).

9. Cognitive impairment post-chemotherapy
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◦ Kesler et al. used a random forest model combining MRI
and demographic data to predict cognitive impairment in
ALL survivors, achieving an accuracy of 89.4%, sensitivity
of 95.8%, and specificity of 85.7% (47).

10. Detection of minimal residual disease

◦ Reiter et al. utilized a Gaussian Mixture Model to detect
MRD in bone marrow samples from B-ALL patients, with
a precision of 0.81, recall of 0.90, and F1 score of 0.80 (48).

While these models all work well in an experimental model,
a question remains whether their results can be generalized to
more subjects. Variations in collecting and processing features and
heterogeneity in patients’ populations, as well as heterogeneity
in patients’ populations, make some models of little value
in clinical practice, hence the need for real-world data to
validate these models.

4.3 Drug development for pediatric
cancers

Artificial intelligence is significantly accelerating drug
discovery and pharmaceutical development in pediatric oncology.
AI-based platforms facilitate rapid in silico screening of vast
chemical libraries, swiftly identifying potential drug candidates
effective against specific pediatric cancer targets (49). Additionally,
machine learning algorithms analyze genomic and proteomic
datasets to identify novel therapeutic targets specific to pediatric
malignancies, guiding targeted therapy development (49).
Groundbreaking AI applications such as deep-learning-driven
protein structure prediction tools, notably AlphaFold, have
also opened new avenues for drug development, enabling
structure-guided therapeutic design previously unattainable in
pediatric oncology (50). These advancements promise more
efficient, targeted, and effective treatment options for children
affected by cancer.

4.4 Expanded AI tools and software

Numerous advanced AI tools and platforms are now accessible,
significantly benefiting pediatric oncology. Resources like The
Cancer Imaging Archive (TCIA) and the PRIMAGE platform
provide extensive repositories of anonymized pediatric cancer
imaging data, facilitating the development and validation of AI
models (51). Clinical data management has been streamlined
by automated software such as ExtractEHR, enabling efficient
extraction and analysis of electronic health records (EHRs)
specifically tailored for pediatric oncology (19). Moreover, tools like
PRISM, which utilizes specialized large language models (LLMs),
are revolutionizing patient recruitment by automatically matching
patient records with relevant clinical trials (20). At institutions such
as Rady Children’s Hospital, specialized pediatric genomic LLMs
are being developed to interpret complex genetic data rapidly and
accurately, supporting clinical decision-making in rare pediatric
diseases (26). The availability and integration of these sophisticated

tools mark significant progress toward comprehensive, AI-enabled
pediatric cancer care.

5 Ethical issues associated with the
use of AI in pediatric oncology

AI currently represents a technology sector with one of the
strongest, most substantial, and most vigorous growths. Although
initially considered just another technology that could be applied
to the medical world, it was quickly realized that AI has different
characteristics from most other technologies due to its potential to
replace human reasoning and decision-making. As a result, debate
quickly arose regarding its use. The process of understanding and
accepting AI is dynamic, and driven, on the one hand, by changes
in the level of knowledge about technology and, on the other, by
its exponentially growing evolution. The shared opinion is that
people’s perception of AI depends on contextual factors rather than
on the underlying algorithm (52).

Barriers and enablers for adopting AI innovations have been
widely studied across many medical fields, with radiology and
oncology frequently addressing perception issues (49, 53). One
study revealed that while the overall attitude toward AI was
generally positive, a significant concern—especially in pediatric
applications—was the potential for error. Additionally, significant
differences in AI perception were observed among groups defined
by education level (54).

To ensure fundamental ethical principles are prioritized
through the ideation, development, deployment, and evaluation of
AI and ML studies, researchers have highlighted the importance
of formal ethics reviews to improve safety and promote equity. If
best practice standards are not established for children, the rapid
expansion of AI research can potentially widen existing gaps (55,
56). As the research community develops consensus guidelines
for AI algorithms and refines the ethical use of AI, as well as
particular protections for the pediatric population, are essential.
One of the frameworks that was proposed, ACCEPT-AI, which
is a set of principles and key recommendations that can be used
independently or flexibly embedded in existing and emerging
future guidelines (57).

6 Conclusion

Precision medicine has ushered in significant advances in
diagnosing and treating pediatric cancers. The growing use of
technologies like NGS has facilitated genomic landscape and
functional characterization studies, enhancing our understanding
of cancer biology and improving the classification and risk
stratification of numerous cancers. By leveraging large-scale
genomic data and real-world clinical records, AI-powered
tools are revolutionizing cancer diagnosis, predicting treatment
outcomes, and guiding individualized therapeutic strategies. This
advancement not only enhances diagnostic accuracy but also
minimizes treatment-related toxicities and improves survival rates
in pediatric cancer patients.

Our review highlights the potential of AI models to bridge the
gap between complex biological data and clinical decision-making,
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paving the way for more effective and tailored interventions.
However, despite significant progress, challenges such as data
standardization, ethical considerations, and model interpretability
remain. Future efforts should focus on enhancing AI algorithms’
transparency and ensuring equitable access to AI-driven solutions
across diverse patient populations.

AI is promising to transform pediatric oncology through
enhanced diagnostic capabilities and personalized treatment
approaches. Continued research and collaboration among
clinicians, researchers, and technologists are crucial to overcoming
current challenges and unlocking the full potential of AI in
advancing precision medicine for children with cancer.
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